
  

Abstract—Objective: Deformable brain MR image registration is 

challenging due to large inter-subject anatomical variation. For 

example, the highly complex cortical folding pattern makes it 

hard to accurately align corresponding cortical structures of 

individual images. In this paper, we propose a novel deep learning 

way to simplify the difficult registration problem of brain MR 

images. Methods: We train a morphological simplification 

network (MS-Net), which can generate a “simple” image with less 

anatomical details based on the “complex” input. With MS-Net, 

the complexity of the fixed image or the moving image under 

registration can be reduced gradually, thus building an individual 

(simplification) trajectory represented by MS-Net outputs. Since 

the generated images at the ends of the two trajectories (of the 

fixed and moving images) are so simple and very similar in 

appearance, they are easy to register. Thus, the two trajectories 

can act as a bridge to link the fixed and the moving images, and 

guide their registration. Results: Our experiments show that the 

proposed method can achieve highly accurate registration 

performance on different datasets (i.e., NIREP, LPBA, IBSR, 

CUMC, and MGH). Moreover, the method can be also easily 

transferred across diverse image datasets and obtain superior 

accuracy on surface alignment. Conclusion and Significance: We 

propose MS-Net as a powerful and flexible tool to simplify brain 

MR images and their registration. To our knowledge, this is the 

first work to simplify brain MR image registration by deep 

learning, instead of estimating deformation field directly.  

 
Index Terms—Deformable image registration, deep learning, 

anatomical complexity.  

 

I. INTRODUCTION 

EFORMABLE image registration [1], [2] aims to estimate 

the deformation field, following which the moving image 

can be warped to the space of the fixed image. This technique 

plays an important role in medical image analysis, as it can help 

build anatomical correspondences across images and facilitate  
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the subsequent analysis. Whereas registration is often perceived  

as an optimization problem, the deformation field needs to be 

optimized iteratively, with certain smoothness regularization,  

to maximize the similarity between the fixed and the moving 

images. Commonly used methods for brain magnetic resonance  

(MR) image registration include AIR [3], ART [4], SyN [5], 

HAMMER [6], Demons [7]–[9], SPM [10], DRAMMS [11], 

DROP [12], CC/MI/SSD-FFD [13], FNIRT [14], LDDMM 

[15], etc. Although comprehensive comparisons of these 

methods are reported in [16], [17], it is still difficult to assert the 

best algorithm for a certain application especially when dealing 

with diverse datasets.  

The large anatomical variation across different images is a 

great challenge to image registration. In brain MR images, the 

cortical folding patterns are known to be complex with high 

inter-subject variation. Whereas imaging-based studies require 

highly accurate alignment of the corresponding neuroanatomies 

across different subjects, most existing methods struggle in 

estimating deformation fields to register tiny structures (e.g., 

cortical areas) precisely. For example, one may evaluate the 

overlap ratio between the same anatomical structures of the 

fixed image and the warped moving image as a metric of the 

registration quality [18]. Although a reduced smoothness 

constraint of the deformation field may increase the overlap 

metric, the topology-preserving property of the deformation 

fields would then be at high risk to be destroyed, leading to a 

possible failure to the entire registration task. Thus, a 

high-performance registration method, which could 

consistently work well for different datasets and tasks with 

minimal parameter tuning, is of great interest to the community. 

To address the concern of large anatomical variation, several 

works have introduced intermediate images into the 

deformation pathway between the fixed and the moving images 

[19], [20]. A manifold is often instantiated to account for the 

distribution of the imaging data. Then, the very long pathway 

connecting two images that are far away on the manifold is 

divided into several short segments by the intermediate images, 

each of which corresponds to an easier-to-estimate deformation 

field. However, it is non-trivial to create the manifold. The 

imaging data are high-dimensional, implying that a sufficient 

number of (intermediate) images is necessary to model the 

complex distribution of the image population. Meanwhile, a 
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global image similarity metric is needed by the manifold, yet 

the metric is challenging to design and often fails to describe 

local anatomical variation effectively [21].  

In last decades, machine learning has become a frequently 

used tool to image registration. In particular, convolution 

neural network (CNN) is recently employed to directly predict 

the deformation field from a pair of fixed/moving images in 

[22], [23], where the ground truth for training is acquired by 

SyN and Demons. The initial momenta for LDDMM can also 

be predicted by CNN as in [24]. Moreover, it is shown that the 

deformation field can be predicted from the input images 

through a deep network trained without supervision [25]–[28]. 

That is, the image similarity metric and the smoothness 

regularization can jointly guide the training of the network in 

back-propagation. The adversarial strategy is also used to 

impose the regularization such that the local minima in 

registration can be better avoided [29]. Although registration 

can be solved in black-box by the powerful computation 

capability of deep learning, most previous works fail to 

consider the high complexity of the image manifold. The issue 

of large anatomical variation is still challenging to many brain 

MR image registration applications.  

In this paper, we propose a novel deep learning way to 

simplify brain MR image registration. Specifically, we train 

CNNs to reduce the anatomical complexity of the fixed and the 

moving images (i.e., cortical folding pattern), which is a 

bottleneck to the registration task. We derive a trajectory from 

fixed/moving image, which consists of a series of images with 

gradually-reduced anatomical complexity. As the two 

trajectories approach to the ends, the anatomical complexity of 

the simplified fixed/moving images becomes low, implying 

that the two images become similar with each other in the 

simplified morphological space. The two simplified images are 

then easier to be registered compared to the case of directly 

registering the original fixed and moving images. In this way, 

the two trajectories generated by deep learning can act as a 

bridge to link the fixed/moving images. By composing multiple 

deformable registration tasks along the two trajectories, the 

moving image can finally be registered with the fixed image 

accurately and reliably. 

Our method is unique as it breaks the barrier of the complex 

image manifold in deformable registration of brain MR images, 

and provides intermediate guidance through deep learning for 

the first time. To effectively simplify the complexity of brain 

MR images, we train the morphological simplification 

networks (MS-Nets) particularly. MS-Nets are able to generate 

a set of T1 images given an input image. The generated images 

are gradually simplified in terms of the cortical folding patterns, 

while no segmentation, parcellation, or cortical surface 

reconstruction is needed for a test image. To our knowledge, 

our method is the first to simplify brain MR image registration 

via deep learning, instead of estimating the deformation field 

directly as a black-box. Moreover, our experiments show that 

the MS-Nets trained with a certain dataset are robust to transfer 

to other new datasets, making our method highly adaptable to 

many clinical applications. 

II. METHOD 

We propose to simplify the registration of brain MR images 

by deep learning. The pipeline of our method is shown in Fig. 1. 

In particular, we train the MS-Nets to reduce the anatomical 

complexity, and generate the trajectories for the fixed/moving 

images. The anatomical complexity is gradually reduced along 

each trajectory, while the images at the ends of the 

fixed/moving trajectories become simple and similar, implying 

that they are easy to be registered in the simplified 

morphological space. In this way, we can follow the 

fixed/moving (image) trajectories and decompose the original 

complex registration problem into several easy ones.  

 

A. Morphological Simplification Network (MS-Net) 

The key point of our method relies on the gradual reduction of 

the anatomical complexity in brain MR images. It is known that 

the cortex is highly folded in human brain. To acquire more 

accurate alignment of the anatomical structures, high-order 

features and sophisticated constraints derived from brain tissue 

segmentation are shown to be effective [6], [30]. Recently, 

Zhang et al. proposed to use the smoothed cortical surface with 

reduced complexity to guide the registration of the 3D brain 

volumes [31]. However, it is non-trivial to get high-quality 

tissue segmentation especially when multi-center data is 

considered – sometimes even expert editing of tissue 

segmentation is necessary. To this end, we propose to complete 

morphological simplification of brain MR images in the 

intensity space by deep learning, without need of any 

segmentation or surface reconstruction to the test image. 

Training data preparation. We aim to train a morphological 

simplification network (MS-Net) to reduce the complexity in 

brain MR images. Specifically, the input to MS-Net is a 

complex image and the corresponding output is a simple one. 

To prepare the “ground-truth” data to supervise the training of 

 
Fig. 1. Illustration of the pipeline of the proposed method. The fixed and the 

moving images reduce their anatomical complexity gradually through n-level 

morphological simplification process by deep learning, which results in the 

fixed/moving (image) trajectories, respectively. At the ends of the two 

trajectories, the fixed and the moving images become similar in appearance, 

such that their registration can be easily completed. Finally, the registration 

between the moving and the fixed images can be attained by concatenating 

multiple deformation fields (i.e., {𝜙𝑖| 𝑖 = 1, ⋯ ,2𝑛 + 1}), each of which is 

denoted by an arrow. 

 



MS-Net, we first segment the tissues of grey matter (GM) and 

white matter (WM) of the “complex” image, and reconstruct 

the inner/outer cortical surfaces. Then, we apply Laplacian 

smoothing upon the cortical surface meshes. With 𝑥𝑖 

representing the location of the i-th vertex of the mesh of the 

inner/outer cortical surface, its new coordinate after smoothing 

is 

𝑥𝑖 ∶= ∑ 𝑤𝑖𝑗(𝑥𝑗 − 𝑥𝑖)𝑗∈𝒩𝑖
𝑗≠𝑖

,  
(1) 

where 𝑥𝑗 is the neighbor of the vertex 𝑥𝑖, 𝑤𝑖𝑗 = 1/𝑚 indicates 

the weight, and 𝑚 is the size of the neighborhood. Next, we 

convert the smoothed surfaces back to the binary volumes of 

GM/WM tissue labels. To avoid volume shrinkage, we follow 

the strategy in [32] to assure that the tissue label volumes are 

not changed before/after smoothing. Next, for each image, we 

register the binary tissue label volumes before/after smoothing 

and generate the deformation field [8]. Finally, we apply the 

generated deformation field to the “complex” image and get the 

“simple” image.  

Network configuration and training. The architecture of 

MS-Net and the detailed configurations can be found in Fig. 

2(a). For easy illustration, we show the 3D layers inside the 

network by 2D boxes in the figure, while the number above 

each box indicates the channel number after convolution and 

concatenation. Each layer in the MS-Net is a 3D layer without 

pooling. The kernel size is 3×3×3 and the stride is 1. Zero 

padding is adopted to keep the sizes of the feature maps and 

also make the output the same as the input through the MS-Net.  

We train the MS-Net in a patch-by-patch way. Particularly, 

we sample 3D cubic patches sized 16×16×16 from the training 

images. The sampling complies with the probability calculated 

at the center of each potential patch (denoted by u): 

 

𝑝(𝑢) =  
|∇𝑔𝑢

𝑥| + |∇𝑔𝑢
𝑦

| + |∇𝑔𝑢
𝑧|

‖∇𝑔‖
, (2) 

 

where ∇𝑔𝑢
𝑥, ∇𝑔𝑢

𝑦
 and ∇𝑔𝑢

𝑧 are the gradients at 𝑢  in three 

directions, and ‖∇𝑔‖ is the gradient norm. In this way, the 

sampled patches cover the entire brain volumes and pay more 

attention to the regions of abundant appearance information 

[23]. To train the MS-Net, we usually extract 20,000 patch 

samples from each pair of the prepared complex and simple 

images. The network is trained on an Nvidia Titan X GPU by 

Keras. The optimizer is Adam with 0.001 as the initial learning 

rate. For the loss function, we use the sum of the squared 

differences between the output patch and the ground-truth 

patch. 

Application of the MS-Net. In the application stage, the 

trained network can be directly applied to generate the 3D 

simple output image from a complex input in the end-to-end 

way. Concerning the capacity of GPU, we implement to 

process every 16 axial slices for each test task. The whole test 

image can then generate its simple version by averaging the 

results of all test tasks, with two neighboring tasks sharing 8 

overlapped slices. In this way, a typical test image sized 

256×256×256 is simplified by the MS-Net within ~3.3 seconds. 

Examples of the fixed/moving images and their simplified 

outputs are available in Fig. 2(b). Note that several MS-Nets are 

applied to derive the trajectories for the fixed/moving images in 

the figure. 

 

B. Trajectory and its Guidance to Registration 

To generate the trajectory where a brain MR image is gradually 

simplified, we train a sequence of MS-Nets one by one. In 

particular, there are 7 levels of morphological simplification in 

our implementation (𝑛=7 as in Fig. 1), corresponding to 7 

different MS-Nets. Each MS-Net is assigned to generate a 

corresponding intensity image with adequate smoothing scale, 

to ensure that the two consecutive images in the trajectory can 

be similar enough and then easily registered.  

After trajectory construction, here we need to calculate the 

accurate deformation field between the fixed and the moving 

images. The desired deformation field can be derived by 

composing multiple deformation fields along the two 

trajectories, as well as between the ends of them. In particular, 

we adopt Diffeomorphic Demons [8] to estimate 𝜙𝑖 (𝑖 =
1, ⋯ ,2𝑛 + 1) as in Fig. 1. Each 𝜙𝑖 is relatively easy to compute, 

as the decomposed registration always happens between 

 
Fig. 2. (a) The architecture of MS-Net. Each blue box indicates a multi-channel feature map. The number of the channels is denoted with the box. The kernel size is 

3×3×3 for all layers. Grey and yellow boxes represent the copied feature maps. (b) The two example images and their simplified outputs by MS-Nets: From left to 

right, the complexity of the original fixed/moving image is reduced gradually. 

 



images of similar appearance. In the end, the deformation field 

𝜙 that warps the moving image to the fixed image is obtained 

by composing all decomposed registration tasks: 

 

𝜙 = 𝜙1 ∘ 𝜙2 ∘ ⋯ ∘ 𝜙2𝑛+1. (3) 

III. EXPERIMENTAL RESULTS  

We conduct comprehensive validation of the proposed 

method by using five public datasets, i.e., NIREP NA0, LONI 

LPBA40, IBSR18, CUMC12 and MGH10. All datasets are 

widely adopted in the literature to evaluate the performance of 

brain MR image registration algorithms [16], [18]. In 

pre-processing, skull-stripping has been applied to all images, 

which are later resampled to the same resolution (1×1×1 mm3). 

All images are also processed through bias correction and 

linearly registered to the MNI152 space by FLIRT in FSL. Note 

that our pre-processing is consistent with the report in [16] for 

fair comparison.  

Our method is mainly compared to Diffeomorphic Demons 

[8] and SyN [5], both of which are highly recommended in the 

large-scale validation in [16]. To quantitatively evaluate the 

registration performance, we adopt three metrics, i.e., Dice 

similarity coefficient (DSC), target overlap (TO), and average 

symmetric surface distance (ASSD) of the annotated tissues or 

regions-of-interest (ROIs). These three metrics are widely used 

to quantify registration performance – a higher DSC/TO or 

lower ASSD usually indicates better registration quality. We 

note that DSC and ASSD are frequently adopted when 

evaluated upon large tissues (i.e., GM/WM). For small ROIs, 

we adopt TO in order to keep consistent with [16]. 

A. NIREP Dataset  

The NIREP dataset consists of 16 brain MR images, each of 

TABLE I 

REGISTRATION ACCURACY EVALUATED ON THE NIREP DATASET. 

Evaluation on GM/WM Tissue Labels 

 Proposed Demons SyN    

GM (DSC: %) 87.06±0.91 81.69±1.02 81.59±2.26    
WM (DSC: %) 89.60±0.72 84.20±0.80 83.91±2.10    

GM (ASSD: mm) 0.30±0.05 0.43±0.06 0.40±0.08    
WM (ASSD: mm) 0.41±0.09 0.53±0.09 0.53±0.12    

Evaluation on 32 small ROIs (TO: %) 

 Proposed Demons SyN    

Overall 70.78±5.00 67.39±6.26 66.92±6.96    

 Proposed Demons SyN Proposed Demons SyN 

 Left Hemisphere Right Hemisphere 

Occipital Lobe 71.81±8.61 65.74±8.51 66.87±7.83 74.23±6.08 66.73±7.31 69.34±5.88 

Cingulate Gyrus 68.26±9.01# 68.94±8.60 68.00±8.28 69.36±7.89# 69.42±8.00 68.67±7.72 

Insula Gyrus 76.74±4.14 76.69±4.64 75.85±4.68 77.66±3.62# 78.68±4.97 78.03±3.39 

Temporal Pole 75.63±11.97# 76.09±9.90 74.88±11.04 78.49±8.04 77.70±8.02 76.59±8.24 

Superior Temporal Gyrus 68.11±7.73 66.00±8.12 65.69±7.63 67.85±8.07 64.62±9.03 64.50±8.02 

Infero Temporal Region 76.15±5.07 72.09±5.04 72.36±5.23 77.19±5.45 71.85±6.46 72.65±5.83 

Parahippocampal Gyrus 73.22±5.45 72.86±5.74 72.01±5.51 75.29±5.72# 75.29±5.70 74.46±5.34 

Frontal Pole 74.15±9.55 71.49±10.19 72.43±9.65 72.91±10.56 69.84±10.34 70.94±9.85 

Superior Frontal Gyrus 71.86±7.18 68.20±8.43 68.01±7.27 72.24±8.48 67.20±9.67 67.51±8.29 

Middle Frontal Gyrus 70.84±8.95 64.49±9.10 65.67±8.71 67.27±8.64 60.17±8.69 61.66±8.09 

Inferior Gyrus 66.10±14.28 60.44±14.09 61.04±14.00 67.41±9.98 60.03±11.49 62.26±9.77 

Orbital Frontal Gyrus 75.97±6.34 74.67±6.84 73.70±6.29 75.16±5.88 73.58±6.17 72.66±5.57 

Precentral Gyrus 66.31±8.13 61.22±8.48 62.46±7.28 64.11±7.42 58.89±8.44 59.99±7.33 

Superior Parietal Lobule 67.33±9.30 59.07±10.9 61.23±9.27 66.28±7.85 57.94±7.87 60.81±7.25 

Inferior Parietal Lobule 69.30±8.16 61.73±8.57 64.28±7.78 68.71±8.95 60.18±9.42 63.30±8.82 

Postcentral Gyrus 60.70±12.24 56.37±12.46 55.94±11.79 58.17±9.71 52.94±9.28 52.42±9.34 
# indicates the ROIs (i.e., Left Cingulate Gyrus, Right Cingulate Gyrus, Right Insula Gyrus, Left Temporal Pole and Right Paraphippocampal Gyrus) where our 

method does not outperform both Demons and SyN significantly at the same time (i.e., p>0.01 in paired t-tests against either Demons or SyN). 
 

 
Fig. 3. Visualization of the registration results of the NIREP dataset by 

Demons, SyN and our proposed method. The images are shown in 

reconstructed inner (top row) and outer (bottom row) cortical surfaces, and 

colored in accordance to cortical thickness. Our method shows more accurate 

surface alignment especially in the regions highlighted by red arrows. 

 
 

Fig. 4. The mean DSC of GM/WM based on 15 image pairs drawn from the 

NIREP dataset, with respect to the gradually increasing number of MS-Nets 

used to derive the fixed/moving sequences. 

 



which contains GM/WM labeling and 32 small ROIs. In 

particular, we train all 7 MS-Nets with NIREP only. The 

trained networks are applied to other datasets in subsequent 

experiments. To this end, for the evaluation upon the NIREP 

dataset, we use the leave-two-out strategy. In every test case, 

there are 14 subjects for training and the rest 2 images act as the 

pair of the fixed/moving images. Thus, there are 240 test cases 

for the NIREP dataset in total, from which the evaluation 

metrics are computed.  

The evaluation results are summarized in Table I. The DSC 

scores for our method are 87.06±0.91 (GM) and 89.60±0.72 

(WM), both of which are significantly higher than Demons 

(GM: 81.69±1.02; WM: 84.20±0.80) and SyN (GM: 

81.59±2.26; WM: 83.91±2.10). The results of ASSD are 

similar with DSC, as our method yields significantly superior 

performances compared to Demons and SyN. Regarding the 

TO scores of 32 small ROIs, the overall average TO is 

70.78±5.00 for our method, compared to 67.39±6.26 for 

Demons and 66.92±6.96 for SyN. Paired t-tests indicate that, on 

27/32 ROIs (except for Left Cingulate Gyrus, Right Cingulate 

Gyrus, Right Insula Gyrus, Left Temporal Pole and Right 

Parahippocampal Gyrus), our method performs better than the 

other two methods (p<0.01). The visualization of the 

registration results in Fig. 3 shows that our proposed method 

achieves more accurate surface alignment especially in the 

regions indicated by red arrows. 

The length of the trajectory, or the number of the MS-Nets 

used, is a critical parameter in our method. We particularly 

cascade 7 MS-Nets to simplify brain complexity gradually, 

which is also verified by the experiments on the NIREP dataset. 

That is, we randomly draw a pair of images from the NIREP 

dataset for 15 times. Given each drawn image pair, we use the 

other 14 images in the dataset to train the sequence of MS-Nets. 

Then, we evaluate the registration quality on the drawn image 

pair, while different numbers of MS-Nets are used and thus the 

length of the sequence/trajectory is altered. The results of the 

DSC scores of GM/WM over the 15 randomly selected pairs for 

testing are show in Fig. 4. Note that the DSC scores increase 

rapidly for a short trajectory (i.e., n≤3) and become mostly 

stable after n=7. To this end, we choose 7 as the optimal 

number of MS-Nets in all of our experiments.  

B. Other Datasets 

With all MS-Nets trained with the NIREP dataset, we apply 

them directly to the other four datasets. The quantitative results 

are summarized in Table II. 

• The LPBA dataset consists of 40 brain MR images, each 

of which contains GM/WM labeling and 56 ROIs. In 

particular, we draw 40×39 pairs of the fixed and moving 

images from the dataset, which lead to 1560 testing 

cases in total. The 7 MS-Nets are directly transferred 

from the NIREP dataset. According to the results in 

Table II, the DSC scores for our method are 82.00±1.50 

(GM) and 87.86±0.61 (WM), both of which are 

significantly higher than Demons (GM: 76.53±1.88; 

WM: 82.55±0.76) and SyN (GM: 77.74±1.90; WM: 

84.23±0.91). The results of ASSD are similar, as our 

method performs significantly better than Demons and 

SyN. The average TO scores of 56 small ROIs, however, 

is not improved (our method: 69.48±5.84; Demons: 

71.12±5.28; SyN: 72.26±5.23). A detailed discussion of 

TO scores will be provided in the next.  

• CUMC consists of 12 brain MR images with 128 ROIs. 

For evaluation, we conduct 12×11 pairs of registration 

tasks. While the MS-Nets are directly transferred from 

the NIREP dataset, the DSC scores for our method are 

78.62±1.59 (GM) and 85.98±0.81 (WM), both of which 

are significantly higher than Demons (GM: 73.03±1.58; 

WM: 80.45±0.80) and SyN (GM: 75.15±1.63; WM: 

82.42±1.11). The results of ASSD are also similar. 

Regarding the TO scores of the small ROIs, the average 

TO of our method is mostly comparable (our method: 

52.08±14.58; Demons: 51.59±15.06; SyN: 

52.17±15.11).  

• IBSR consists of 18 brain MR images and 84 ROIs. For 

the 17×18 pairs of registration tasks, the DSC scores for 

our method are 84.59±3.52 (GM) and 81.14±3.88 (WM), 

both of which are significantly higher than Demons 

(GM: 83.26±2.14; WM: 78.76±2.61) and SyN (GM: 

84.41±2.40; WM: 80.28±2.91). The results of ASSD are 

similar, as our method yields significantly better 

performance in GM and comparable performance in 

TABLE II 

REGISTRATION ACCURACY EVALUATED ON THE FOUR DATASETS OF LPBA, CUMC, IBSR, AND MGH. 

Dataset Method 
DSC (%) ASSD (mm) TO (%) 

GM WM GM WM ROIs 

LPBA 

Demons 76.53±1.88 82.55±0.76 0.42±0.04 0.50±0.09 71.12±5.28 (68.93±6.10†) 
SyN 77.74±1.90 84.23±0.91 0.38±0.04 0.45±0.09 72.26±5.23 (71.46±5.75†) 

Proposed 82.00±1.50 87.86±0.61 0.33±0.04 0.41±0.09 69.48±5.84 

CUMC 

Demons 73.03±1.58 80.45±0.80 0.41±0.05 0.50±0.09 51.59±15.06 (46.46±15.56†) 
SyN 75.15±1.63 82.42±1.11 0.37±0.06 0.47±0.10 52.17±15.11 (51.63±14.88†) 

Proposed 78.62±1.59 85.98±0.81 0.31±0.04 0.42±0.10 52.08±14.58 

IBSR 

Demons 83.26±2.14 78.76±2.61 0.47±0.15 0.59±0.20 51.59±10.51 (46.82±9.89†) 

SyN 84.41±2.40 80.28±2.91 0.44±0.15 0.55±0.19 53.96±10.76 (52.81±10.45†) 
Proposed 84.59±3.52 81.14±3.88 0.35±0.13 0.56±0.29 49.68±14.58 

MGH 

Demons 78.26±1.30 81.43±1.29 0.40±0.07 0.50±0.11 56.64±12.45 (52.28±12.97†) 

SyN 80.35±1.39 83.77±1.04 0.37±0.08 0.44±0.08 57.04±13.30 (56.83±13.02†) 
Proposed 81.12±2.12 86.15±2.25 0.29±0.07 0.45±0.19 53.00±12.05 

† indicates the results copied from [16]. Note that our reproduced results are clearly better, partially due to the continuous improvement of Demons and SyN in past 

years. 

 



WM, compared to Demons and SyN. Regarding the TO 

scores, the average TO of all 84 ROIs is not improved 

(our method: 49.68±14.58; Demons: 51.59±10.51; SyN: 

53.96±10.76). 

• MGH consists of 10 brain images and 74 ROIs. There 

are thus 10×9 pairs of registration tasks to evaluate. The 

DSC scores for our method are 81.12±2.12 (GM) and 

86.15±2.25 (WM), both of which are significantly 

higher than Demons (GM: 78.26±1.30; WM: 

81.43±1.29) and SyN (GM: 80.35±1.39; WM: 

83.77±1.04). The results of ASSD are similar, as our 

method yields significantly better performance in GM 

and comparable performance in WM, compared to 

Demons and SyN. Regarding the TO scores of 74 ROIs, 

the average TO of 130 ROIs is not improved (our 

method: 53.00±12.05; Demons: 56.64±12.45; SyN: 

57.04±13.30).  

In general, the above quantitative evaluation supports the 

conclusion that our method can improve the registration 

accuracy of brain MR images. The disagreement largely comes 

from the metric of TO scores, while a detailed analysis will be 

provided later. Moreover, we show the visualization of the 

typical registration results in Fig. 5. All images in the figure are 

rendered through their inner and outer cortical surfaces, which 

are reconstructed from the labeling of GM/WM. We observe 

that, after being warped through the deformation fields of 

different methods, the moving image becomes similar with the 

fixed image. Particularly, the proposed method results in the 

most accurate alignment of the cortical surfaces, especially in 

the regions that are highlighted by the red arrows. To this end, 

we argue that the proposed method can achieve superior 

registration performance when it is generalized to diverse 

datasets. 

 

IV. DISCUSSION 

In this paper, we have proposed a novel deep learning based 

method to guide deformable registration of brain MR images. 

The MS-Nets simplify morphological complexity of the fixed 

and the moving images, such that these two images become 

similar with each other and easy to be registered eventually. 

Our experiments show superior alignment performance, 

especially near the cortical surface, attained by our method, 

compared with the state-of-the-art methods. Moreover, our 

method has demonstrated its promising generalization 

capability. While the MS-Nets are trained with a certain dataset 

(i.e., NIREP), the registration quality on other four datasets are 

mostly satisfactory.  

Note that our method is highly different from deep learning 

based registration methods, such as VoxelMorph [33]. First, 

MS-Net is a fully convolution network without pooling, which 

aims to infer an image with simplified morphology. The output 

of MS-Net then acts as the target, toward which the input 

moving image is registered and deformed. Therefore, although 

the output image of MS-Net reduces appearance complexity 

with respect to the input image, the actual registration above 

and the deformed image preserves all information that is 

inherited from the input image prior to simplification or 

deformation since the anatomical details are encoded into the 

estimated deformation field. Second, MS-Net is not designed to 

estimate the deformation field directly, which is commonly 

produced through a black-box of deep learning in several recent 

works. Admittedly, in the future work, we intend to integrate all 

MS-Nets into a unified network, such that the simplified 

intermediate images and the deformation pathway between the 

input images can be generated simultaneously. In this way, we 

will have a more efficient implementation, while the 

deformation pathway is clearly tractable. 

Although our method has shown its superior performance by 

visual inspection and by DSC/ASSD scores, one may note that 

the TO scores of small ROIs of our method are often short of 

Demons and SyN. A possible reason is because of the 

inconsistent quality in labeling ROIs, especially in reference to 

GM/WM boundaries. For example, given an LPBA subject, 

 
Fig. 5. Visualization of typical registration results by Demons, SyN and our proposed method on the four datasets of LPBA, CUMC, IBSR, and MGH. Our method 

shows more accurate surface alignment in the regions indicated by the red arrows. 
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one may refine the ROIs by intersecting with GM/WM tissue 

labels [34]. In this way, each ROI can be split into “ROI∩GM” 

and “ROI∩WM”. We further investigate the registration 

quality by computing TO scores in ROI∩GM and ROI∩WM, 

respectively. The average scores for the four datasets (LBPA, 

CUMC, IBSR, and MGH) are compared in Fig. 6.   

 
Fig. 7. Visualization of all 18 subjects in the IBSR dataset, as well as the outer cortical surface rendering of the ROIs of two exemplar subjects. The dataset is clearly 

divided into two groups by appearance. The red group (top) includes 6 subjects with high contrast, while the quality of the 12 subjects in the blue group (bottom) is 

relatively low. The ROI labeling of the blue group often fails to reveal the subtle gyral and sulcal structures, resulting in an unexpectedly smooth cortical surface 

labeled by the ROIs. 

 

 
Fig. 6. The TO scores measured from the labeled ROIs and the ROIs intersected by GM/WM. From (a)-(d), the results on four datasets (LPBA, CUMC, IBSR, and 

MGH) are reported. 

 



While the TO scores on the entire ROIs of our method may 

be slightly lower than the other methods under comparison, it is 

clear that our method performs better (or in a comparable way) 

by referring to the splitted ROIs. For example, regarding ROIs

∩GM, the average TO score for our method on LPBA is 

57.91±13.41, compared to 55.83±13.25 (Demons) and 

41.15±12.32 (SyN). For CUMC, the scores are 51.44±13.85 

(our method), 46.96±15.12 (Demons), and 47.88±14.94 (SyN), 

respectively. Meanwhile, although our methods are often better 

in ROIs∩WM, we argue that the results of the four datasets 

might be strongly biased if the ROI labeling within WM is 

counted in. In particular, the TO scores on ROIs∩WM 

produced by Demons and SyN are very low (usually about 

10-30), such that one may challenge whether the boundary of 

the ROI is determined properly in WM or near the GM/WM 

interface. In this case, the scores on the small ROIs may not be 

the proper indicators of registration quality.  

In addition to the inner cortical surface between GM and 

WM, the ambiguity near the outer cortical surface that is 

partially due to low imaging quality also challenges the 

reliability of the TO scores. By referring to the visualization of 

all images in the IBSR dataset in Fig. 7, it is clear to observe 

that the two groups of images are significantly different in their 

appearance. The quality of the red group (in the top of the 

figure) appears better, e.g., with fewer artefacts and clearer 

details. For image pairs in the red group, the registration 

performance of our method is much better than other two 

methods. However, our method fails to compete with other two 

methods in the blue group by TO scores. We argue that the 

labeling quality of the ROIs is directly related with the TO 

scores in this case. Particularly, an example of the blue group 

shows barely details of the labeled ROIs at the outer cortical 

surface, which is clearly caused by the low quality of the image 

itself. A similar observation can also be acquired from the 

MGH dataset, where the quality of the ROIs labeling might be 

questionable.  

 

V. CONCLUSION 

In conclusion, this study establishes MS-Net as a powerful 

and flexible tool to simplify the MR images for deformable 

registration. The MS-Net provides morphologically simplified 

images as intermediate guidance, which is also robust to 

transfer to a new dataset. Our proposed unique method divides 

the highly complex inter-subject registration task into several 

easy tasks. Experimental results show superior alignment 

performance especially near cortical surface compared with 

state-of-the-art methods on multiple datasets.  
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