
c©ELSEVIER. ACCEPTED FOR PUBLICATION IN PATTERN RECOGNITION. DOI 10.1016/j.patcog.2019.107103

Active Emulation of Computer Codes with Gaussian
Processes – Application to Remote Sensing

Daniel Heestermans Svendsena,∗, Luca Martinob, Gustau Camps-Vallsa
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Abstract
Many fields of science and engineering rely on running simulations with complex

and computationally expensive models to understand the involved processes in the sys-
tem of interest. Nevertheless, the high cost involved hamper reliable and exhaustive
simulations. Very often such codes incorporate heuristics that ironically make them
less tractable and transparent. This paper introduces an active learning methodology
for adaptively constructing surrogate models, i.e. emulators, of such costly computer
codes in a multi-output setting. The proposed technique is sequential and adaptive, and
is based on the optimization of a suitable acquisition function. It aims to achieve ac-
curate approximations, model tractability, as well as compact and expressive simulated
datasets. In order to achieve this, the proposed Active Multi-Output Gaussian Process
Emulator (AMOGAPE) combines the predictive capacity of Gaussian Processes (GPs)
with the design of an acquisition function that favors sampling in low density and fluctu-
ating regions of the approximation functions. Comparing different acquisition functions,
we illustrate the promising performance of the method for the construction of emulators
with toy examples, as well as for a widely used remote sensing transfer code.

Keywords: Active learning, Gaussian process, emulation, design of experiments, com-
puter code, remote sensing, radiative transfer model

1 Introduction
In many areas of science and engineering, systems are analyzed by running computer code
simulations which act as convenient approximations of reality. They allow us to simulate
many different systems of interest and characterize the involved processes, such as turbulence
or energy transfer, and their interactions and relevance. Depending on the body of literature,
they are known as physics-based or mechanistic models, or simply simulators [30, 39]. Two
important limitation are associated with simulators. The first, and perhaps the most important
problem of these computer codes, is their often high computational cost, which hampers
reliable and exhaustive simulations. This limits the representativity of the simulations, which
in turn makes numerical or statistical inversion a hard problem. Secondly, since computer
codes rely on decades of intensive development and parametrizations, they often include
heuristics that improve accuracy but ironically make them less mathematically tractable and
transparent.
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Emulation for forward models. In the last decade, a field collectively known as surrogate
modeling or emulation has emerged as an efficient alternative: emulators try to mimic costly
computer codes with machine learning models. The field of emulation has received attention
from subfields of statistical signal processing and machine learning [10, 11, 15, 24, 25]. In
order to construct an emulator, we need a simulated dataset which is made by evaluating the
computer code in different input points. The problem of choosing these points, for which
this paper presents an active learning algorithm [37, 42], is treated in different parts of the
statistics and machine learning literature. A non-exhaustive overview is given below.

Related work. The problem at hand is closely related to that of Design of Experiments
(DOE), where one seeks a set of input values which best allows one to determine the re-
lationship between inputs and outputs. Between the algorithms that will be reviewed in this
section, there are key some differences between types of algorithms that it would be beneficial
to clarify first:

• Sequential vs. non-sequential refers to whether the algorithm needs to know a priori
how many input points to choose. Non-sequential or one-shot algorithms need this
information, while sequential algorithms can simply run until some time limit or accu-
racy criteria is met, which is a favourable property. Between the two approaches lie the
batch-sequential algorithms.

• Continuous vs. discrete sampling refers to whether an algorithm aims to either choose
input points in a continuous space or choose among a finite set of points. A large part of
the literature deals with the latter problem, and relies on greedy and MCMC algorithms
to choose points according to some criterion. Many of the methods proposed in the
literature can be easily adapted from continuous to discrete sampling and vice versa.

Among the most popular criteria are maximum entropy [32], maximizing distance to nearest
neighbour [14], and minimizing integrated root mean squared error [29]. These criteria have
been implemented for construction of GP emulators in both a sequential and batch-sequential
way [18]. An interesting approach in this field is the Bayesian Experimental Design (BED)
which assumes a probabilistic model of the observed data and defines a so-called utility func-
tion based on the posterior of the model parameters. The approach then aims to maximize
the mean of the utility. Recent relevant work can be found in [9, 28]. A great deal of DOE
methods, even the sequential ones, do not assume the ability to query a system, due to the
way experiments are carried out.

The field of Active Learning (AL), on the other hand, builds on the premise that we
can query a system and thus learn something about it in each iteration [23, 35]. Building
an emulator sequentially is a problem that fits directly into this category. The algorithms
in the AL literature concerned with GP regression often employ criteria based on predictive
variance [31] and entropy [36]. Other algorithms are based on triangulation of the input
space [1] or gridding [6], followed by a ranking of each triangle or cell. Greedily searching
for candidate points which have maximum distance to their nearest neighbours [41] has also
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Figure 1: The presented method optimizes the selection of most informative points to ap-
proximate an arbitrary multidimensional function iteratively. The example shows the first
four iterations in a 1D case. Starting from 4 points, a GP interpolator is built from which
some valuable information is derived (the predictive variance -green- and the gradient -red-)
and then combined in an acquisition function (blue) that proposes the next point to sample
(blue dot). The acquisition function admits many general forms and trades off geometry and
diversity terms to account for attractiveness in the sample space.

proven effective. Furthermore, when the input set is comprised of finite discrete values,
interesting criteria like mutual information have been employed with success [17].

Our Contribution: Active emulation as a step forward. In this paper, we introduce a
methodology for developing efficient machine learning emulators of costly physical mod-
els based on active emulation. An active learning framework is developed that sequentially
chooses informative input points, learning about about the underlying function as the algo-
rithm progresses. This active emulation methodology is based on the notion of an acquisition
function which can be optimized through gradient-based techniques, mirroring approaches in
Bayesian Optimization [33]. The goal is to construct an accurate emulator with as few runs
of the computer code as possible.

Given a set of initial datapoints, the emulator is built through the online addition of new
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nodes1, maximizing the acquisition function at each iteration. The acquisition function is
constructed to incorporate (a) geometric information of the costly, analytically intractable
function f , and (b) information about the distribution of the current nodes. By using Gaus-
sian processes we can derive both terms analytically, and for multiple outputs at once. The
reasoning is that areas of high variability in f(x) requires the addition of more information,
as has also been noted in [6]. In [20] the predictive variance of the gradient norm of a GP is
used as a sampling criteria, which is a less straightforward approach than just using the gra-
dient directly as done here. Similarly, regions with a small concentration of nodes requires
the introduction of new nodes in order to fill the space (simple exploration, space filling with-
out taking into account the geometrical features of f(x)). We show how to define such an
acquisition function in a multi-output setting. Figure 1 shows an illustrative example of the
building blocks of the active emulation methodology presented here.

The developed methodology of constructing emulators is sequential and searches a con-
tinuous input-space, leading to emulators that are accurate, so they can be taken as a faithful
representation of the physical models and codes, compact, and parsimonious, as a minimal
number of informative points is selected, and general-purpose since it is based on properties
of Gaussian processes like uncertainty and gradients that can be obtained for any differen-
tiable covariance function. This paper builds on of the preliminary work in [34], extending
it in several directions. A general framework is provided before describing some specific
implementations, extending the study proposing the use of a range of different acquisition
functions. A theoretical demonstration of the utility of a gradient term in active sampling and
emulation is also given (see A, for instance). Finally, more thorough experimental results are
provided, with more examples and challenging model comparisons, and a more advanced use
case.

Structure of the paper. The remainder of the paper is organized as follows. We first define
active emulation and establish the notation in Section 2. Then, the GP-based active emulation
framework is presented in Section 3. The framework defines a general-purpose acquisition
function built on optimal search of diversity and uncertainty criteria. Experimental results
in synthetic and challenging real problems illustrate the capabilities in Section 4. We will
pay special attention to the field of remote sensing, where computer codes, called radiative
transfer models (RTMs), are widely used and pose challenges to the design of accurate and
compact emulators. Having access to an exhaustive ground truth allows us to analyze perfor-
mance in terms of convergence and accuracy. We conclude in Section 5 with some remarks
and an outline of future work.

2 Active Emulation
In this section we describe the generic active emulation (AE) method for a complex system
denoted as f(x), e.g., an expensive RTM model. We first fix the notation, then present the

1 In the following, the words node and datapoint will be used intercheangebly.
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processing scheme. Consider a D-dimensional bounded input space X , i.e., x ∈ X ⊂ RD.
Furthermore, let f(x) : X → RP denote a complex system with P outputs. Finally, t ∈ N
denotes the index of the AE algorithm, and mt the number of datapoints {xk,yk}mt

k=1 used by
the algorithm at iteration t, where

yk = f(xk), (1)

where yk = [y1,k, . . . , yP,k]
ᵀ and k = 1, . . . ,mt. Thus, given an input matrix of nodes,

Xt = [x1, · · · ,xmt ] of dimension D × mt, we have a P × mt matrix of outputs, Yt =
[y1, . . . ,ymt ]. At each iteration t, given the datapoints {xk,yk}mt

k=1, the AE method constructs
an interpolating function f̂t(x). Then, an acquisition function At(x) : RD → R is built in
order to suggest which regions of the space require additional nodes. That is, an optimization
step is performed for obtaining the next input xmt+1:

xmt+1 = arg max
x∈X

At(x). (2)

The dataset is updated accordingly, Xt+1 = [Xt,xmt+1], Yt+1 = [Yt,ymt+1 = f(xmt+1)]
adding a new node, and we set mt+1 = mt+ 1 and t← t+ 1. The procedure is repeated until
a stopping condition is met. One possibility is to stop the algorithm when a pre-established
maximum number of points M (determined by the available computational resources) has
been included. Theoretically, the user could stop the algorithm when a least a precision
error ε > 0 is achieved, ‖f(x) − f̂t(x)‖ ≤ ε. However, since f(x) is costly and analyt-
ically intractable in general2, one cannot evaluate and/or approximate the associated error
‖f(x)− f̂t(x)‖. A practical alternative is to stop the AE method when ‖f̂t(x)− f̂t−1(x)‖ ≤ ε′

for some ε′ > 0. Figure 1 shows a graphical representation of a generic AE procedure. Table
1 summarizes the main notation of the work. Table 2 shows in details the steps of a generic
AE algorithm.
Note that the goal is either to sequentially construct an emulator able to obtain a pre-established
error in approximation with the smallest number of nodes possible or, more commonly, the
best possible emulator built with a pre-established maximum number of nodes (given some
starting points). The constructed emulator will be used for further applications for the inter-
ested users, researchers and practitioners. We do not consider time or computational restric-
tions in the construction stage. Furthermore, our approach is particularly useful when the
underlying function is very costly, i.e. when the cost of evaluating this function is signifi-
cantly greater than the application of one iteration of the proposed algorithm.

2.1 Acquisition function
We consider acquisition functions At(x) : X → R obtained by the multiplication of a geom-
etry term Gt(x) and a diversity factor Dt(x), i.e. functions of the form:

At(x) = [Gt(x)]βt Dt(x), (3)
2The system y = f(x) is a black-box mapping, linking the inputs x with the outputs y. At each new input

x′, the system returns y′ = f(x′), but does so by way of a computer code which is too complex and slow to
lend itself to exhaustive analysis across the input space.
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Table 1: Main notation of the work.
t ∈ N Iteration index of the active emulator.
mt Number of data points at the t-th iteration.
{xk,yk}mt

k=1 Data points at the t-th iteration.
x = [x1, . . . , xD]ᵀ ∈ X ⊂ RD Input variable.
y = [y1, . . . , yP ]ᵀ Outputs.
Xt = [x1, · · · ,xmt ] D ×mt input matrix.
Yt = [y1, . . . ,ymt ] P ×mt output matrix.
y = f(x) : X → RP Unknown function/forward model linking x with y.
ŷ = f̂t(x) : X → RP Interpolator the t-th iteration using {xk,yk}mt

k=1.
At(x) : X → R Acquisition function at the t-th iteration.
k(x, z) : X × X → R kernel function.
K mt ×mt kernel matrix.
kx = [k(x,x1), . . . , k(x,xmt)]

ᵀ mt × 1 vector.

where βt ∈ [0, 1] is a positive non-decreasing function of t, with lim
t→∞

βt = 1. The function

Gt(x) encodes the geometrical information in f(x), while function Dt(x) depends on the
distribution of the points in the current vector Xt. More specifically, Dt(x) takes greater
values around empty areas in X , whereas Dt(x) will be approximately zero close to the
nodes and exactly zero at the nodes3, i.e., Dt(xi) = 0, for i = 1, . . . ,mt and ∀t ∈ N. As a
consequence, we have

At(xi) = 0 ∀i, t. (4)

Generally, since f(x) is analytically intractable, the function Gt(x) can only be derived from
information acquired in advance or by considering the approximation f̂t(x). The tempering
parameter, βt, helps to down-weight the likely less informative estimates of the gradient in
the very first iterations. For instance, if βt = 0, we ignore Gt(x) and At(x) = Dt(x), i.e.,
only the exploration term is considered. Whereas, if βt = 1, we have At(x) = Gt(x)Dt(x).

2.2 Specific implementation
The AE algorithm introduced is completely defined by the choice of the interpolator provid-
ing the approximation f̂t(x), and the functions Gt(x), Dt(x), and βt. Moreover, the initial set
of nodes {xk,yk}m0

k=1 and the stopping condition could be considered as additional elements.
It is important to note that, in order to choose the interpolating function, we have to take into
account the ease of application in high dimensional spaces and the possibility of computing
the gradient and other differential geometric measures of f̂t analytically. Different designs
of these four elements give rise to different AE techniques. In Section 3, we provide some
specific examples of the choice of {f̂t, Gt, Dt, βt}.

3Note that this is the case only for an interpolator (no output-noise assumed) while for a regressor the value
of Dt(x) will just be very small around already placed nodes.
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Table 2: Generic Active Emulator.

1. Set t = 0, select initial points X0 = [x1, · · · ,xm0 ], and Y0 = [y1, . . . ,ym0 ], and
maximum number of nodes M .

2. While mt < M :

(a) Given Xt = [x1, · · · ,xmt ] and Yt = [y1, . . . ,ymt ], build function f̂t(x).

(b) Build the acquisition function At(x) from f̂t, and obtain the new input

xmt+1 = arg max
x∈X

At(x). (5)

(c) Obtain outputs ymt+1 = f(xmt+1).

(d) Update Xt+1 = [Xt,xmt+1], Yt+1 = [Yt,ymt+1].

(e) Set mt+1 = mt + 1 and t← t+ 1.

3. Build the interpolating function f̂t(x).

4. Return final set of optimal nodes {xk,yk}mt
k=1 as a Look-up Table (LUT), as well

as the gradient and the predictive variance of the predictive model f̂t(x).

2.3 Parsimonious sequential approach
It is also important to remark that the active emulation procedure presented in this work is
intrinsically a sequential technique. This means that the nodes in Xt−1 are always contained
in Xt, i.e. the locations of previous nodes are not changed. This solution minimizes the
number of evaluations of the complex system f . In this sense, the active emulation procedure
is a parsimonious sequential technique that applies, at each iteration, all previously obtained
information about the underlying function f . Namely, all the previous evaluations of f are
used, and only one additional evaluation of f is required at each iteration.

2.4 Products of the algorithm
The active emulation procedure proposed in this work is a methodology that delivers: (a) an
accurate GP emulator (considering a specific choice of the interpolator) while evaluating the
computer code as little as possible, (b) a final set of nodes {xk,yk}mt

k=1 as a Lookup Table
(LUT; other interpolation procedures can be applied using the obtained set of points), and
(c) useful statistical information about the model f , such as predictive variance and gradients
of the learned function, which can be further used for model inversion and error propagation
analyses.
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3 Active Multi-Output Gaussian Process Emulator (AMO-
GAPE)

An active emulator is completely defined by the choice of the predictive, model f̂(x) and
the acquisition function At(x). In this work, we consider a GP interpolator, as well as the
regression formulation [26], which has been successfully used in remote sensing applications
recently [8].

3.1 The Gaussian Process Interpolator
For the sake of simplicity, let us first start considering the GP solution for the scalar output
case, i.e., P = 1. Hence, in this case the vectorial function y = f(x) is a simple function
y = f(x), and the matrix Yt = [y1,1, . . . , y1,mt ], becomes a 1 ×mt vector. Given a generic
test input x, GPs provide a Gaussian predictive density p(y|x) = N (y|µ(x), σ2(x)) with
predictive mean µ(x) and variance σ2(x). The predictive mean gives us the interpolating
function and is given by

f̂t(x) = µt(x) = kᵀ
xK
−1Yᵀ

t , (6)

where we defined a kernel function k(x, z) : X × X → R, the corresponding kernel matrix
[K]ij := k(xi,xj) of dimension mt ×mt containing all kernel entries, and the kernel vector
kx = [k(x,x1), . . . , k(x,xmt)]

ᵀ of dimension mt× 1. The interpolating function can be sim-
ply expressed as a linear combination of f̂t(x) = kᵀ

xα =
∑mt

i=1 αik(x,xi), where the weights
α = [α1, . . . , αmt ]

ᵀ are α = K−1Yᵀ
t . The GP formulation also provides an expression for

the predictive variance
σ2
t (x) = k(x,x)− kᵀ

xK
−1kx. (7)

An example is the exponentiated quadratic kernel function,

k(x, z) = exp

(
−‖x− z‖2

2δ2

)
, (8)

where ‖ · ‖ is the `2-norm, and δ > 0 is a positive scalar hyper-parameter. Note that the norm
of the gradient of the interpolating function f̂t w.r.t. the input data x can be easily computed,

Grt(x) =
∥∥∥∇xf̂t(x)

∥∥∥ =

∥∥∥∥∥
mt∑
i=1

αi∇xk(x,xi)

∥∥∥∥∥ . (9)

The gradient vector of k(x,xi) with x = [x1, . . . , xD]ᵀ and xi = [x1,i, . . . , xD,i]
ᵀ, is

∇xk(x,xi) = −
k(x,xi)

δ2
[(x1 − x1,i), . . . , (xD − xD,i)]ᵀ, (10)

which can be easily computed analytically, and by automatic differentiation software. At
this point an intuitive choice of acquisition function of Eq. (3) presents itself. The predictive
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variance which describes the uncertainty of the GP prediction, and which largely depends on
distance to nearby training points, is a natural choice for the diversity term Dt(x) = σ2

t (x).
Furthermore, since the emulator is differentiable, we can use the gradient as a measure of
function variation and choose the geometry term as Gt(x) = Grt(x).

3.2 Multi-output GP interpolator
Several multi-output GP schemes have been proposed with the aim of exploiting the correla-
tion among the output variables [2–4,12,19,40]. These models are especially well suited for
multitask problems where little data is available or for gap filling, which is not the scenario
of this work [4]. We do not face such problems in our particular remote sensing application
since the RTMs provide all vector components when executed in forward mode. We adopt
a simpler yet highly effective approach, simply treating each output independently. For sim-
plicity, we consider an isotopic case where to each input xk we have P different outputs,
[y1,k, ...yP,k]

ᵀ; see the descrption of isotopic and heterotopic models in [4]. We also define the
p-th row of the matrix Yt as ỹp,t = [yp,1, . . . , yp,mt ], with p = 1, . . . , P , so that Yt is matrix
of dimension P ×mt. Here, for the sake of simplicity, we apply one GP interpolator for each
output independently, i.e.,

f̂t(x) =


f̂1,t(x) = kᵀ

x,1K
−1
1 ỹᵀ

1,t

...

f̂P,t(x) = kᵀ
x,PK

−1
P ỹᵀ

P,t

, (11)

where the vectors kx,p have all dimensionmt×1 and the matrices Kp have dimensionmt×mt.
The subindex p in the kernel vector kx,p and the kernel matrix Kp denotes the dependence
to a different hyper-parameter δp (we learn one for each output). More generally, we can
consider a different kernel for each output which allows for much model flexibility. Hence,
for each output, we have a different variance

σ2
p,t(x) = kp(x,x)− kᵀ

x,pK
−1
p kx,p. (12)

Similarly, we have one gradient norm for each interpolating function Grp,t(x). It is important
to note here that any multi-output GP framework will fit in the AMOGAPE method as long as
it provides a differentiable predictive variance and gradient, which for most commonly used
kernels is the case.

3.3 The acquisition function
Note that σ2

p(xi) = 0 for all i = 1, . . . ,mt and all p, and each σ2
p(x) depends on the distance

among the support points xt, the chosen kernel function k, and the value of the correspond-
ing hyper-parameter δp. For this reason, it is reasonable to consider as diversity term the
following function that combines them all:

Dt(x) := σ2
1,t(x)� σ2

2,t(x)� σ2
3,t(x)...� σ2

P,t(x), (13)

9



where � represents a generic mathematical operation such as sum (+) or multiplication (×).
We wish to use the geometric information term to sample where the norm of the gradient is
high and thus define similarly

Gt(x) := Gr1,t(x)� Gr2,t(x)� Gr3,t(x)...� GrP,t(x). (14)

The intuition behind this choice is that wavy regions of f (estimated by f̂t) require more
support points than flat regions. In A we demonstrate the importance of the gradient term
using the simple example of a piecewise-constant interpolator. As previously mentioned, we
define the acquisition function as

At(x) = [Gt(x)]βt Dt(x). (15)

Table 3 shows several combinations that generate different acquisition functions according to
the choice of the operator �.

Optimization approaches. The maximization of Eq. (15) can be performed by using dif-
ferent optimization algorithms, e.g., gradient ascent or simulated annealing. As can be seen
in the simple 1-D example of Fig. 1, the acquisition function has many local optima. Thus,
while it is useful to have access to the gradient of Eq. 15, we find that it is important to
incorporate stochasticity in the optimization. This can be done, for example by performing
a number of random searches and then performing gradient ascent, initialized at the best
candidate point.

Tempering of the geometric information. The parameter βt ∈ [0, 1] indicates how the
acquisition function should “trust” the provided geometric information and must be an non-
decreasing function of t. Indeed, recall that the geometric information is given by analyz-
ing the interpolating function f̂ , instead of the complex system f , since it is analytically
intractable. Clearly, βt must be an increasing function with respect to t, since at each iter-
ation the interpolating function f̂ is improved and becomes step-by-step more reliable. One
possible choice is βt = 1 − exp(−γt), where γ ≥ 0 is a positive scalar established by the
user or, alternatively, βt = 1− 1

t
, for instance.

3.4 From interpolation to regression
So far we have described the emulation as an interpolation problem since RTMs are determin-
istic models: running the code multiple times will always return identical answers. Hence,
we have assumed an observation equation of type y = f(x)4. However, in some cases, it is
preferable to consider an observation equation of type y = f(x) + ε where ε ∼ N (0, υ2) rep-
resents a Gaussian noise perturbation with zero mean and variance υ2. There are three main

4In this section, we assumed only one output in the equation, just for the sake of simplicity. Clearly, the
same considerations are valid for the multi-output case.
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Table 3: Acquisition functions for a multi-output emulator and their shorthand notation used
in Section 4.

At(x) Shorthand∑P
p=1 σ

2
p,t(x) ΣD∏P

p=1 σ
2
p,t(x) ΠD∑P

p=1 σ
2
p,t(x)

∑P
p=1 Grp,t(x) ΣD×ΣG∑P

p=1 σ
2
p,t(x)

∏P
p=1 Grp,t(x) ΣD×ΠG∏P

p=1 σ
2
p,t(x)

∑P
p=1 Grp,t(x) ΠD×ΣG∏P

p=1 σ
2
p,t(x)

∏P
p=1 Grp,t(x) ΠD×ΠG

reasons, both theoretical and practical, for considering noisy outputs: (a) the system to em-
ulate actually contains stochastic elements (i.e., it is not a completely deterministic system),
(b) to increase the prediction power of the emulator function f̂t(x) providing more flexibility
to the GP model, and (c) in order to avoid numerical problems, increasing also the stability of
the computation. This last point is due to the fact that the noise variance ν2 plays the role of a
regularization term which is added to the diagonal of the kernel matrix (also called a nugget
in kriging literature). Indeed, when noisy outputs are assumed and by denoting the mt ×mt

identity matrix as I, then the GP regression equations become

f̂t(x) = kᵀ
x(K + υ2I)−1Yᵀ

t , (16)
σ2
t (x) = υ2 + k(x,x)− kᵀ

x(K + υ2I)−1kx. (17)

Note that, if we set again Dt(x) = σ2
t (x) (with σ2

t (x) defined above), then At(x) does not
fulfil Eq. (4). However, At(x) still takes greater values far from nodes xi, and smaller values
close to points xi. If the application strictly requires that the condition in Eq. (4) must be
satisfied, then we can simply define Dt(x) = k(x,x) − kᵀ

xK
−1kx, i.e., σ2(x) without the

noise term. With this definition, we have again At(xi) = 0. This means that the noise term
is only used in the GP equations and not for the construction of the acquisition function. Fi-
nally, note that, if a regressor is applied instead of an interpolator, then two hyperparameters
must be tuned, δ and υ, instead of just only δ, assuming the kernel in Eq. (8). The user might
also wish to decide a value of υ2 in advance instead of learning it, using it as a regularization
term in order to guarantee the numerical stability of the method. Hyperparameter tuning can
be performed with standard Cross Validation (CV) procedures, or maximizing the marginal
likelihood function by gradient ascent or other optimization techniques [16, 21]. In the in-
terpolation case or when υ2 is decided in advance by the user, another interesting approach
is to find the maximum value of bandwidth δ which still allows the numeric inversion of the
matrix K (imposing a upper bound for its condition number).
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4 Experimental results
This section presents experimental results of the our AE framework in synthetic and real
(Earth-observation) systems. The AMOGAPE5 method is compared to standard algorithms
in the literature, namely random exploration/sampling and most notably Sobol’s sampling [5]
and the Latin Hypercube Sampling (LHS) method [22]. Algorithms are compared in terms
of accuracy and convergence rates in problems of different input and output dimensionality.
The real experiments involve a widely used code that models the relation between vegetation
parameters and the corresponding reflectance signal.

4.1 Toy Experiment 1: Example of unidimensional multi-output emu-
lation

We consider a multi-output toy example with scalar inputs x ∈ R where we can easily
compare the achieved approximation f̂t(x) = [f̂1(x), f̂2(x)] with the underlying function
f(x) = [f1(x), f2(x)]. In this way, we can exactly check the true accuracy of the obtained
approximation using different schemes. For the sake of simplicity, we consider the following
multi-output mapping

f(x) = [log(x), 0.5 log(3x)], x ∈ (0, 10], (18)

then D = 1 and P = 2 (two outputs). Even in this simple scenario, the procedure used for
selecting new points is relevant. We start withm0 = 4 support points, X0 = [0.1, 3.4, 6.7, 10],
apply an independent GP per output, and for AMOGAPE we use the acquisition function
denoted as ΠD × ΠG in Table 3 with the tempering function βt = 1 − 1

t
. We also set

υ2 = 0.02 as a regularization term, in order to avoid numerical issues.

4.1.1 Comparison among sequential methods

It is important to remark that all the active emulators presented in this work are intrinsically
sequential techniques. This means that the nodes in Xt−1 are always contained in Xt, i.e., the
previous configuration of points is always kept. Therefore, for a fair comparison we have to
consider other sequential algorithms. We add to Xt sequentially 20 additional points, using
different sampling strategies: AMOGAPE, uniform points randomly generated in (0, 10], a
sequential Sobol sequence, and a sequential version of the Latin Hypercube Sampling proce-
dure (Seq-LHS). Seq-LHS simply generates 20 nodes following the LHS procedure and then
adds one to Xt at each iteration (without replacement). Note that, at each run, the results
can vary even for the deterministic procedure due to the optimization of the hyperparameters.
We use simulated annealing, which is a stochastic optimization technique [16, 21], both for
hyperparameter and acquisition function optimization. We average all the results over 500
independent runs. For model comparison, we compute the root mean square error (RMSE)
between f̂t(x) and f(x) at each iteration, and show the evolution of the (averaged) RMSE

5Code available at https://github.com/dhsvendsen/AMOGAPE
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Figure 2: RMSE (in log-scale) between f(x) and f̂t(x) versus the number of nodes mt, that
is mt = t+ 4 in this example (D = 1 and P = 2). Sequential methods, which are more com-
parable as they utilize mT evaluations of f(x), are shown with dashed lines. The comparison
with two non-sequential methods, using

∑T
t=1mt =

m2
T+mT

2
evaluations of f(x), are shown

with solid lines.

versus the number of support points mt (that is mt = t + m0) in Figure 2. We can observe
that the AMOGAPE scheme outperforms the other methods, providing the smallest RMSEs
between f(x) and f̂t(x).

4.1.2 Comparison with non-sequential methods

In order to provide an exhaustive numerical analysis we also compare AMOGAPE with
non-sequential techniques where the input matrix Xt can be completely different from Xt−1
(whereas, in AMOGAPE, the nodes in Xt−1 are all always contained in Xt). This approach
would not be used in practice, but serves as an interesting comparison of AMOGAPE with
one-shot space-filling algorithms. More specifically, we consider:

• Deterministic grid: at each step, we consider an equal-spaced set of points (determinis-
tically chosen). Thus, at each step, all the points in the previous timestep Xt−1 are not
considered but replaced by new nodes.

• Standard LHS: also in this case, at each iteration all the previous points are changed.

Clearly, these two schemes evaluate the underlying function in mt new nodes at each iter-
ation and are therefore more costly than AMOGAPE. The total number of evaluations of
f(x) for AMOGAPE is mT whereas, for the non-sequential schemes above is

∑T
t=1mt =

(m2
T + mT )/2. However, even in this unfair comparison for our method, Figure 2 shows

that AMOGAPE is able to provide the smallest error when more than 12 new points are in-
corporated. This illustrates that the gradient term encoded in the AMOGAPE adds useful
information to the active learning scheme.
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4.2 Toy Experiment 2: Example of bidimensional multi-output emula-
tion

In this section, we extend the previous example to consider multi-input and multi-output
problems, i.e. D = P = 2. More specifically, we consider

f(x) = [log(|x|), 0.5 log(3|x|)], x ∈ (0, 10]× (0, 10]. (19)

We start with m0 = 25 starting nodes in the input matrix, X0 = [x1, . . . ,xm0=25] where
xi = [xi,1, xi,2]

ᵀ, with i = 1, . . . , 25, distributed as shown in Figure 3(a) with black circles.
In order to evaluate the approximation RMSE obtained with the emulators, we consider a thin
grid in the square (0, 10]× (0, 10] (with step 0.3). The starting nodes in the input matrix, X0

(black points), and the thin test grid (green dots) are shown in Fig. 3(a). We apply again one
independent GP for each output and, as in the previous example. For AMOGAPE, we apply
the acquisition function denoted as ΠD × ΠG in Table 3 and we use again the tempering
function βt = 1 − 1

t
and set υ2 = 0.02 as a regularization term, only for avoiding numerical

issues. We compare different sampling strategies : AMOGAPE, a sequential Sobol sequence,
and sequential LHS. We add 30 additional points to X0 in the first two sequential approaches.
In LHS all the previous points change at each iteration. The results (averaged over 500
independent runs) are shown in Fig. 3(b), which show a considerable gain in accuracy and
convergence rates by the presented algorithms.
The distributions in input-space of the final 55 nodes - 25 on a grid and 30 subsequently
chosen with a sampling algorithm - are shown as a Kernel Density Estimation (KDE) plot for
each of the methods in Figure. 4. We can observe that AMOGAPE adds points in the border
and in a left-bottom corner where the gradient is comparatively high. It makes sense that
these points are deemed the most useful since the initial 25 nodes points are well-located. The
sampling method using the Sobol algorithm and the sequential LHS algorithms incorporate
new points that fill out the input-space but do not pay particular attention to the behaviour of
the underlying function.

4.3 Application to remote sensing: Emulating a radiative transfer model
Our method is assessed for the emulation of the leaf-canopy PROSAIL RTM, which is the
most widely used RTM over the last two decades in remote sensing studies [13]. PROSAIL
simulates reflectance as a function of:

1. Leaf optical properties, given by the mesophyll structural parameter (N), leaf chloro-
phyll (Chl), dry matter (Cm), water (Cw), carotenoid (Car) and brown pigment (Cbr)
contents.

2. Canopy level characteristics, determined by leaf area index (LAI), the average leaf
angle inclination (ALA) and the hot-spot parameter (Hotspot). System geometry is
described by the solar zenith angle (θs), view zenith angle (θν), and the relative azimuth
angle between both angles (∆Θ).
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Figure 3: (a) The starting points in the input matrix X0 are shown with black points, whereas
the points in the thin test grid are depicted with green squares. (b) RMSE (in log-scale)
between f(x) and f̂t(x) versus the number of the number of support points mt, that is mt =
..... in this example (D = 2 and P = 2). Note that the number of initial points is m0 = 25.
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Figure 4: Kernel Density Estimation plot of the final configuration of points in the emula-
tion of Eq. (19), showing the (a) AMOGAPE, (b) Sobol and (c) Sequential LHS algorithms
respectively.

We consider PROSAIL for simulating Landsat-8 spectra, a satellite sensor widely used for
land cover applications in general and vegetation monitoring in particular. Therefore, the gen-
erated, eventually optimized, look-up tables are used for inversion and thus retrieve vegetation
parameters with the Landsat-8 satellite imagery. This leaves us with an output-dimension of
P = 9 for our problem, i.e. the number of spectral bands of the satellite. Now, depending on
the parameters of interest the input dimensionality D may vary.

4.3.1 Sampling a 2-dimensional space for PROSAIL emulation

In this experiment, we chose the most important variables at leaf and canopy-level respec-
tively, namely Chl and LAI, and kept the rest fixed. Table 4 shows the values for the remain-
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ing parameters which are set for simulation of rice crops [7]. When generating look-up tables
with RTMs it is common practice to use expert knowledge to determine distributions over the
biophysical parameters which constitute the RTM input [38]. The desired amount of samples
are then drawn, and the model is evaluated in each of these points. A commonly used dis-
tribution is the truncated Gaussian NT (x|µ, σ,min,max). Indeed, the truncated Gaussians
NT (Chl|45, 30, 20, 90) and NT (LAI|3.5, 4.5, 0, 10) for Chl and LAI, respectively, have
proven effective for crop reflectance modeling [7]. We denote their joint distribution, which
has no covariance between the variables, as NT (Chl,LAI).

Table 4: Characteristics of the simulation used in the PROSAIL model.

Leaf level
N Cm Cw Car Cbr

1.5 0.01 µg/cm2 0.01 µg/cm2 8 g/cm2 0

Canopy level
ALA Hotspot θs θν ∆Θ

Spherical 0.01 30◦ 10◦ 0

In summary, we are emulating a function f(x) where x = [Chl, LAI] mapping from an
input space of dimension D = 2 to the output space of dimension P = 9. The search space
is restricted to physically meaningful values of Chl ∈ [20; 90] µg/cm2 and LAI ∈ [0; 10]. In
order to gain insight into the relative importance of the Diversity and Geometric terms, an
array of different acquisition functions shown in Table 3 are applied. The AMOGAPE sam-
pling schemes are compared with sampling randomly from NT (Chl, LAI). This distribution
encodes knowledge about the physically feasible region to sample in, which is also encoded
in the AMOGAPE, simply by multiplying the truncated density function ψ(Chl, LAI) onto
the acquisition functions. We set βt = 1 ∀ t in order to simplify the experiments.

Evaluation of which sampling method leads to the best emulator is done by computing
the test approximation error on a test-set of 5000 points, sampled from the above-mentioned
truncated Gaussian distributions. We initialize with 30 points drawn fromNT (Chl,LAI). The
multi-output RMSE for theM = 5000 test points over the P = 9 single-output GP emulators
is computed as follows

RMSE =

√√√√ 1

M

M∑
i=1

1

P

P∑
p=1

(yp,i − ŷp,i)2. (20)

The results are averaged over 15 runs. In order to speed up the experiment, hyperparameter
and acquisition function optimization are performed through an initial random search of 10D

points, followed by gradient ascent. Results are shown in Fig. 5. We see that it is possible
to perform better using the AMOGAPE approach on our test-set than by sampling randomly
from NT (Chl,LAI). It is interesting to note that methods using ΣD×ΣG and ΣD perform
similarly, implying that the ΣD term is governing the acquisition function. Similarly, meth-
ods using ΠD and ΠD×ΣG perform equally well, showing that ΠD is the most influential
term. The acquisition function ΣD×ΠG, which penalizes a zero-gradient in any of the output
dimension, relies too much on geometric information and performs the worst. It seems that
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Figure 5: Function approximation errors by different acquisition functions, cf. Tab. 3, and
for different number of selected nodes mt in a bidimensional PROSAIL problem. Only the
best performing acquisition functions are compared here to random sampling.

the information source which is included in product form governs A(x). It seems that the
ΠD×ΠG method manages to strike a balance between the two sources of information. All in
all, the best performing methods are ΣD and ΣD×ΣG. This hints at the idea that the product
form is too restrictive, i.e. considering a point uninteresting if the predictive variance is close
to zero in only one of the output-dimensions.

4.3.2 Sampling a 3-dimensional space for PROSAIL emulation

We conduct a similar experiment, including now another crucial biophysical parameter in the
search space, namely dry matter content (Cm), which is an important parameter to monitor
key properties and processes in vegetation and the wider ecosystem. The associated truncated
Gaussian used is NT (Cm|0.005, 0.005, 0.003, 0.011). We use a test set of 50000 points
generated from the joint truncated Gaussian NT (Chl, LAI, Cm).

We saw earlier that the acquisition function which performs the best was also the most
simple, namely ΣD. The acquisition function ΠD×ΠG, being formulated only in product
form, manages not to be dominated by either term and is interesting because it is very se-
lective: It discourages a gradient or predictive variance which is close to zero in any output
dimension. For these reasons, along with computational burden, the aforementioned acquisi-
tion functions are used for the 3-dimensional experiment. The average results after running
the experiment 10 times are shown in Fig. 6. Again, we see that the 1) the two variants
of AMOGAPE acquisition functions outperform random sampling, 2) that the acquisition
functions behave quite similarly, and 3) that simple acquisitions perform as well as more
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complicated ones. Note however, that using a different tempering function than βt = 1 ∀ t
would likely make performances diverge.

30 40 50 60 70 80 90 100 110 120 130
Number of nodes (mt)

R
M

S
E

D100

6 × 10 1

2 × 100

3 × 100

4 × 100

Random

D x G

Figure 6: Function approximation errors by different acquisition functions and for different
number of selected nodes mt in the three-dimensional PROSAIL problem.

5 Conclusions
We introduced a simple framework for active construction of emulators for costly physical
models used in Earth observation. The proposed framework does not only provide an ef-
fective approximating function, but also a compact LUT and some very useful by-products
for practitioners, namely confidence intervals for the estimates and information about the
gradients.

The methodology iteratively incorporates new sample points that meet both diversity and
geometry criteria, thus sampling in low-density and more ‘complex’ regions. This is accom-
plished by building an acquisition function that takes into account the predictive variance and
the norm of the gradient of the GP function used for emulation. The combination of the ge-
ometric and diversity sampling criteria was possible because both the GP predictive variance
and the gradient of the GP predictive mean are analytic expressions.

We illustrated the promising capabilities of the method through emulation of a popular
radiative transfer model. Comparison to established methods in the literature illustrated the
favourable performance of the proposed methods. The proposed family of criteria for defining
the acquisition functions in emulation allows smart sampling of the input space thus leading
to compact and expressive look-up-tables, which can be readily used for model inversion in
either statistical or numerical frameworks. The proposed methodology is very general and
modular. Alternative acquisition functions, kernel functions and quality measures adapted to
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the problem are interesting pathways to explore. In our future work we plan to explore the use
of Matérn kernels when function smoothness is not a strict (or even realistic) requirement in a
given RTM. Besides, other quality measures other than RMSE could be more interesting for
evaluating emulator quality. The information content of the added samples in each iteration
by computing maximum differential of entropies in similar ways to the approach in [27].

We anticipate adoption of these methods in the Earth sciences and also in unrelated disci-
plines where process-based models are widely adopted as well, from econometrics to indus-
try or health sciences. Our future work is centered around speeding up other more complex
codes, such as the atmosphere MODTRAN model, as well as to extend the framework to deal
with dynamic models. The framework introduced here constitutes the first step towards the
ambitious goal of large scale active statistical models that learn Physics models.
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A Importance of a gradient term in the acquisition function
Let us consider the problem of approximating the function y = f(x), x ∈ D ⊆ RL, where
D = [a1, b1]× [a2, b2]× ...× [aL, bL]. For the sake of simplicity, we consider one dimensional
problems, i.e. L = 1, with D bounded ai, bi < ∞. Moreover, let us consider a set of nodes
{x1,x2, ...,xM} ∈ D and the corresponding values of the function ym = f(xm). We use the
pairs {xm, ym}Mm=1 to perform an interpolation.
Given the set of nodes {xm}Mm=1, we denote a piecewise constant interpolation (PCI) of the
function f(x) as

ŷ = φ(x|x1:M) = φ(x). (21)

In order to measure the discrepancy between function and emulator we introduce a cost
function C(f, φ) = C

(
f(x), φ(x)

)
≥ 0. The equality C(f, φ) = 0 must hold only if

φ(x) = f(x). Here, we consider the Lp family of cost functions

Cp(f, φ) = ||f(x)− φ(x)||p =

(∫
D
|f(x)− φ(x)|pdx

) 1
p

. (22)

22



Note that C∞(f, φ) = limp→∞Cp(f, φ) = max
x∈D
|f(x)− φ(x)|.

One node (M = 1), infinity norm cost functions p =∞
Let us consider y = f(x), x ∈ [a, b] ⊆ R. For simplicity, we assume f(x) to be strictly
monotonic, more specifically increasing. We consider a piecewise constant approximation
with M = 1 point x1 within x1, i.e.

φ(x) =

{
f(a) x ≤ x1

f(x1) x > x1
(23)

Let us consider the L∞ distance (i.e., p =∞),

C∞(x1) = max
x∈[a,b]

|f(x)− φ0(x)| = max
x∈[a,b]

[|f(x1)− f(a)|, |f(x1)− f(b)|] ,

= max
x∈[a,b]

[f(x1)− f(a), f(b)− f(x1)] (24)

The problem consists in finding the optimal node x∗1 such that x∗1 = arg minC∞(x1). This
optimal point x∗1 will then satisfy the condition

f(x∗1)− f(a) = f(b)− f(x∗1). (25)

This is because ca ≡ |f(x1)− f(a)| will decrease as cb ≡ |f(x1)− f(b)| increases, and vice
versa, due to the monotonicity of f(x). Since we are taking the max between the two, the
lowest value that C∞ can take is the point where they are equal ca = cb (see Fig. 7), as any
divergence from that would lead to one of the terms being higher.

Using Eq. (25), since we are assuming that f is monotonic (thus invertible), we can also
write

f(x∗1) =
f(b) + f(a)

2
, (26)

and, since we have assumed that f(x) is monotonic, thus invertible, we have

x∗1 = f−1
(
f(b) + f(a)

2

)
. (27)

Figure 7 illustrates the above reasoning. Note that, if f(x) is non-linear, x∗1 6= a+b
2

(as a space
filling/Latin hypercube strategy might suggest). The expression of x∗1 is an extended mean,
which takes into account information regarding the non-linearity f(x).
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(b)

Figure 7: (a) Optimal piecewise constant approximation φ(x) with M = 1 node. (b) The
cost function C∞(x1) and its minimum at x∗1.

Generic number of nodes (M > 1)

Let us assume now that we may place M nodes x1, x2, ..., xM in order to achieve an optimal
emulator of f with respect to the C∞ norm. The optimal nodes x∗1, x

∗
2, . . . , x

∗
M will then

satisfy the condition

f(x∗1)− f(a) = f(x∗2)− f(x∗1) = . . . f(x∗M−1)− f(x∗M−2) = f(b)− f(x∗M−1). (28)

The point (x∗1, x
∗
2, . . . , x

∗
M) is a minimum for C∞(x1, x2, . . . , xM) and is unique. In order

to see this, let us define d1 = f(x1) − f(a), d2 = f(x2) − f(x1), . . . , dm = f(xm) −
f(xm−1), . . . , dM = f(xM) − f(xM−1), and dM+1 = f(b) − f(xM). With this definition
we reach the minimum for C∞(x1, x2, . . . , xM) when all distances {dm}Mm=1 are equal to
f(b)− f(a) divided by M + 1:

d∗1 = d∗2 = . . . = d∗M+1 =
f(b)− f(a)

M + 1
≡ cMIN (29)

This can be seen from the fact that the distances satisfy dm ≥ 0 for m = 1, 2, . . . ,M due to
the monotonicity of f , and they sum to a constant

M+1∑
m=1

dm = f(b)− f(a) (30)

Thus if one dm decreases, one or all other have to increase. This implies that any configuration
of x1, x2, . . . , xM resulting in dj < cMIN for some j, will lead dk > cMIN for one or more k.
Therefore, the configuration of corresponding to (29) is optimal.
Following the above logic, the optimal locations of M nodes, {x1, . . . ,xM}, can be obtained
by:
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1. Dividing with a uniform grid formed by M points the interval [f(a), f(b)] (image of
[a, b]),

ym = f(a) +m
f(b)− f(a)

M + 1
, m = 1, . . . ,M, T (31)

2. Finding the xm such that f(xm) = ym, i.e., since we assume that f(x) is invertible,

xm = f−1(ym), m = 1, . . . ,M. (32)

See Fig. 8 for an example with M = 2 nodes.
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Figure 8: (a) Optimal piecewise constant approximation φ0(x) with M = 2 nodes. (b) The
cost function C∞(x1, x2) and its minimum at (x∗1, x

∗
2). Note that C∞(x1, x2) is defined within

the simplex such that x1 ≤ x2, by definition; it can be also considered that C∞(x1, x2) =
C∞(x2, x1).

Distributions of nodes
We have seen that the auxiliary points ym are obtained using a uniform grid in the interval
[f(a), f(b)] (image of [a, b]). Therefore, y1, . . . , yM is a quasi-Monte Carlo sequence dis-
tributed uniformly in [f(a), f(b)], i.e.,

ym ∼ U([f(a), f(b)]), m = 1, . . . ,M, (33)

Following Eq. (32), we can find the distribution of the nodes xm since they are obtained by
transforming the points ym through the function f−1(·). Hence, following the expression of
the transformation of a random variable, we have

xm ∼ pX(x) = pY (f(x))

∣∣∣∣ dfdx
∣∣∣∣ (34)

∝
∣∣∣∣ dfdx

∣∣∣∣ , m = 1, . . . ,M, (35)
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Therefore, the set of nodes x1, . . . , xM is a quasi-Monte Carlo sequence with density pX(x) ∝∣∣ df
dx

∣∣ and if f is increasing, we can write pX(x) ∝ df
dx

. See Fig. 9 for an illustration of this.
For higher input dimension than 1 we have

xm ∼ pX(x) ∝ |∇f(x)| . (36)
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Figure 9: Illustration of function and optimal location of nodes (top) and density proportional
to gradient (bottom). For (a)-(d) the number of nodes are 2, 4, 10 and 20 respectively.
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