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Abstract

Graphs are an invaluable modelling tool in many domains, but visualising large

graphs in their entirety can be difficult. Hierarchical graph visualisation – recur-

sively clustering a graph’s nodes to view it at a higher level of abstraction – has

thus become popular. However, this can hide important information that a user

needs to understand a graph’s topology, e.g. nodes’ neighbourhoods. TugGraph

addressed this by ‘separating out’ a given node’s neighbours from their hierar-

chy ancestors to visualise them independently. Its original implementation was

straightforward, but copied parts of the hierarchy, making it slow and memory-

hungry. An optimised later version, which we refer to as FastTug , avoided this,

but at a cost in clarity. Optimising TugGraph without sacrificing clarity is

difficult because of the need to keep every hierarchy node connected, a com-

mon challenge for graph hierarchy editing algorithms. Recently, this problem

has been addressed by ‘zipping’ algorithms, multi-level split/merge algorithms

that preserve hierarchy node connectedness and can be built upon for higher-

level editing. In this paper, we generalise the original unzipping algorithms to

implement SimpleTug , a simple, modular version of TugGraph that is easy to

understand and implement, and even faster and more memory-efficient than

FastTug . We formally prove its equivalence to FastTug , and show how both can

be parallelised. Using our millipede hierarchical image segmentation system, we

show experimentally that both the serial and parallel versions of SimpleTug are
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around 25% faster than their FastTug counterparts, whilst using considerably

less memory. Finally, we discuss the interesting theoretical connections between

TugGraph and zipping, and suggest ideas for further work.

Keywords: graph visualisation, TugGraph, cluster hierarchy, zipping

algorithms.

1. Introduction

Graphs are a fundamental mathematical modelling tool because of their ability

to represent both the entities relevant to a problem and the relationships be-

tween them. Having modelled a problem’s entities using a graph, it is common

to want to visualise the results to gain greater insight into the underlying prob-

lem [1, 2], but many modelling tasks – e.g. mapping the connections between all

of the servers on the Internet or between all of the people on a social network,

analysing the architecture of a large software system, or visualising a deep neu-

ral network [3] – can involve extremely large graphs that can be difficult, or

even impossible, to visualise in their entirety.

The obvious solution to this problem is to condense the large amount of

information available in the graph as a whole into a smaller amount of data that

can be presented to the user, a task that can be approached in various ways. One

simple approach might be to select a subgraph of the overall graph consisting of

all nodes that satisfy a particular property, together with their associated edges.

A downside of this is that the subgraph contains no information whatsoever

about the remaining nodes of the overall graph.

An alternative approach that avoids this problem is to visualise the graph

hierarchically, recursively clustering its nodes into aggregate nodes, each of which

summarises the information contained in the nodes below it in the hierarchy.2

Hierarchical graph visualisation has long been popular because of its ability to

summarise the entirety of the underlying graph, and significant research efforts

have been devoted to developing appropriate user interfaces that can maximise

its effectiveness. Common ways of visualising graph hierarchies include node-
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link diagrams [4], adjacency matrices [5], treemaps [6] and radial techniques

[7], among many others [8]. Hybrid approaches, which aim to leverage the

advantages of several of these techniques at once, have also proved popular.

For example, [9] combines node-link diagrams with treemaps, whilst [10] and

[11] combine them with matrices. A hybrid method is commonly adopted when

using a single technique would cause some information to be poorly visualised

or even missed. For example, a recent approach by Angori et al. [12] uses chord

diagrams to visualise locally dense subgraphs of a globally sparse network, but

a node-link diagram to represent the overall graph.

Beyond pure visualisation, much attention has also been devoted to thinking

about the interactive tasks a typical user might need to perform when exploring

a graph hierarchy, e.g. aggregate selection [17], zooming, panning, or ‘drilling

down’ to explore the contents of an aggregate node [8]. One common task that

users might want to perform [18] is to explore the local neighbourhood of a

particular node, e.g. a network administrator might want to find the individual

servers that are directly connected to his/her own. These kinds of details can

be hidden when information is aggregated: for example, it might be easy to

see that the server is connected to ones in another country, but impossible to

know their exact locations without drilling down further. This is the problem

addressed by the popular TugGraph algorithm [18], which works by ‘separating

out’ the neighbours of a given node from their ancestors in the hierarchy to allow

them to be visualised independently. The original implementation of TugGraph,

whilst easy to understand, was comparatively slow and memory-hungry because

of the way in which it unnecessarily copied parts of the hierarchy so that they

could be restored later. The same authors [19] later presented an optimised

2Many techniques exist for actually constructing graph hierarchies. Typically, approaches
are based on either recursive clustering or splitting: e.g. see [13] for some references. Two
interesting recent directions in this area have been in learning hierarchical graph representa-
tions using graph neural networks (GNNs) [14], and in collaboratively segmenting multimodal
images [15, 16]. Works such as these complement the work described in this paper, in the sense
that as graph hierarchies are put to an ever-broader range of uses, the need for techniques to
visualise (and edit) them efficiently becomes increasingly important.
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implementation (which we will refer to as FastTug) that avoided this copying,

but at a significant cost in algorithmic clarity.

The key challenge when optimising TugGraph is to ensure that an invariant

– that every node in the resulting hierarchy is connected – remains satisfied at

the end of the operation. FastTug achieves this, but only by initially breaking

this invariant and then restoring it over the course of the entire operation,

which has at least two consequences. Firstly, the nodes whose connectivity is

initially broken by FastTug must be ‘fixed up’ by the end of the operation,

and storing which nodes to fix up can take significant memory. Secondly, the

FastTug algorithm can only be understood monolithically: if the hierarchy is

examined at any point during the operation, the invariant will not be satisfied.

Since decomposing large algorithms into smaller pieces is one of the key ways in

which humans seek to understand their functionality [20], this in practice makes

FastTug significantly less clear as an algorithm than the original TugGraph.3

The root cause of these problems is that FastTug , in common with many

graph hierarchy editing algorithms, is effectively attempting to do two things

at once: (i) effect the desired changes to the graph hierarchy, and (ii) preserve

the connectedness of the hierarchy’s nodes (i.e. the invariant). This represents a

poor separation of concerns, and in this case yields an algorithm that is unnec-

essarily hard to understand. Recent work [13], however, has shown how to solve

such problems by introducing ‘zipping’ algorithms, multi-level split and merge

algorithms for hierarchies that preserve the connectedness of the hierarchy nodes

and serve as modular building blocks for higher-level editing algorithms.

In this paper, we show how to reformulate TugGraph in terms of these algo-

rithms, yielding an approach that is significantly faster than FastTug and uses

considerably less memory, whilst retaining the algorithmic clarity of the origi-

3Though beyond this paper’s scope, a further issue is that the monolithic tugs of FastTug
cannot be interleaved, since each tug can only start at a point at which the hierarchy invariant
is satisfied: if multiple users want to tug on the same hierarchy concurrently (e.g. in a cloud
visualisation context), the tugs must either all be started at the same time, or be serialised,
which would impede performance. In this paper, we show how tugs that start together can
be parallelised, but leave interleaving, which is significantly more involved, for future work.
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nal TugGraph approach. Our approach, which we call SimpleTug , is modular,

easy to implement, and can be expressed in closed form, shedding insight on

how FastTug itself works, and on the interesting theoretical connections between

TugGraph and zipping. We formally prove its equivalence to FastTug , and show

how both can be parallelised to achieve greater speed. Using our millipede hier-

archical segmentation system [13], we show experimentally that average tugging

operations using both serial and parallel versions of SimpleTug are around 25%

faster than with FastTug , and use less memory.

The rest of the paper is organised as follows: in §2, we review the definition

of graph hierarchies from [13], and related work on graph hierarchy exploration,

before discussing the original TugGraph algorithm, FastTug , and the original

unzipping algorithm on which we will base our approach to simplify TugGraph;

in §3, we show how unzipping can be generalised to support non-horizontal cuts;

in §4, we present our SimpleTug method, analyse its complexity and prove its

equivalence to FastTug ; in §5, we describe how to parallelise both SimpleTug

and FastTug ; in §6, we demonstrate the practical effectiveness of SimpleTug via

quantitative experiments; in §7, we discuss the interesting theoretical connec-

tions between TugGraph and zipping; and in §8, we conclude.

2. Background

The TugGraph algorithm [18] was originally designed as a visualisation tech-

nique for interactively exploring the local neighbourhood of nodes in a graph

hierarchy. Visualising graph data hierarchically per se is a huge topic that is

beyond the scope of the present paper, although there are relevant surveys, e.g.

on hierarchical aggregation for information visualisation [8], visual analysis of

large graphs [21], scalable graph exploration and visualisation [22], and visualis-

ing group structures in graphs [23]. In this section, we will restrict ourselves to

briefly reviewing the definition of graph hierarchies from [13] and surveying ex-

isting graph hierarchy exploration techniques, before discussing TugGraph itself

and the zipping algorithms that we use to simplify it in more detail.
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Structure of graph hierarchy H

Base graph GH = (VH, EH)
All nodes in hierarchy V ∗H(⊇ VH)
All nodes at depth d V d

H(⊆ V ∗H)

Depth / region operations on hierarchy nodes

Combined region of one or more nodes R(n) / R(N)
Common depth (if any) of one or more nodes D(n) / D(N)

Maximum depth of any node in set N Dmax(N)
Minimum depth of any node in set N Dmin(N)

Ancestor / descendant operations on hierarchy nodes

Single common ancestor at depth d, if any ψd
H(n) / ψd

H(N)
All ancestors / descendants at depth d Ψd

H(n) / Ψd
H(N)

All ancestors (regardless of depth) Ψ+
H(n) / Ψ+

H(N)

All descendants (regardless of depth) Ψ−H(n) / Ψ−H(N)

All descendants in set N Ψ−H|N (n)

Node set filtering operations

Nodes in set N at depth d N=d

Nodes in set N at depth > d N>d

Table 1: The notation used throughout this paper. Note that most operations are overloaded
to allow them to be applied to both individual nodes and node sets. For example, Ψ+

H(n)

returns all ancestors of node n in hierarchy H, whilst Ψ+
H(N) returns all ancestors of any node

in node set N .

2.1. Graph Hierarchies

As defined in detail in [13], a graph hierarchy H is a data structure that results

from recursively clustering the nodes of an undirected graph GH = (VH, EH), in

which VH and EH represent the nodes and edges of GH, respectively. We call GH

itself the base graph of H, since it is the graph on which H is based. Clustering

the nodes in VH hierarchically yields the set V ∗H ⊇ VH of all nodes in hierarchy

H, where each node in V ∗H represents the aggregation of its descendants in VH.

Structurally, we can write each node n ∈ V ∗H as a pair (D(n),R(n)), where D(n)

denotes the depth of n in H (defined as 0 for the root node, and one plus the

depth of the node’s parent otherwise), and R(n) denotes the region of n (defined

as the set of n’s descendants in VH). We denote the set of all nodes at depth d

as V d
H.

As mentioned in §1, a key invariant of the graph hierarchies we consider

for TugGraph [18] is that each node in a hierarchy H must be connected, or

more formally that for each node n ∈ V ∗H, the subgraph of GH induced by R(n)

must be connected. As noted, FastTug [19] temporarily breaks this property
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before restoring it at the end of the operation (see §2.4), whereas our approach

preserves it throughout the process (see §4).

To help with later definitions, we follow [13] in extending the depth/region

concepts to a set of nodes N . We define R(N) =
⋃
{R(n) : n ∈ N} to be the

union of the regions of the nodes in N , and Dmax (N) and Dmin (N) (respec-

tively) to be the maximum and minimum depths of any node in N . Furthermore,

if the nodes in N have a common depth, i.e. Dmax (N) = Dmin (N), we denote

this as D(N). Finally, we also follow [13] in defining a number of functions that

allow us to denote the ancestors or descendants of a node or a set of nodes,

either in general or at a specified depth d (see Table 1).

One concept that was not discussed in [13] is that of a cut through a hier-

archy: for our purposes here, we define a cut C through a hierarchy H to be a

set of non-overlapping nodes in V ∗H, not necessarily all at the same depth, such

that R(C) = R(VH).

2.2. Graph Hierarchy Exploration

Existing methods for exploring graph hierarchies can be broadly divided into

two types:

Passive (view-based) methods change how the hierarchy is being viewed

without modifying it. For example, Klava et al. [24]’s split/merge operations

modify the non-horizontal cut used to view a hierarchy to change which re-

gions are displayed. Abello et al. [25] present a system called ASK-GraphView,

which is based on a graph hierarchy model and supports both node-link and

hierarchical visualisations. They focus on interactive visual data exploration

[26], supporting zooming, panning, expanding/collapsing nodes, filtering and

colouring. Tominski et al. [27] present a successor to ASK-GraphView called

CGV, which is similarly based on a graph hierarchy model and adds a ‘magic

eye’ visualisation, together with fisheye magnification and the ability to locate

a node in multiple synchronised views. They use lenses to remove node/edge

clutter and gather adjacent nodes, and introduce an interesting data-space nav-
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igation technique called ‘edge-based travelling’. Gladisch et al. [28] recommend

where to navigate next in a hierarchy to satisfy a particular goal. They select

candidate nodes around the currently viewed nodes, rank them, and then direct

the user towards the highest-ranked nodes using visual cues. Zhang et al. [29]

make it easier to maintain context when moving between hierarchy scales by

visualising a sliding window of scales in the same space, coupling a nested map

with a tree view to clarify what is being visualised. Inspired by similar consider-

ations, AlTarawneh et al. [30] present a way of expanding nodes that preserves

the overall layout of the unexpanded nodes to avoid disrupting the user’s mental

map.

Active (model-based) methods, by contrast, physically modify the hierarchy

to make relevant information easier to see. For example, various works [31,

32, 33] group/ungroup nodes in a hierarchy to better reflect the relationships

between them. Other common operations include merging/splitting nodes [34],

changing a node’s parent [35], and morphological flooding [36] (this is used to

reduce oversegmentation in a graph hierarchy for an image, to make the high-

level structure of the image easier to see). Archambault et al. [4] describe an

active method called Reform-Below-Cut, which deletes part of the hierarchy

below the cut being viewed and recreates it in such a way as to group together

lower-level nodes that share properties. Maire et al. [37] present an interactive

hierarchy editing system that allows regions to be dragged and dropped to

new parent nodes so as to model object-part relationships in a way that better

matches the user’s understanding. In very recent work, Richer et al. [38] present

a prototype of a distributed hierarchy exploration and editing system based on

parallel coordinates that can scale to billion-item datasets.

2.3. TugGraph

TugGraph [18] itself is an active visualisation algorithm that can be used to

modify a graph hierarchy so as to ‘separate out’ the parts of the base graph

that are adjacent to a selected node on the non-horizontal cut (see §3) that is
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(a) (b)

(c) (d)

(e) (f)

Figure 1: An example of steps 1–3 of the TugGraph algorithm [18] on a simple graph hierarchy.
We render the hierarchy in two different ways: as a tree in (a,c,e), and as a clustering of the
underlying graph in (b,d,f). The pale blue loop in (a,c,e) denotes the cut that is being used
to view the hierarchy (this comes from the user interface being used). The algorithm takes as
input this cut and a user-selected node (the bright yellow node surrounded by a red border in
(a,b)). First, we traverse down the hierarchy from this node to find the leaves in its subtree
(coloured in red); (c,d) then, we find the leaves adjacent to those leaves in the underlying graph
(the ‘adjacent leaves’, coloured in green); (e,f) finally, we traverse back up the hierarchy from
the adjacent leaves to find the nodes on the cut that are adjacent to the original node (the
‘adjacent cut nodes’, circled in green).

currently being viewed. The analogy is of ‘tugging’ on the selected node in order

to pull adjacent nodes that are currently hidden into view, thereby allowing a

user to explore the topological structure around the node. The algorithm takes

a single node and a cut as input, and works as follows:

1. First, it traverses down the hierarchy from the selected node to find the

leaves it subsumes.

2. Then, it finds the leaves adjacent to those leaves in the base graph (the

‘adjacent leaves’).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: The effects of steps 4–5 of the original TugGraph [18] on a single adjacent cut
node: (a,e) we ‘tug’ on the node at the top of the diagram (red), with the intention of
‘separating out’ the adjacent leaves (green) within the adjacent cut node (blue); (b,f) the
intermediate hierarchy between the adjacent cut node and the leaves it subsumes is copied
(see the smaller tree) and then deleted; (c,g) the adjacent leaves are grouped together based
on their connectivity in the graph; (d,h) the intermediate hierarchy between the adjacent
cut node and all other leaves is recreated based on the previously-made copy (this involves
recursively applying the Reform-Below-Cut operation from GrouseFlocks [4] bottom up [19]).

3. Next, it traverses up the hierarchy from the adjacent leaves to find the

nodes on the cut that are adjacent to the original node (the ‘adjacent cut

nodes’).

4. For each adjacent cut node, it makes a copy of and then deletes the inter-

mediate hierarchy between it and the leaves it subsumes, and then groups

the adjacent leaves it now directly contains together based on their spatial

connectivity in the base graph.

5. Finally, for each adjacent cut node, it recreates the intermediate hierarchy

between it and all other leaves it contains based on the previously-made

copy.

An example showing steps 1–3 of this process can be seen in Figure 1. In

Figure 2, steps 4–5 are then illustrated on one of the adjacent cut nodes from

this example.4 The overall effect of the operation is to create new nodes, just

below the cut, that together contain all the leaves adjacent to the originally-

selected node, and the visualisation can subsequently be adjusted to show them.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: The effects of FastTug on the same example shown in Figure 2. In (b,f), the
adjacent leaves (green) are directly moved into a node just below the cut, disconnecting their
former ancestors (highlighted in red) and thereby temporarily breaking the invariant that
every hierarchy node is connected. In (c,g) and (d,h), the hierarchy is then fixed by splitting
first the former parent (c,g) and then the former grandparent (d,h) of the adjacent leaves.

Conceptually, this is relatively straightforward, but implementing the tugging

process in this way is quite inefficient because it has to recreate the intermediate

hierarchy for all leaves within an adjacent cut node, even if they are not relevant

to the node that has been selected (for example, the right-hand part of the

hierarchy in Figure 2 is unchanged by the operation, but this implementation

deletes it and recreates it from scratch).

2.4. Optimised TugGraph (FastTug)

To improve the efficiency of the original TugGraph, the same authors later

published an optimised version of their approach [19] that avoids copying and

later recreating the hierarchy in steps 4–5 of the algorithm. This optimised

version, which we refer to here as FastTug , replaces these steps with the following

alternative approach (see also Figure 3):

4Attentive readers will note that some of the nodes created in our examples have only
a single child, meaning that the resulting hierarchy ends up containing multiple nodes that
represent the same portion of the base graph. There is no fundamental difference between such
a hierarchy and one in which all node chains involving single children have been compressed,
but preserving the chains avoids the need for any nodes to change depth, which allows FastTug
and SimpleTug to be implemented in a layer-based segmentation system based on complete
hierarchies (such as the one described in §6). In a non-layer-based system, it might be desirable
to compress these node chains, either in the representation itself (after a tug), or in the UI.
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(a) (b) (c)

(d) (e) (f)

Figure 4: The effects of SimpleTug (see §4) on the same example shown in Figures 2 and 3.
We reformulate the tugging operation as a multi-node unzip [13] that iteratively separates
out the adjacent leaves (green) from their ancestors in the hierarchy. In (b,e), the brown
node is split around them, separating them out from their original parent. Then, in (c,f), the
pink node is split around their new parent (purple), separating them out from their original
grandparent. SimpleTug achieves the same result as TugGraph and FastTug, but avoids
copying the hierarchy or breaking the hierarchy invariant during the operation.

4) After step 3, it first moves the adjacent leaves directly into nodes just be-

low the cut. As shown in Figure 3(b), this has the potential to disconnect

all of the ancestors of these leaves below the cut, temporarily breaking the

invariant that every node in the hierarchy is connected.

5) Having done this, it then works up the parts of the hierarchy below the

adjacent cut nodes, splitting nodes and updating adjacency information

as necessary to restore the invariant (see Figures 3(c) and (d)).

FastTug markedly improves the efficiency of TugGraph [19], but as an algorithm,

it is harder to understand and more difficult to implement. As mentioned in

§1, this is ultimately caused by the way in which FastTug can potentially break

the hierarchy invariant in step 4, only restoring it again at the end of the algo-

rithm. This prevents us from decomposing the algorithm into smaller, invariant-

preserving pieces that are easier to understand and implement in isolation. In

§4, we will show how these problems can be overcome by reformulating Tug-

Graph in terms of the zipping algorithms described in [13]. At a high level, this

will involve changing the way in which the adjacent leaves are separated out
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Ancestor Splitting (adapted from [13])

tugged(d,N) = {(d,R′) : R′ ∈ ccs(R(N))}
remnantRegion(n,N) = R(n) \ R(N)

remnants(n,N) = {(D(n), R′) : R′ ∈ ccs(remnantRegion(n,N))}
splitAncH(d,N) = tugged(d,N) ∪ remnants(ψd

H(N), N)

Table 2: An adaptation of the ancestor-splitting operation on which unzipping relies (see §2.5).
Unlike the original [13], this version is easier to compare with the corresponding ‘ancestor-
ripping’ operation in FastTug (see Table 7). Informally, splitAnc splits n, the common
ancestor of the nodes in N at depth d, around those nodes, yielding nodes corresponding
to the connected components (‘ccs’) of R(N), and nodes corresponding to the connected
components of R(n) \ R(N).

from their ancestors so as to preserve the invariant after each individual split

(see Figure 4). This initial intuition will be pinned down more formally once

we have described how our zipping algorithms work in the following sections.

2.5. Zipping Algorithms for Graph Hierarchy Editing

In contrast to TugGraph, the zipping algorithms in [13] were not designed for hi-

erarchy visualisation, but rather as general-purpose building blocks on which to

build algorithms for hierarchy editing. Two primary operations were described:

unzipping, which takes as input one or more nodes and separates them out from

some or all of their ancestors in the hierarchy, and zipping, which merges chains

of nodes a layer at a time, in order of increasing depth. These operations can

in some sense be seen as multi-layer equivalents of node splitting and (sibling)

node merging. However, unlike a general multi-layer split, which would have

significant input requirements (the user would have to specify the pieces into

which each node in each layer would need to be split), unzipping works by split-

ting the ancestors of one or more nodes around those nodes. This reduces the

input needed from the user to just the set of nodes to unzip, and eliminates the

need for the user to understand the structure of the hierarchy in any detail. In

this section, we briefly summarise how unzipping works, before showing how it

can be generalised and used to simplify TugGraph in Section 4. Further details

about the zipping algorithms themselves can be found in [13].

The ancestor-splitting operation on which unzipping relies, called splitAnc,
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(a) (b) (c)

tugged(d,N)

remnants(n,N)

(d)

Figure 5: An illustration of the ancestor splitting operation on which unzipping relies: (a) the
ancestor node n = ψd

H(N) being split (at depth d); (b) the descendants of n at some depth
d′ > d; (c) the descendants N at depth d′ around which to split the ancestor (highlighted in
red) and n’s remaining descendants at depth d′ (highlighted in blue); (d) the depth d nodes
resulting from the split. Note that this figure is an adapted version of our Figure 4 from [13],
modified to reflect the formulation used in this paper.

can be defined as shown in Table 2. Unlike the definition of splitAnc in [13],

this version has the advantage that it can be clearly contrasted with the corre-

sponding ‘ancestor-ripping’ operation in FastTug [19] that is used when moving

adjacent leaves directly into nodes just below the cut (see §2.4 and Table 7).

The version we give here takes two parameters – a set of nodes N and

a depth d at which the nodes in N have a common ancestor n – and splits

this common ancestor around the nodes in N . To do this, it first computes

the connected components of R(N) and defines a depth d node for each such

connected component (we refer to these nodes collectively as tugged(d,N), since

they can be seen as the nodes ‘tugged’ out of n by the split). It then computes

the connected components of what is left of n (namely R(n)\R(N)), and again

defines a depth d node for each such connected component (we refer to these

latter nodes collectively as remnants(n,N)). Finally, it yields the union of these

two sets of connected components as the result of the split. An illustration can

be seen in Figure 5.

Unzipping itself, in its original formulation, can then be defined as shown in

Table 3. It takes a set of nodes N and a depth dmin to which to unzip them,

and works layer-by-layer up the hierarchy from depth Dmax(N) − 1 to depth
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Classic Multi-Node Unzipping to a Specified Depth (adapted from [13])

Inputs: N , the set of nodes to unzip
dmin, the depth to which to unzip them (equivalent to a horizontal cut)

unzipN;dmin
(H) =

(
unzipN;dmin

(V
d
H) : V

d
H ∈ H

)

unzipN;dmin
(V

d
H) =


(V d
H \Ψd

H(N>d)) ∪⋃{
splitAncH(d,Ψ−H|N (n)) : n ∈ Ψd

H(N>d)
}

if d ∈ (dmin,Dmax(N))

V d
H otherwise

Table 3: The classic multi-node unzipping operation from [13], which allows a set of nodes
N to be unzipped up to a single specified depth dmin in a hierarchy (effectively a horizontal
cut).

dmin + 1, replacing every ancestor of the nodes in N below a depth of dmin with

the results of splitting it around its descendants in N .5 At depth d, the unzip

operation first removes from V d
H the ancestors of the nodes in N at that depth,

written as Ψd
H(N>d) (some nodes in N may have a depth ≤ d, which is why

we use N>d here to remove them from consideration). For each removed node

n, it then computes its descendants Ψ−H|N (n) in N , and re-adds the results of

splitting n around these descendants to V d
H. For an illustration of this process,

we refer the reader to [13].

3. Generalised Multi-Node Unzipping

One limitation of the formulation of unzipping in Table 3 is that it only allows

nodes to be unzipped up to a single specified depth dmin (i.e. a horizontal cut

at depth dmin). However, it is sometimes important to be able to unzip nodes

in different parts of the hierarchy to different depths (e.g. when reformulating

TugGraph in §4).

One way of achieving this is to perform a sequence of separate unzips, each to

a single depth, but whilst this is practically effective, its natural formulation, as

5Note that the dmin used in this formulation is subtly different to the dmin used in the
formulation in [13] (specifically, it is equivalent to the original dmin − 1). This makes no
difference to the range of unzip operations that can be expressed, but makes it easier for us
to generalise the operation to non-horizontal cuts in §3.
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Generalised Multi-Node Unzipping (näıve version)

Inputs: N = (N1, ..., Nk), the sets of nodes to unzip
dmin =

(
d1min, ..., d

k
min

)
, the depths to which to unzip them, respectively

Hierarchy Transformation Sequence:

(H =)H0
u
 H1

u
 . . .

u
 Hk

Intermediate Hierarchies:
∀i ≥ 1 . Hi = unzipNi;d

i
min

(Hi−1)

unzipN;dmin
(H) = Hk

Table 4: A näıve attempt to generalise the classic multi-node unzipping algorithm from Table 3
and [13] to allow nodes in different parts of the hierarchy to be unzipped to different depths.

Generalised Multi-Node Unzipping to a Non-Horizontal Cut

Inputs: N , the set of nodes to unzip
C, the non-horizontal cut to which to unzip them

Auxiliary Definitions:

Ω
d
H(N, C) = Ψ

d
H(N>d) ∩Ψ

−
H(C)

Main Definition:

unzipN;C(H) =
(

unzipN;C(V
d
H) : V

d
H ∈ H

)

unzipN;C(V
d
H) =


(V d
H \ Ωd

H(N, C)) ∪⋃{
splitAncH(d,Ψ−H|N (n)) : n ∈ Ωd

H(N, C)
}

if d ∈ (Dmin(C),Dmax(N))

V d
H otherwise

Table 5: A better way of generalising the multi-node unzipping operation from Table 3 and
[13]: we allow a set of nodes N to be unzipped up to a non-horizontal cut C, rather than a
single specified depth dmin (which is effectively a horizontal cut). To achieve this, we modify
the definition to split only ancestors of N that are below C. Note that an unzip to a specified

depth dmin can still be achieved using this more general formulation by setting C to Vdmin
H .

shown in Table 4, is then iterative rather than being in closed form: this makes

it harder to use for proofs, and makes characterising the overall behaviour of

the algorithm more difficult. In practice, a better alternative is to generalise

the original unzipping algorithm to allow nodes to be unzipped up to a non-

horizontal cut of the hierarchy.

To achieve this, we first modify the formulation in Table 3 so that instead

of taking a fixed depth dmin to which to unzip, it takes a non-horizontal cut C

(see Table 5). Since there is no longer a fixed depth at which to stop the unzip,

we then define the set of depths that are potentially affected by the unzip to
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range from Dmax(N) − 1 to Dmin(C) + 1, i.e. we use the shallowest depth of

a node in the cut to define the shallowest depth that may be affected by the

unzip. Finally, we modify the definition to replace the set of nodes Ψd
H(N>d)

that was potentially being split in each layer d with a new set ΩdH(N, C), which

restricts Ψd
H(N>d) to just those nodes that are descendants of C, i.e. nodes that

are below the non-horizontal cut. This has the effect of stopping the unzip when

the non-horizontal cut is reached.

From an implementation perspective, this new algorithm is a straightforward

modification of the original. It simply needs to check each node before splitting

it to see whether it is on the cut, and to then avoid further considering its

ancestors if so. However, the key thing that we have gained by doing this

(rather than performing a sequence of separate unzips) is an ability to express

the unzipping of nodes in different parts of the hierarchy to different depths in

closed form. As we will see in §4, this will allow us to produce a closed form

definition for our SimpleTug approach, significantly simplifying the proof that

our method is equivalent to FastTug in §4.2.

As a final observation, we note that the new unzipping algorithm can still

be used to unzip nodes to a specified depth dmin if desired: this can be achieved

straightforwardly by setting C to V dmin

H . In that sense, it is a true generalisation

of the original algorithm. In practice, however, it is not a good idea to specify

a horizontal cut of the hierarchy by explicitly storing all of the nodes at a

particular depth in a set. A better approach is to accept a function that reports

whether or not a specified node is on the cut (an approach that works equally

well for both horizontal and non-horizontal cuts).

4. The SimpleTug Method

We are now in a position to describe our SimpleTug method, which reformulates

TugGraph in terms of the generalised multi-node unzipping algorithm we saw in

§3. As mentioned in §2.3, the desired effect of tugging on a node is to separate

out the parts of the base graph that are adjacent to the tugged node from their
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The SimpleTug Method

Inputs: n, the node to tug
C, the non-horizontal cut being used to view the hierarchy

Auxiliary Definitions:
LH(n) = adjLeavesH(n) = {n′ ∈ VH \ R(n) : ∃n′′ ∈ R(n) . ({n′, n′′} ∈ EH)}

Main Definition:
simpleTugn;C(H) = unzipLH(n);C(H)

Table 6: Tugging on a node n in the context of a hierarchy that is being visualised using a
non-horizontal cut C has the same effect as performing a single multi-node unzip of the leaves
adjacent to n up to C. This observation allows us to express our SimpleTug approach in closed
form, which is helpful for proofs.

ancestors below the non-horizontal cut that is currently being used to view the

hierarchy. Given this, steps 1–2 of the TugGraph algorithm can be seen as

finding the parts of the base graph that need to be separated out (the ‘adjacent

leaves’), and steps 3–5 can be seen as effecting the separation, which can be

achieved in a variety of different ways (of which the original TugGraph and

FastTug are two examples). The key insight that we exploit to define SimpleTug

is that this separation can be achieved efficiently and coherently using a single

generalised unzip operation, as shown in Table 6 and Figure 4. This allows us

to express the entire tugging process in closed form, as a generalised unzip of

the adjacent leaves of the node n being tugged, up to the non-horizontal cut C

being used to view the hierarchy.

This definition has a number of appealing properties. Firstly, like FastTug

[19], it can be implemented in a way that avoids recreating parts of the interme-

diate hierarchy unnecessarily, but unlike that approach, it is modular, allowing

us to preserve the hierarchy invariant throughout rather than breaking and then

restoring it over the course of the operation, which is conceptually cleaner and

also saves memory. Secondly, its expression in closed form makes it extremely

convenient for proofs. Thirdly, it helps clarify what TugGraph is doing by

expressing its behaviour in a straightforward way: tugging on a node means

separating out (i.e. unzipping) the leaves surrounding it from their ancestors

below the non-horizontal cut, and this definition clearly captures that intuition.

Finally, this definition highlights the interesting theoretical connection between
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the zipping algorithms for graph hierarchy editing described in [39, 13] and the

TugGraph algorithm for graph hierarchy visualisation described in [4]: in par-

ticular, once we generalise unzipping to support non-horizontal cuts, it becomes

clear that TugGraph can be regarded as an unzip of the adjacent leaf nodes.

4.1. Complexity Analysis

To analyse the computational complexity of SimpleTug , we follow [13] in de-

noting the cost of an arbitrary node-splitting operation as Cs, and the cost of

an arbitrary sibling node merge operation as Cm. In practice, as mentioned in

[13], these costs are themselves dependent on the way in which we choose to

store higher-level edges in the hierarchy: we refer the reader to [13] for more de-

tails. We start by analysing the complexity of finding the leaves adjacent to the

node being tugged, before analysing the complexity of generalised multi-node

unzipping and the SimpleTug algorithm itself.

4.1.1. Complexity of Finding the Adjacent Leaves

Consider traversing down a hierarchy H from a specified node n to the set of

leaves N = Ψ−H|VH(n) it subsumes. Traversing down from n to a single leaf ` ∈ N

has complexity O(D(`)−D(n)). An upper bound for the cost of traversing down

to all of the subsumed leaves is thus

O(|N |(Dmax(N)−D(n))).

Once the subsumed leaves have been found, the additional complexity of finding

the leaves adjacent to them is then

O(|N ||VH|),

since each leaf could in theory have degree VH. In real-world hierarchies, how-

ever, the maximum degree of a leaf is usually bounded by a fairly small constant,

in which case this complexity reduces to O(|N |). The overall complexity of find-

ing LH(n), the adjacent leaves of n, is then dominated by the initial traversal
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down the tree, and is hence

O(|N |(Dmax(N)−D(n))).

4.1.2. Complexity of Generalised Multi-Node Unzipping

Consider a generalised multi-node unzip that unzips the nodes in N up to a

non-horizontal cut C. In the worst case, all of the nodes in N will be at the

same depth, namely Dmax(N), and each node in N will need to be unzipped

individually up to depth Dmin(C) + 1. The worst-case complexity is thus

O(|N |(Dmax(N)−Dmin(C))Cs).

4.1.3. Complexity of SimpleTug

Consider an application of SimpleTug that tugs on a node n in the context of

a hierarchy that is being visualised using a non-horizontal cut C. As per the

definition, this involves first finding the adjacent leaves of n, and then performing

a generalised unzip of the adjacent leaves up to the cut. In practice, the cost

of finding the adjacent leaves is dominated by the cost of the unzip, and can be

neglected. The complexity of the overall operation is thus

O(|LH(n)|(Dmax(LH(n))−Dmin(C))Cs).

Note that this result makes intuitive sense: the cost of the overall operation is

based on (i) the number of leaves that are adjacent to n (the more there are,

the more costly the operation), (ii) how high up the hierarchy the cut C is with

respect to the adjacent leaves being unzipped (the higher it is, the more costly

the operation), and (iii) the cost of an individual split.

4.2. Equivalence to FastTug

Having analysed SimpleTug ’s complexity, we now seek to prove its equivalence

to the original FastTug approach [19]. To do this, we first need to define FastTug
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Formalising the FastTug Method of [19]

Step 4: Ripping Out

Inputs: N , the adjacent leaves of the node n that is being tugged
C, the non-horizontal cut being used to view the hierarchy

Auxiliary Definitions:

Ω
d
H(N, C) = Ψ

d
H(N>d) ∩Ψ

−
H(C)

remnant(n,N) = (D(n), remnantRegion(n,N))

ripAncH(d,N) = tugged(d,N) ∪ {remnant(ψ
d
H(N), N)}

Main Definition:

ripOutN;C(H) =
(

ripOutN;C(V
d
H) : V

d
H ∈ H

)

ripOutN;C(V
d
H) =


(V d
H \ Ωd

H(N, C)) ∪⋃{
ripAncH(d,Ψ−H|N (n)) : n ∈ Ωd

H(N, C)
}

if d ∈ (Dmin(C),Dmax(N))

V d
H otherwise

Step 5: Fixing Up

Inputs: Q, a priority queue of nodes that need fixing up, sorted in non-increasing depth order

Auxiliary Definitions:

fixNode(n) = {(D(n), R
′
) : R

′ ∈ ccs(R(n))}

Main Definition:

fixUpQ(H) =
(

fixUpQ(V
d
H) : V

d
H ∈ H

)

fixUpQ(V
d
H) =

{
(V d
H \Q=d) ∪

⋃
{fixNode(r) : r ∈ Q=d} if d ∈ (Dmin(C),Dmax(N))

V d
H otherwise

The Overall Method

Inputs: n, the node to tug
C, the non-horizontal cut being used to view the hierarchy

Auxiliary Definitions:

QH(N, C) = sort({remnant(n,Ψ
−
H|N (n)) : d ∈ (Dmin(C),Dmax(N)), n ∈ Ω

d
H(N, C)})

Main Definition:
fastTugn;C(H) = fixUpQH(LH(n),C)(ripOutLH(n);C(H))

Table 7: A mathematical formulation of the FastTug approach to TugGraph from [19], which
allows a node n to be tugged in the context of a hierarchy that is being visualised using a
non-horizontal cut C. The method first finds the adjacent leaves LH(n) in the usual manner
(see §2.3 and Figure 1). It then moves them directly into nodes just below the cut (‘ripping
out’), before splitting any nodes that have become disconnected as necessary to restore the
hierarchy invariant (‘fixing up’).
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formally (see Table 7), since the original paper did not include a mathematical

formulation of the algorithm. We split this into three parts (referring back to

the initial description of FastTug in §2.4): (i) the movement of the adjacent

leaves directly into nodes just below the cut (which we call ‘ripping out’), (ii)

the splitting of nodes as necessary to restore the hierarchy invariant (which

we call ‘fixing up’), and (iii) the overall method, which is responsible both for

finding the adjacent leaves, and for combining the ripping out and fixing up

processes appropriately.

The essence of the proof is to show that the composition of the ‘ripping out’

and ‘fixing up’ operations is equivalent to unzipping. To understand intuitively

why this must be the case, observe that at each depth d, ‘ripping out’ splits

each node n ∈ ΩdH(N, C) around its descendants in N and replaces it with

two types of node: (a) ‘tugged’ nodes (as also used in ancestor splitting in

§2.5), which are guaranteed to be connected, and (b) a ‘remnant’ node, which

is only connected if what is left of n after removing the tugged nodes forms a

single connected component. This contrasts with unzipping, which computes

the connected components of what is left of n, and creates a remnant node

for each such component. The ‘fixing up’ process bridges the gap between the

two, computing the connected components of each remnant node produced by

‘ripping out’ and replacing it with a node for each such component; however,

unlike with unzipping, this happens in a second pass over the hierarchy, as

shown in Table 7.

To show the equivalence formally, we start by proving that fixing up the

remnant node produced by the ripping out process results in the same remnant

nodes that would have been produced by unzipping:
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Lemma 1. fixNode(remnant(n,N)) = remnants(n,N).

Proof.

fixNode(remnant(n,N))

= {(D(remnant(n,N)), R′) : R′ ∈ ccs(R(remnant(n,N)))}

= {(D(n), R′) : R′ ∈ ccs(remnantRegion(n,N))}

= remnants(n,N)

Next, we show that the composition of the two processes is equivalent to unzip-

ping for each depth d in the hierarchy:

Lemma 2. fixUpQH(N,C)(ripOutN ;C(V
d
H)) = unzipN ;C(V

d
H).

Proof. The proof for d /∈ (Dmin(C),Dmax(N)) is trivial. For the more interesting

case, we first observe that:

ripOutN ;C(V d
H)

= (V d
H \ Ωd

H(N, C)) ∪
⋃{

ripAncH(d,Ψ−H|N (n)) : n ∈ Ωd
H(N, C)

}
= (V d

H \ Ωd
H(N, C)) ∪

⋃{
tugged(d,Ψ−H|N (n)) : n ∈ Ωd

H(N, C)
}

∪
⋃{

remnant(n,Ψ−H|N (n)) : n ∈ Ωd
H(N, C)

}
Now the definition of fixUp (see Table 7) works by fixing up the nodes in a

priority queue Q at each depth d. In this case, Q is QH(N, C), and we have:

(QH(N, C))=d =
{

remnant(n,Ψ−H|N (n)) : n ∈ Ωd
H(N, C)

}
But then:

fixUpQH(N,C)(ripOutN ;C(V d
H))

= (V d
H \ Ωd

H(N, C)) ∪
⋃{

tugged(d,Ψ−H|N (n)) : n ∈ Ωd
H(N, C)

}
∪
⋃{

fixNode(remnant(n,Ψ−H|N (n))) : n ∈ Ωd
H(N, C)

}
= (V d

H \ Ωd
H(N, C)) ∪

⋃{
tugged(d,Ψ−H|N (n)) : n ∈ Ωd

H(N, C)
}

∪
⋃{

remnants(n,Ψ−H|N (n)) : n ∈ Ωd
H(N, C)

}
= (V d

H \ Ωd
H(N, C)) ∪

⋃{
splitAncH(d,Ψ−H|N (n)) : n ∈ Ωd

H(N, C)
}

= unzipN ;C(V d
H)

We can lift this proof to the full hierarchy as follows:
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Parallel Tugging

Inputs: N , the nodes to tug
C, the non-horizontal cut being used to view the hierarchy

Auxiliary Definitions:
LH(N) = adjLeavesH(N) = {n′ ∈ VH\R(N) : ∃n′′ ∈ R(N).({n′, n′′} ∈ EH)}

Main Definitions:
fastTugN;C(H) = fixUpQH(LH(N),C)(ripOutLH(N);C(H))

simpleTugN;C(H) = unzipLH(N);C(H)

Table 8: Both the FastTug and SimpleTug algorithms can be naturally parallelised by gener-
alising the function LH that computes the adjacent leaves of the node being tugged to accept
a set of nodes rather than just a single node. In the case of FastTug, parallelism is only
possible for concurrent tugs that start at the same time, whereas SimpleTug does not have
this restriction: see §5 for more details.

Theorem 3. fixUpQH(N,C)(ripOutN ;C(H)) = unzipN ;C(H).

Proof.

fixUpQH(N,C)(ripOutN ;C(H))

= fixUpQH(N,C)

(
(ripOutN ;C(V d

H) : V d
H ∈ H)

)
=
(

fixUpQH(N,C)(ripOutN ;C(V d
H)) : V d

H ∈ H
)

=
(

unzipN ;C(V d
H) : V d

H ∈ H
)

= unzipN ;C(H)

Finally, we can use Theorem 3 to show that FastTug (which involves fixing

up the results of ripping out the adjacent leaves LH(n) of n) and SimpleTug

(which involves unzipping the same adjacent leaves) achieve the same results,

which was what we needed to prove:

Corollary 4. fastTugn;C(H) = simpleTugn;C(H).

Proof. Trivial (substitute LH(n) for N in Theorem 3).

5. Parallel Tugging

For many applications, using either FastTug or SimpleTug to tug on a single

node at a time may be sufficient, but in some cases, it may be desirable to tug

on multiple nodes at the same time. As shown in Table 8, the formulations we

give for both algorithms in §4 generalise naturally to this use case: it suffices
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to simply generalise the function that computes the adjacent leaves to accept a

set of nodes rather than just a single node. It might initially seem surprising

that FastTug can be parallelised in this way, given the way in which it initially

breaks the hierarchy invariant and only restores it over the course of the entire

operation, and indeed, it would not be possible to interleave concurrent tugs

that start at different times for this reason. However, it is possible to parallelise

concurrent tugs that start at the same time, since in that case the invariant is

only broken once (at the start, by all the tugs that are being jointly performed)

and then restored over the course of the operation as normal. It is this that we

exploit in formulating a parallel version of FastTug in this way.

As we show in §6, tugging large numbers of nodes in parallel (with either

algorithm) has significant time advantages over tugging them one after another.

Interestingly, however, parallelising the two algorithms exacerbates the space

advantage that SimpleTug already has over FastTug , owing to the latter’s need

to store the nodes that need to be fixed up as the operation proceeds (when

large numbers of nodes are being tugged, storing the nodes to be fixed up can

become somewhat costly).

6. Experiments

In §4.2, we formally proved that our SimpleTug method produces the same re-

sults as the earlier approaches to TugGraph, but that on its own tells us little

about its effectiveness in practice: in particular, the time and space requirements

of different implementations of the TugGraph concept can vary significantly, and

this property is only weakly captured by the mathematical definitions given thus

far. For this reason, we implemented serial and parallel variants of both Simple-

Tug and the original FastTug algorithm [19] in our millipede hierarchical image

segmentation system6 [39, 13], and performed some quantitative experiments

on them to evaluate the performance of our approach.

6Our open-source millipede system was originally developed to help clinicians semi-
automatically segment organs and other features in abdominal CT scans [39]; it was later
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We used millipede to construct several graph hierarchies of different heights

(10, 100 and 1000) for each of the 500 images in the Berkeley Segmentation

Data Set (BSDS500) [41],7 and then determined the average times it took each

algorithm to tug on varying numbers of randomly-chosen nodes from the hier-

archies, both in serial and in parallel. In other words, for each graph hierarchy,

we enumerated all of the nodes, chose random subsets of the nodes of different

sizes, and then timed the same tugs with each algorithm implementation. We

also determined the amounts of additional memory needed by the serial and

parallel implementations of FastTug , in comparison to their SimpleTug equiva-

lents, in each case. Finally, we averaged all the numbers (that is, both the time

and space numbers, for all implementations) over the entire dataset.

To actually build the hierarchies, we used the deep hierarchy construction

approach described in [13]: this takes a desired height for the hierarchy, and

calculates the ideal rate at which to merge nodes in each hierarchy layer so as

to achieve convergence to a single node at the chosen height. This approach has

the advantage of producing interesting hierarchies, whilst being much simpler

to implement than more sophisticated approaches like the waterfall algorithm

[42, 40] or MCG [43], and giving us full control over the hierarchy’s height,

which is helpful for evaluation purposes.

6.1. Timings

Our timing results are shown in Table 9. In all cases (for both the serial and

parallel versions of both FastTug and SimpleTug), the time taken increased sig-

nificantly with either increasing numbers of nodes being tugged, or increasing

hierarchy height (indeed, tugging 1000 randomly-chosen nodes in serial in each

of 500 hierarchies of height 1000 took more than 10 days on an Intel i7-7820X

extended to support hierarchical segmentation of any 2D or 3D image [40]. The implementa-
tion is in C++, and makes use of the ITK library for low-level image processing. User interac-
tion is via a wxWidgets-based GUI, a detailed description of which can be found in [13]. Source
code can be found online at https://github.com/sgolodetz/millipede/tree/millipede_v2.

7The BSDS500 is an appropriate dataset on which to perform these comparisons because
it contains a wide variety of natural images that we would expect to yield an interesting range
of different hierarchical structures.
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FastTug Timings (in milliseconds)

Serial Parallel︷ ︸︸ ︷ ︷ ︸︸ ︷
Nodes Tugged −→ 1 10 100 1000 10 100 1000

Height

{
10 9 79 1026 10891 51 275 1282
100 32 377 6853 167818 257 1909 11378
1000 250 3281 64068 1758982 2111 18447 148875

SimpleTug Timings (in milliseconds)

Serial Parallel︷ ︸︸ ︷ ︷ ︸︸ ︷
Nodes Tugged −→ 1 10 100 1000 10 100 1000

Height

{
10 7 60 800 8294 40 208 932
100 27 290 5084 112458 189 1430 8421
1000 206 2446 47008 1201134 1530 13451 91954

Table 9: The average times (in milliseconds) taken by the serial and parallel versions of FastTug
and SimpleTug to tug on different numbers of randomly-chosen nodes from deep hierarchies
[13] of different heights, averaged over the 500 images of the Berkeley Segmentation Data Set
(BSDS500) [41]. Note that SimpleTug is consistently faster than FastTug in all cases, by
around 25% on average, whilst producing exactly the same results (see §4.2).

CPU). Two important observations can be made, however. Firstly, both the

serial and parallel versions of SimpleTug are significantly faster than their Fast-

Tug counterparts, by around 25% on average. This is due to the fact that in

comparison to FastTug , our SimpleTug approach removes the need to construct

a priority queue of disconnected nodes and restore their connectivity in a second

pass, reducing the overall amount of work involved in tugging a node. Secondly,

as one might expect, parallel tugging was dramatically faster than serial tug-

ging when tugging large numbers of nodes, for both FastTug and SimpleTug ,

although SimpleTug always maintains a significant edge in practice.

6.2. Memory Usage

The amounts of additional memory needed by the serial and parallel implemen-

tations of FastTug during these experiments, in comparison to their SimpleTug

equivalents, are shown in Table 10. The additional memory is needed to main-

tain a priority queue of disconnected nodes that need to be fixed up. When

tugging in serial, or tugging a small number of nodes, relatively little addi-

tional memory is needed. However, when tugging a large number of nodes with

the parallel implementation of FastTug , significant additional memory (tens of

megabytes) is required, since then the number of nodes that need to be fixed
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FastTug Additional Memory Usage

Serial Parallel︷ ︸︸ ︷ ︷ ︸︸ ︷
Nodes Tugged −→ 1 10 100 1000 10 100 1000

Height

{
10 754B 813B 939B 774B 8KB 86KB 557KB
100 10KB 10KB 12KB 11KB 96KB 1.1MB 7.4MB
1000 91KB 103KB 126KB 110KB 1002KB 11.5MB 74.8MB

Table 10: The additional memory used by the serial and parallel versions of FastTug in
comparison to the corresponding versions of SimpleTug, whilst tugging on different numbers
of randomly-chosen nodes from deep hierarchies [13] of different heights, averaged over the
500 images of the Berkeley Segmentation Data Set (BSDS500) [41]. Both versions of FastTug
use more memory than their SimpleTug equivalents. Note that whilst the additional memory
needed in the serial case is quite minor, neither serial FastTug nor serial SimpleTug scales
well to tugging many nodes on very deep hierarchies (see Table 9). The parallel algorithms
scale better, but parallel FastTug uses much more memory than parallel SimpleTug.

up can be quite large. By contrast, neither the serial nor the parallel versions

of SimpleTug have a need to maintain a priority queue of disconnected nodes,

allowing them to save memory, and enabling the speed gains of parallel tugging

to be leveraged without a significant memory cost.

7. Discussion

The way in which SimpleTug reformulates the original TugGraph algorithm [18]

as a multi-node unzip of the leaves adjacent to the tugged node reveals an in-

teresting theoretical connection between the zipping algorithms of [13], which

were designed to be used as reusable mid-level building blocks for graph hierar-

chy editing, and TugGraph, which was originally designed as a special-purpose

algorithm for visualising the surroundings of a particular graph hierarchy node.

In [13], we described two potential applications of our zipping algorithms: non-

sibling node merging, which separates spatially adjacent nodes out from their

ancestors in order to merge the resulting chains of nodes, and parent switching,

which separates out a single node in order to transfer it to a new parent. In

this paper, we have shown that TugGraph can be seen as a third, distinct ap-

plication of our zipping algorithms, one that separates out the adjacent leaves

of a particular node to allow them to be viewed by the user. Moreover, we

have shown that viewing TugGraph in this light allows us to both understand

and implement it more effectively, since by reformulating it in terms of our in-
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herently decomposable zipping algorithms, we can allow TugGraph itself to be

decomposed.

It is interesting to consider whether further applications of our zipping al-

gorithms exist. Abstractly, the existing applications we have described can

effectively be seen as (i) separating out nodes to combine them to make a new

group, (ii) separating out a node to move it from one group to another, and (iii)

separating out nodes to see them better. Other reasons for separating out nodes

certainly exist: for example, we might want to separate out one or more nodes

to deliberately disconnect their ancestors. However, in practice, the existing

applications we have described already cover a significant part of the relevant

problem space.

Despite this, we believe there are at least a couple of potentially interesting

avenues for further work in this area. As mentioned in the introduction, one

advantage of modularising TugGraph is that it makes it possible to allow several

different users to perform concurrent, interleaved tugs on nodes in the hierar-

chy, e.g. in a cloud visualisation context. As such, one possible avenue might be

to extend the existing TugGraph system to support this paradigm. A second

interesting avenue might be to study the uses of the zipping algorithms for edit-

ing graph hierarchies in other contexts, such as hierarchical pathfinding [44] for

games and transport applications. Such hierarchies are often constructed man-

ually, at some expense [45], and it would be interesting to investigate whether

the zipping algorithms can be used to facilitate more automated refinement of

the hierarchies to reduce this cost.

8. Conclusion

The TugGraph algorithm is an important and effective technique for visualising

the local structure around a node in a graph hierarchy, but both existing ways of

implementing it have drawbacks: the original approach [18], whilst easy to un-

derstand and implement, is comparatively slow and memory-hungry due to the

hierarchy-copying it involves, and the same authors’ later (optimised) approach
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[19], whilst much faster and using less memory, is in practice quite complicated,

owing to the difficulties inherent in modifying a graph hierarchy efficiently whilst

maintaining its path-preserving structure (the hierarchy invariant).

Recently, however, such difficulties have been overcome (in a different con-

text) through the introduction of so-called ‘zipping’ algorithms for graph hier-

archies [13]. These function as multi-layer split and merge algorithms with low

input requirements, and are intended to be used as intermediate-level building

blocks to simplify the implementation of existing hierarchy editing algorithms.

In this paper, we have shown how these algorithms can be generalised to

achieve an implementation of TugGraph that is fast, memory-efficient, and easy

to understand and implement. Moreover, we have shown that by reformulating

the algorithm in this way, it is possible to gain additional insight into its effects

on a hierarchy: ultimately, the aim when tugging a node is to separate out

the leaf nodes adjacent to that node from their containing nodes on the cut.

This can be expressed both straightforwardly and naturally using generalised

multi-node unzipping.
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