
Key Protected Classification for Collaborative Learning

Mert Bulent Sariyildiza,b,1, Ramazan Gokberk Cinbisc, Erman Aydayb,d

aNAVER LABS Europe, France
bComputer Engineering Department, Bilkent University, Turkey

cComputer Engineering Department, Middle East Technical University, Turkey
dDepartment of Computer and Data Sciences, Case Western Reserve University, USA

Abstract

Large-scale datasets play a fundamental role in training deep learning models. However, dataset collection is difficult in
domains that involve sensitive information. Collaborative learning techniques provide a privacy-preserving solution, by
enabling training over a number of private datasets that are not shared by their owners. However, recently, it has been
shown that the existing collaborative learning frameworks are vulnerable to an active adversary that runs a generative
adversarial network (GAN) attack. In this work, we propose a novel classification model that is resilient against such
attacks by design. More specifically, we introduce a key-based classification model and a principled training scheme
that protects class scores by using class-specific private keys, which effectively hide the information necessary for a GAN
attack. We additionally show how to utilize high dimensional keys to improve the robustness against attacks without
increasing the model complexity. Our detailed experiments demonstrate the effectiveness of the proposed technique.
Source code is available at https://github.com/mbsariyildiz/key-protected-classification.

Keywords: privacy-preserving machine learning, collaborative learning, classification, generative adversarial networks

1. Introduction

Deep neural networks have shown remarkable perfor-
mance in numerous domains, including computer vision,
speech recognition, language processing, and many more.
Most deep learning approaches rely on training over large-
scale datasets and computational resources that makes the
utilization of such datasets possible. While large-scale
public datasets, such as ImageNet [1], Celeb-1M [2], and
YouTube-8M [3], have a fundamental role in deep learn-
ing research, it is typically difficult to collect a large-scale
dataset for problems that involve processing of sensitive
information. For instance, data privacy becomes a signifi-
cant concern if one considers training models over personal
messages, pictures or health records.

To enable training over large-scale datasets without
compromising data privacy, decentralized training approaches,
such as collaborative learning framework (CLF) [4], feder-
ated learning [5], personalized learning [6, 7] approaches
have been proposed. These training schemes enable mul-
tiple parties (private data holders) to train a single neu-
ral network model without sharing their sensitive, private
data with each other.

Email addresses: mertbulent.sariyildiz@naverlabs.com
(Mert Bulent Sariyildiz), gcinbis@ceng.metu.edu.tr (Ramazan
Gokberk Cinbis), eayday@cs.bilkent.edu.tr (Erman Ayday)

1Work done during the author was a master student at the Com-
puter Engineering Department of Bilkent University.

2 c©2020. This manuscript version is made available un-
der the CC-BY-NC-ND 4.0 license http://creativecommons.org/
licenses/by-nc-nd/4.0.

In this paper, we consider improving privacy protec-
tion mechanism of CLFs. In a CLF, a target model is
trained in a distributed way, where each participant con-
tributes to training without sharing its (sensitive) data
with other participants. More specifically, each participant
hosts only its own training examples, and a central server,
called the parameter server, combines local model updates
into a shared model. Therefore, the training procedure
effectively utilizes the data owned by all participants. At
the end, the final model parameters are shared with all
participants.

However, there are cases where the original CLF ap-
proach fails to preserve data privacy due to the knowl-
edge embedded in the final model parameters. In par-
ticular, [8] show that the parameters of a neural network
model trained on a dataset can be exploited to partially
reconstruct the training examples in that dataset, which
is called a passive attack. To mitigate this threat, one
may consider partially corrupting the model parameters by
adding noise into the final model [9]. The study by [4] also
shows that differential privacy [10] can be incorporated
into CLF in a way that guarantees the indistinguishabil-
ity of the participant data by perturbing parameter up-
dates during training. However, such prevention mecha-
nisms may introduce a difficult trade-off between classifier
accuracy versus data privacy level for training. Several
other differential privacy based approaches, which intro-
duce noise injection methods [11, 12] or training frame-
works [13], have recently been proposed.

To appear in Pattern Recognition April 23, 2020

ar
X

iv
:1

90
8.

10
17

2v
2

 [
cs

.L
G

]
 2

2
A

pr
 2

02
0

https://github.com/mbsariyildiz/key-protected-classification
http://creativecommons.org/licenses/by-nc-nd/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0

It has been shown that collaborative learning approaches
can also be vulnerable to active attacks i.e., training-time
attacks [14]. More specifically, a training participant can
construct a generative adversarial network (GAN) [15] such
that its GAN model learns to reconstruct training exam-
ples of one of the other participants over the training itera-
tions. For this purpose, the attacker defines a new class for
the joint model, which acts as the GAN discriminator, and
utilizes the samples generated by its GAN generator when
locally updating the model. In this manner, the attacker
effectively forces the victim to release more information
about its samples, as the victim tries to differentiate its
own data from attacker class during its local model up-
dates. To the best of our knowledge no solution—other
than introducing differential privacy to the CLF, has pre-
viously been proposed against the GAN attack3.

In this paper, we propose a novel classification model
for collaborative learning that prevents GAN attacks by
design. First, we observe that GAN attacks depend on
the classification scores of the targeted classes. Based on
this observation, we define a classification model where
class scores are protected by class-specific keys, which we
call class keys. Our approach generates class keys indepen-
dently within each training participant and keeps the keys
private throughout the training procedure. In this man-
ner, we prevent the access of the adversary to the target
classes, and therefore the GAN attack. We also demon-
strate that the dimensionality of the keys directly affect
the security of the proposed model, much like the length
of passwords. We observe, however, that naively increas-
ing the key dimensions can greatly increase the number
of model parameters, and therefore, reduce the data effi-
ciency and the classification accuracy. We address this is-
sue by introducing a fixed neural network layer that allows
us to use much higher dimensional keys without increas-
ing the model complexity. We experimentally validate that
our approach prevents GAN attacks while providing effec-
tive collaborative learning on the MNIST [16] and Olivetti
Faces [17] datasets, both of which are challenging datasets
in the context of privacy attacks due to their relative sim-
plicity, and therefore, the ease of reconstructing the sam-
ples in them.

To sum up, our contributions can be summarized as
follows: (I) We formalize a novel classification model for
collaborative learning frameworks where we decouple the
end-to-end classifier learning into the shared representa-
tion learning and the private class prediction steps secured
by class keys. Making the class predictions private within
each participant enables us to prevent the GAN attacks,
while learning a shared image embedding model which gen-
eralizes across the private data hosted by all participants.
(II) We derive a principled training formulation for collab-
oratively learning the proposed model when participants
are allowed to access only their own class keys. (III) We

3 [6] claims that their methodology can reduce the efficacy of the
GAN attack, however leaves the analysis for a future work.

show that high-dimensional keys can be used to improve
the robustness against attacks and introduce the idea of
using randomly generated fixed neural network layers to
map image representations to higher-dimensional spaces
without increasing the number of learnable parameters.
(IV) We investigate the key-based classification setup that
we propose for the purpose of supervised training where
all the data is centralized. In this regard, we show that
our regression-like loss formulation achieves comparable
results with the discriminative cross-entropy loss on CI-
FAR-10/100 datasets [18].

The rest of the paper is organized as follows. In Sec-
tion 3, we present a detailed and technical summary of
collaborative learning, GANs, and the GAN attack tech-
nique. In Section 4, we discuss the details of our approach.
In Section 5, we provide an experimental validation of our
model. Finally, in Section 6, we make concluding remarks.

2. Related work

Attacks against machine learning mechanisms and pri-
vacy preserving machine learning methods have become
a popular research area over the recent years. In [19],
authors discuss different types of adversarial attacks and
countermeasures against them. In this section, we de-
scribe the most relevant attacks and countermeasures to
our work.

We focus on reconstruction attacks, in which the goal
of the adversary is to reconstruct the training samples of
the other participants in a distributed learning setting.
Fredrikson et al . show this threat via a passive attack, in
which the adversary does not actively attack during the
learning process, but it tries to reconstruct the training
samples from the final model parameters [8]. In [20], au-
thors develop passive and active inference attacks to ex-
ploit the leakage of sensitive information during the learn-
ing process. In particular, they show the risk of mem-
bership inference and attribute inference about training
data (i.e., infer properties that hold for a subset of the
training data). In a more recent work, Hitaj et al . [14] de-
vise a powerful active attack against collaborative learn-
ing frameworks. In this attack, one of the participants
in the collaborative learning framework is assumed to be
an adversary. The adversary tries to exploit one of the
classes belonging to other participants (victim) by using a
generative adversarial network (GAN) [15]. This attack is
powerful in the sense that the adversary can actively influ-
ence the victim to release more details about its samples
during the training process. The GAN attack is aimed
for global data distribution among all clients, therefore it
is challenging to run this attack for specific clients. Fol-
lowing this idea, Wang et al . [21] propose another GAN
based attack, in which there is a malicious server which
leaks model updates of a particular participant (the vic-
tim), and a multi-task discriminator that leads GAN. This
way, the attacker may choose the victim intentionally. By

2

doing so, the authors show how to discriminate category,
reality, and client identity of input samples.

Several countermeasures have been proposed to mit-
igate the attribute inference attacks for machine learn-
ing mechanisms. One line of research on this direction
is based on the differential privacy concept. Differential
privacy proposed by Dwork et al . [22] aims at providing
sample indistinguishability with respect to the outputs of
an algorithm (or a neural network model) when its in-
put is slightly changed. This indistinguishability criterion
is then used as a proxy measure to quantitatively eval-
uate how well the algorithm (or the model) can protect
the privacy of a subject data. This concept is formal-
ized for empirical risk minimization in machine learning
problems by Chaudhuri et al . [23, 9]. Song et al . and
Rajkumar et al . apply differential privacy to stochastic
gradient descent-based optimization problems [24, 25, 26].
Following that, Shokri et al ., Abadi et al ., Phan et al . and
Papernot et al . propose several ways of employing differ-
ential privacy for large-scale machine learning problems in
the forms of (i) structured noise addition [12, 4, 11] and
(ii) 2-step training methodology [13]. Using the differen-
tial privacy concept together with trusted hardware, in
[27], authors introduce a privacy-preserving deep learning
framework called Myelin. Similar to differential privacy-
based approaches, in [28], to preserve the privacy of train-
ing samples, authors propose using an obfuscate function
to add random noise (or new samples) to the training data
before using it for model generation. Although the use
of differential privacy in machine learning problems has
shown promising results, most of the differential privacy-
based approaches offer a trade-off between the privacy and
the utility of data, e.g . increasing the protection reduces
the utility of data, and hence the performance of the al-
gorithm. Therefore, overall, privacy-preserving machine
learning without recognition performance compromise re-
mains as an unsolved problem.

Another line of research advocates the use of decentral-
ized training schemes for privacy. These strategies enable
large-scale machine learning for scenarios, in which private
datasets that contain sensitive information are hosted by
multiple parties and therefore cannot be shared. There are
two main streams of approaches: (i) multiple parties train
a single model on the fly by means of contributing to the
model updates individually using their private data [4, 5]
and (ii) multiple parties learn separate models over their
private data, and then the final model is constructed by
aggregating the information stored in the different mod-
els [29, 26, 30]. Besides, any of the methods considered
under this line can still adopt differential privacy or se-
cure multi-party computation techniques [31, 32], in which
model updates can be encrypted before sharing them with
others.

Other than these two major lines of research, the use
of cryptographic tools has also been proposed for privacy-
preserving machine learning [19, 33, 34, 35, 36, 37]. Several
differential privacy-based solutions have been proposed to

prevent the GAN attack, in which a noise signal is added
to gradients during the learning phase in order to achieve
differential privacy, and hence prevent the GAN attack
[38, 39]. Different from these works, our proposed work
provides a countermeasure against the GAN attack with-
out requiring a trade-off for utility.

3. Background

Our work builds on the collaborative learning frame-
work [4] and tackles the generative adversarial network
attack problem [14]. Therefore, before providing the de-
tails of our approach, we first provide brief background on
CLF and the GAN attack in the following.

3.1. Collaborative Learning of Participants
The goal of CLF is to collaboratively train a shared

model over private datasets of several participants such
that the model generalizes across all the private datasets.
For this purpose, CLF defines a protocol where each partic-
ipant shares with others information only about its learn-
ing progress, rather than the data directly, over the train-
ing iterations. Locally, participants train their model as
usual using gradient based optimization, but share with
others fractions of changes in model parameters, at pre-
defined intervals. The framework is set up among partic-
ipants based on the following components and the associ-
ated policies:

I. A mechanism for participants to share parameter
updates. This is typically realized by a trusted third-
part parameter server (PS), using which the partic-
ipants accumulate the model parameters by upload-
ing and downloading fractions of their local param-
eter changes and central model parameters, respec-
tively.

II. A common objective and model architecture. All
participants use the same model architecture and
training objective. Typically, participants declare
class labels for which they have training data.

III. Meta-parameters. The hyper-parameters of the CLF
setup, such as the parameter download fraction (θd)
and the upload fraction (θu), gradient clipping thresh-
old (γ), and the order of participants during train-
ing (e.g., round robin, random, or asynchronous) are
typically predetermined [4].

Once the framework is established, participants start train-
ing on their local datasets in a predetermined order. When
a participant takes turn, it first downloads θd fraction of
parameters from the parameter server and replaces them
with its local parameters. After performing several-steps
training (for instance, one epoch of training) on its local
dataset, participant uploads θu fraction of resulting gra-
dients to the parameter server. It is also possible to in-
corporate differential privacy i.e., by injecting some form
of noise to the uploaded gradients, to guarantee a certain
level of sample indistinguishability for enhanced privacy

3

P1

P2

0.0

0.8

0.0

0.1

0.0

0.0

0.1

0.0

0.0

0.0

Class probabilities

Attacker (P2)

Generator
Shared
Model

(a) The compute chain in GAN attack.

P1

P2

Class score of digit-4
(only accessible to P1)

Shared
Model

Attacker (P2)

Generator
Score of
random key

(b) The compute chain in our proposed method.

Figure 1: The comparison of the compute chains constructed during the vanilla (left, a) and the modified key-protected
(right, b) collaborative learning frameworks. In both scenarios, the dataset is split among two participants, P1 (an honest
participant) and P2 (an adversary) and they train a shared neural network model by following the collaborative learning
framework procedure defined in [4]. In (a), the shared model directly outputs class prediction probabilities φθ(x) for an
image x and this enables participants to train the model by optimizing a discriminative loss, i.e. cross entropy between
the predicted class probabilities and the ground truth labels of samples. However, outputting the class scores makes
the shared model vulnerable to the powerful GAN attack [14]. In (b) the participants create a d-dimensional private
class key ψc for each of the classes for which they have training samples and the shared model outputs d-dimensional
image embedding vector φθ(x) for an image x. Moreover, instead of minimizing the cross entropy loss, they maximize
the cosine similarity f(· , ·) between the image embedding vector φθ(x) and the private key ψc of the correct class c.
This way, the class probabilities are concealed from the attacker. Still, the adversary can attack by means of creating
random class keys ψ(rand) (hoping that the random keys are close enough to any of the real ones created privately by
the honest participant) yet it fails as it is unlikely that the random keys are close to the real ones.

protection. But this procedure comes with a trade-off be-
tween the level of privacy and the efficiency (performance)
of the accumulated final model. We encourage readers to
refer to [4] for the details of this learning protocol.

3.2. Generative Adversarial Network
Generative adversarial network [15] is an unsupervised

learning process for learning a model of the underlying
distribution of a sample set. A GAN model consists of
two sub-models, called generator and discriminator. The
generator corresponds to a function G(z; θG) that aims to
map each data point z sampled from a prior distribution,
e.g . uniform distribution U(−1, 1), to a point x̂ in the data
space, where θG represents the generator model parame-
ters. Similarly, the discriminator is a function D(x; θD)
that estimates the probability that a given x is a real sam-
ple from the data distribution pD, where θD represents the
discriminator model parameters.

The generator and discriminator models are trained in
turns, by playing a two-player mini-max game. At each
turn, the generator is updated towards generating samples
that are indistinguishable from the real samples according
to the current discriminator’s estimation:

min
θG

Ez∼p(z)
[
log(1−D(G(z; θG); θD))

]
. (1)

The discriminator, on the other hand, is updated towards
distinguishing the samples given by G from the real ones:

max
θD

Ex∼p(x)
[
log(D(x; θD))

]
+

Ez∼p(z)
[
log(1−D(G(z; θG)); θD)

]
. (2)

GANs have successfully been utilized in numerous prob-
lems, e.g . see [40, 41].

3.3. GAN Attack in Collaborative Learning
[14] devise a powerful GAN-based active attack against

collaborative learning frameworks. In this scenario, an ad-
versarial participant takes places during training in a col-
laborative learning framework setup in order to extract
information about some class cattack for which any of the
other honest participants has samples4. To do that the at-
tacker utilizes the shared model as a discriminator network
and trains a generator network to capture the data mani-
fold of the class cattack. Besides, the attacker announces an
incorrect, unique class cfake to label the examples sampled

4The adversary may additionally have its own real classes and
a real dataset, but for the sake of simplicity, we assume that the
adversary works only on its privacy attack.

4

from the generator network. An overview of this attack is
depicted in Figure 1a.

In [14] it is shown that such an approach effectively
turns collaborative learning framework into a GAN train-
ing setup where an adversary takes the following steps:

I. The adversary updates its generator network towards
producing samples that are classified as class cattack,
by the shared classification model.

II. The adversary takes samples from its generator, la-
bels them as cfake and updates the shared classifica-
tion model towards classifying the synthetic samples
as class cfake.

There are two key aspects of the GAN attack. First,
throughout the training iterations, the adversary continu-
ously updates its generator, therefore, it can progressively
improve its generative model and the reconstructions that
it provides. Second, since the adversary defines the class
cfake as part of the shared model, the participant that hosts
cattack updates the shared model towards minimizing the
misclassification of its training examples into class cfake.
Over the iterations, this practically forces the victim into
releasing more detailed information about the class cattack
while updating the shared model [14]. This latter step
makes the GAN attack particularly powerful as it influ-
ences the training of all participants, and, it is also the
main reason why the technique is considered as an active
attack.

It is also worth mentioning the similarities between the
training objectives of the generator networks in the GAN-
based attack and in [42]. In the GAN-based attack sce-
nario, the adversary trains from scratch a local generator
while all participants (including the attacker) train from
scratch a shared classifier. As the class logits produced by
the classifier is accessible to all participants, during train-
ing, the attacker utilizes this classifier as a discriminator
network much like Salimans et al . [42] train generator net-
works. However, different from the case in [42], in GAN
attacks there is no separate class in the shared classifier
to denote if a sample is “real” or “fake”. Instead, first the
attacker decides on a class to attack (cattack), then it uses
the shared classifier as a reference to train its local gener-
ator in a way that the generated samples (fake samples)
maximize the probability of class cattack according to the
shared model. In this sense, the shared classifier acts as a
discriminator. Besides, in their experimental setups, Hitaj
et al . [14] let the attacker to train its generator while the
participants train the shared classifier. Therefore, the op-
timization dynamics are also similar to that of GANs, e.g .,
early in training, the gradients back propagating from the
classifier are in good shape.

In this paper, privacy model and proposed protection
mechanism completely follow the threat model defined in [14].
In our experiments, we simulate the experimental setups
of [14, 4] without introducing any extra assumptions.

4. Proposed Method

In this section, we describe the details of our proposed
approach. In Section 4.1, we present our class key-protected
classification model, as a prevention mechanism against
the GAN attack [14]. In Section 4.2, we show how such
a model can be trained in a distributed manner when
each participant has access only to the keys of its own
classes, while leveraging the fundamental tools given the
distributed learning framework of Shokri et al . [4]. In Sec-
tion 4.3, we discuss practical considerations in generating
random class keys. In Section 4.4, we propose an exten-
sion of our approach that enables efficient incorporation
of high dimensional keys towards minimizing the risk of
a successful GAN attack within our key-protected classi-
fication framework. Finally, in Section 4.5, we present a
summary of the proposed approach.

4.1. Key Protected Classification Model
Our goal is to train a deep (convolutional) neural net-

work based multi-class classifier in a collaborative manner.
Our starting point is the observation that the GAN attack
relies on the knowledge of classification scores of samples
belonging to the target class cattack throughout the train-
ing iterations, as discussed in Section 3.3 and in Figure 1a.
To prevent the attack in a collaborative learning setup,
we aim to mathematically prevent each participant from
estimating the classification scores for the classes hosted
by the other participants. For this purpose, we introduce
class-specific keys for all classes and parameterize the clas-
sification function in terms of these keys in a way that
makes classification score estimation without keys practi-
cally improbable.

In our approach, we require each participant to gen-
erate random class keys for its classes during initializa-
tion, and keep it private until the end of the training pro-
cess. We denote the key for class c by ψc ∈ Rdkey , where
dkey is the predetermined dimensionality of each key. In
order to protect the model using class keys, we first de-
fine the network with model parameters θ as an embed-
ding function φθ(x) that maps each given input x, e.g . an
image, from the source domain to a dkey-dimensional `2-
normalized vector. Then, we define the classification score
for class c by a simple dot product between the embedding
output and the class key:

gθ(x, ψc) = 〈φθ(x), ψc〉,

where ψc, φθ(x) ∈ Rdkey . We note that the class keys
are analogous to classification weight vectors, or equiva-
lently, the components of the last fully-connected layer of
a standard (mainstream) feed-forward classification neu-
ral network. However, unlike the case in a standard neu-
ral network model where the classification weights vectors
are learned during training, here, these vectors are pre-
generated and kept fixed throughout the training process.
The training, therefore, takes the form of learning the em-
bedding model φθ(x).

5

Therefore, in contrast to a standard classification model
where the model produces all class scores, in the proposed
formulation, a participant can compute class scores only
for the classes for which it has class keys. As a result, a
participant does not have access to the class scores that are
necessary by definition for the GAN attack. The overview
of our proposed approach is given in Figure 1b.

Once the embedding model is learned and training is
completed, all class keys are made public so that the result-
ing model can be used to make predictions for all classes.
The final classification function takes the form of choos-
ing the class whose key leads to the highest classification
score:

arg max
c∈Call

〈ψc, φθ(x)〉, (3)

where Call is the set of all classes over all participants.
To ensure that the embedding function φθ(x) provides

normalized embedding vectors as required by the defini-
tion, an `2-normalization layer is appended to the corre-
sponding unnormalized embedding network φuθ (x), so that:

φθ(x) =
φuθ (x)

‖φuθ (x)‖
. (4)

A clear reason for incorporating `2-normalization surfaces
naturally in the derivation of our training formulation,
which we explain in the next subsection.

Finally, we note that the method is presented with
the assumption that only a single adversary exists, for
the sake of brevity. Our framework, however, naturally
handles multiple attackers without requiring any modifi-
cations, and, in fact, in Section 5, we do present experi-
mental results for multiple attackers.

4.2. Learning with Restricted Class Key Access
In this section, we describe our approach for training

the classification model, by making updates locally at each
participant, using the restricted training set owned by the
participants. Suppose that a participant owns n training
examples, represented by a set of tuples (xi, ci)

n
i=1. The

goal of the local model update is to update the embedding
model φ such that it minimizes the negative label likeli-
hood of the training examples by regularized risk mini-
mization:

min
θ
−

n∑
i=1

log pθ(ci|xi) +R(θ), (5)

where R(θ) is the regularization function.
We aim to obtain label likelihoods pθ(c|x) based on

the scoring function gθ(x, ψ). However, by design, a par-
ticipant is not allowed to access keys ψc of other classes,
therefore, cannot estimate the class probability distribu-
tion via a conventional softmax operator over the set of
unnormalized class scores. Therefore, in order to define
label likelihoods, we generalize the softmax operator by re-
defining it as the ratio of exponentiated target class score

and the expectation of exponentiated class scores over all
possible class keys:

p(c|x) = exp gθ(x, ψc)

Eψ[exp gθ(x, ψ)]
. (6)

One way to interpret this definition is applying softmax
over infinitely many classes, where class keys follow some
probability distribution. Assuming that class keys are ob-
tained by sampling from the dkey-dimensional standard
normal distribution, the expectation in the denominator
can be re-written as:

Eψ[exp(gθ(x, ψ))] =
∫
f(ψ) exp gθ(x, ψ)dψ, (7)

where f(ψ) is the probability density function for standard
multivariate normal distribution. It can be shown that
the expectation yields the value exp(0.5‖φ(x)‖2) (See Ap-
pendix A). By plugging this result into Eq. 5 and re-
arranging the terms, we obtain:

min
θ
−

n∑
i=1

gθ(xi, ψci) + 0.5

n∑
i=1

‖φθ(xi)‖2 +R(θ). (8)

Here, the first term corresponds to maximizing the classifi-
cation scores, i.e. the sum of inner product values between
each pair of sample embedding φ(x) and the correspond-
ing class key ψc. The second term applies `2 regulariza-
tion over the φ(x) embeddings, which limits the scale of the
vectors produced by the embedding network φ(x). Finally,
the third term is simple regularization over the model pa-
rameters, for which use `2 regularization.

The second term in Eq. 8 is worth discussing in a bit
more detail: unlike conventional `2 regularization over the
network parameters (i.e. R(θ)), it applies `2 regulariza-
tion to the outputs of the embedding network. This term,
therefore, can be interpreted as a way to prevent learning
a degenerate embedding model that reduces the objective
function by making the embedding vectors, and therefore
the classification scores, excessively large. It is also an in-
teresting result in the sense that it appears naturally in our
derivation. We note that its weight (0.5) could be altered
by using a different temperature constant in Eq. 7, which
could be another hyper-parameter. However, as denoted
before, we opt to fix the scale of the embedding vectors
by incorporating a final `2 normalization layer into the
network φ(x), which forces the network to focus on the
directions, and not the scales, of the embedding vectors.
This is our primary motivation in incorporating the `2-
normalization layer, and, it converts the second term into
a constant value of 0.5n, which we drop from the objective
function.

By plugging in the definitions of all terms into Eq. 8
and dropping the second term from Eq. 8, we obtain the
final form of the objective function:

min
θ
−

n∑
i=1

〈φθ(xi), ψci〉+ λ‖θ‖2, (9)

6

where λ is the regularization weight. The final formulation
can be interpreted as a regression-like training approach
that aims to maximize the expected correlation across the
sample embeddings and the corresponding class keys.

4.3. Class Key Generation
In our approach, even if an adversary gets involved

during training, it cannot target a particular class without
knowing its class key. However, there is still a chance that
the adversary may target an arbitrary class by using a
randomly generated key ψattack as the target key, and, aim
to reconstruct the samples belonging to one of the classes
without necessarily knowing the identity of the targeted
class. In principle, such an attack can be successful if the
randomly generated key is sufficiently similar to one of
the actual class keys, if i.e. ‖ψc − ψattack‖2 ≤ δ for any
c. However, we emphasize that there is no supervisory
signal that the attacker can utilize to guess private class
keys better than random. It is also not possible to run a
GAN attack to reconstruct class keys, due to the lack of
any reference score that can be leveraged for this purpose.

To protect the system against such random key-based
brute-force attack, it is essential to reduce the probability
of approximately replicating class keys by randomly gener-
ating keys. Therefore, we need to minimize the probability
of generating keys that will lead to scores highly correlated
with one of the class scores, without relying on the restric-
tions on the keys used by the participants, such that an
adversary will (most likely) not be successful in training a
generative model through a GAN attack.

One may consider addressing this problem by deter-
mining all class keys in a centralized manner. However,
such a prevention technique is not reliable as it is typi-
cally not possible to enforce participants to use the as-
signed keys, i.e. the adversary may still attempt to at-
tack with a random key. Also it is possible that the cen-
tral server might be compromised. For these reasons, we
let each participant to generate its class keys indepen-
dently. To further reduce the probability of key “con-
flicts”, i.e. having highly-correlated class key pairs, we opt
to using high-dimensional normally-distributed class keys
and apply `2-normalization to them in practice. Using `2-
normalized keys avoids potential biases across classes that
can be caused by differences in class key scales. We also
observe that as the key dimensionality increases, `2 nor-
malized keys tend to be progressively less correlated. This
observation can easily be verified in an empirical manner:
in Figure 2, we randomly generate 100 `2-normalized vec-
tors, find the maximum of pair-wise dot products of these
vectors and plot the maximum of maximums of the pair-
wise dot products by repeating this process 1000 times for
a variety of dkey values. From the figure, we can see that
as the size of keys increase, the maximum overlap across
sampled key pairs sharply diminishes. From this empirical
finding, we can claim that it is more robust to generate
high dimensional vectors to prevent GAN attacks.

23 26 29 212

dkey (Key dimensionality)

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
u

m
d

o
t

p
ro

d
u

ct

U(-1,1)
N (0, 1)

Figure 2: The correlation between two random vectors
with respect to their dimension d. For dkey = 21, · · · , 214
we randomly generate 100 `2-normalized vectors by sam-
pling either from N (0, 1) or U(−1, 1). Then, we find maxi-
mum of pair-wise dot products of these vectors. We repeat
this process 1000 times for each dkey and plot the maxi-
mum of maximums of the pair-wise dot products.

We note that while our decentralized scheme addresses
the key generation problem to a large-extend, it may possi-
bly lead to complications in two ways. First, if the partic-
ipants have overlapping classes, they will almost certainly
generate and use completely different keys for their shared
classes. Fortunately, it turns out that this does not neces-
sarily lead to the failure of the framework and the approach
behaves well to a large extend, which we experimentally
verify in Section 5.

Second, the use of very high-dimensional keys may
lead to training difficulties due to a drastic increase in the
model complexity. We show how to address this problem
in a technical and principled way in the following subsec-
tion.

4.4. Learning with High Dimensional Keys
In the proposed framework, as also previously discussed,

it is important to have distinctive class keys, with mini-
mal cross-class key correlations for both the quality of the
resulting classifier and the success of the GAN-attack pre-
vention mechanism (against the random-key attacks). In
order to reduce the probability of having highly-correlated
pairs of randomly and independently generated class keys,
we aim to use very high dimensional vectors. However,
naively increasing the class key dimensionality undesir-
ably increases the number of trainable parameters in the
last layer of the φθ(x) network. Therefore, this increase in
the dimensionality of key vectors also increases the com-
plexity of overall model architecture which may (I) slow
down training significantly, (II) cause over-fitting to train-
ing samples, (III) and therefore, lead to a poor test per-
formance.

To overcome these problems, we propose to add a fixed
dense layer with an activation function at the last layer
of the architecture. By doing so, parameters of this dense
layer are stochastically predetermined and kept unchanged
throughout training. Thus, the layer does not impose
any extra trainable parameters to be learned. This layer,

7

Algorithm 1 Key Protected Classification for Collabora-
tive Learning
Pre-Training Phase:
1: Participants agree on the collaborative learning frame-

work parameters (see Section 3.1) and also the dimen-
sionality of private class keys dkey.

2: Each participant p generates a random class key ψpc
for each class c of its classes.

3: Each attacker participant p generates (at least) one ex-
tra placeholder cpfake and the corresponding class key
ψp

attack for running a GAN attack towards some ran-
dom class key through adversarial training.

Training Phase
4: for epoch = 1 to nepochs do
5: for p in Participants do
6: download θd fraction of parameters from PS
7: replace downloaded parameters with local ones
8: if p is an attacker then
9: train the local generator by using ψp

attack
10: generate M samples from generator
11: label the generated samples as cpfake
12: merge generated samples with local dataset
13: end if
14: train local model with local dataset
15: upload θu fraction of differences in parameters

to PS
16: end for
17: end for
18: Participants optionally publish the class keys and la-

bels they host.

therefore, effectively maps the preceding low-dimensional
embedding vectors to a much higher dimension space. We
pre-define the parameters of this layer and keep it shared
among all participants. We randomly initialize the param-
eters of this layer and share the layer among all partici-
pants. During the collaborative training phase, the layer
is kept frozen.

We experimentally verify the effectiveness of this ap-
proach: in Section 5.2 and Section 5.3 we show that key
dimensionality can be increased without deteriorating the
participant training convergence using the proposed fixed-
mapping layer and as a result, the random-key GAN at-
tacks can be prevented.

4.5. Summary
To summarize the overall framework, we present the

list of main steps in Algorithm 1. We note that the un-
derlying collaborative training scheme is the same as the
vanilla collaborative learning algorithm of Shokri et al . [4].
However, unlike [4], here the participants and the adver-
sary additionally create random private class keys, and,
train the proposed key-protected classification scheme in-
stead of a traditional classifier.

Finally, we note that publishing class keys and labels is

listed as an optional step: if the goal is to collaboratively
train a deep network only for representation learning, the
class keys and labels may be left private even after train-
ing. In this case, each participant may use the learned
representation as needed. However, if the goal is to col-
laboratively train a full classification model, then clearly
both the keys and the class labels need to be published by
the participants.

5. Experiments

In this section we demonstrate that our proposed solu-
tion prevents GAN attacks while enabling effective collab-
orative classifier learning over the participants. We first
explain the experimental setup in Section 5.1. We verify
that our key-based learning formulation performs well in
absence of an adversary in Section 5.2. We empirically
demonstrate that our proposed approach prevents GAN
attacks in Section 5.3. We evaluate the performance of
the collaborative learning approach when there are over-
lapping classes across the participants in Section 5.4. And
finally, we demonstrate that key-based regression yields
comparable results with cross entropy in Section 5.5.

5.1. Experimental setup
We perform experiments on the well-known MNIST

handwritten digits [16] and AT&TOlivetti Faces [17] datasets.
We choose these datasets as they provide a particularly
challenging and suitable experimental setup for our pur-
poses: (I) Both of these datasets contain samples that
are relatively easy to generate, therefore, they are particu-
larly challenging to protect against a GAN attack. While
several improvements have been proposed for improving
GANs, e.g . [42, 43, 44, 45], it is well-known that GANs can
be difficult to train [46]. Therefore, we want use datasets
where the GAN-attack generator can easily capture rel-
evant data statistics and perform a successful GAN at-
tack. This situation allows us to evaluate the proposed
CLF scheme in a challenging scenario. (II) Qualifying the
reconstructions obtained by the adversary is relatively easy
on these datasets, which allows us to more confidently ar-
gue about the success of our formulation.

We observe that collaborative learning with 5 or more
participants is challenging as the parameters in the PS
tend to overfit quickly to the local datasets of partici-
pants. To overcome this, we use stochastic gradient de-
scent (SGD) to optimize classifier and generator networks.
Classifiers are composed of convolutional and fully-connected
layers with LeakyReLU [47] non-linearity. The genera-
tor architecture consists of convolutional layers with batch
normalization [48] and ReLU non-linearity. We find that
learning with fixed layer is compelling especially when the
fixed layer transforms embeddings to a very high dimen-
sional space (e.g ., to R16384). We address this problem by
using layer normalization [49] after the fixed layer. This

8

0 500 1000

epoch

95
96
97
98
99

M
ea

n
p

a
rt

ic
ip

a
n
t

a
cc

u
ra

cy dk=128
dk=1024
dk=4096
dk=16384
dk=128
dk=1024
dk=4096
dk=16384

(a) MNIST with 2 participants.

0 50 100 150 200

epoch

90

95

100

M
ea

n
p

ar
ti

ci
p

a
n
t

a
cc

u
ra

cy

dk=128

dk=1024

dk=4096

dk=16384

(b) Olivetti Faces with 2 participants.

0 500 1000

epoch

95
96
97
98
99

M
ea

n
p

ar
ti

ci
p

an
t

a
cc

u
ra

cy dk=128
dk=1024
dk=4096
dk=16384
dk=128
dk=1024
dk=4096
dk=16384

(c) MNIST with 3 participants.

0 50 100 150 200

epoch

90

95

100

M
ea

n
p

ar
ti

ci
p

an
t

a
cc

u
ra

cy

dk=128

dk=1024

dk=4096

dk=16384

(d) Olivetti Faces with 3 participants.

0 500 1000

epoch

95
96
97
98
99

M
ea

n
p

ar
ti

ci
p

an
t

ac
cu

ra
cy dk=128

dk=1024
dk=4096
dk=16384
dk=128
dk=1024
dk=4096
dk=16384

(e) MNIST with 5 participants.

0 50 100 150 200

epoch

90

95

100

M
ea

n
p

ar
ti

ci
p

an
t

ac
cu

ra
cy

dk=128

dk=1024

dk=4096

dk=16384

(f) Olivetti Faces with 5 participants.

Figure 3: Mean participant accuracies obtained in collaborative learning with 2, 3, and 5 participants over the MNIST
and the Olivetti Faces datasets. The dashed lines in the MNIST figures indicate that there are fixed layers in the local
models of participants (see Section 4.4 for details). We see that using a fixed layer tends to delay the training convergence
with similar final accuracy. In the Olivetti Faces plots, fixed layer based experiments are excluded for brevity.

additional normalization introduces only 2× dkey parame-
ters to train. We carefully tune learning rate and λ on vali-
dation sets. For meta-parameters of collaborative learning
framework, we set θd and θu to 1.0 since [14] shows that
the GAN attack also works for smaller values of θd and
θu. We also exclude gradient selection mechanism, γ and
τ from the experiments. Finally, we note that increasing
the key dimensionality can increase the robustness of the
classification model against the GAN attack. However,
setting it to a too large value may lead to numerical in-
stabilities and/or delay the convergence. Therefore, dkey
should be treated as an hyper-parameter and tuned specif-
ically for each model architecture on a separate held out
public dataset with relevant content. The experiments are
implemented in TensorFlow [50] and PyTorch [51].

5.2. Collaborative Learning Evaluation
In this section, we evaluate our collaborative learning

framework formulation with private class keys, in the ab-
sence of an adversary, in order to show that our formula-
tion enables effectively learning a shared model. For this
purpose, we examine how the key size dkey and a fixed layer
affect the test set accuracy of the local models, over the
training iterations. To do that, we split MNIST among 2,
3 and 5 participants, run two different collaborative learn-
ing frameworks (one with fixed layers and one without
fixed layers) for dkey ∈ {128, 1024, 4096, 16384} and report
mean participant accuracies (MPA) during the training.
We also examine mean participant accuracies with respect
to dkey ∈ {128, 1024, 4096, 16384} and number of partic-
ipants in a collaborative learning framework when there
is no fixed layer in local models of participants for the
Olivetti Faces dataset. The results of these experiments

9

are given in Figure 3.
Observations. We find that even on MNIST it takes

considerably longer time to achieve a high classification
accuracy compared to the centralized case when apply-
ing collaborative learning framework in its vanilla form,
e.g . without any “hacks” to stabilize and speed up learn-
ing. We believe that this is due to the noise introduced
by participants when they upload parameters to the server
from their local models after performing one epoch of lo-
cal training. We note that, however, in this work we fo-
cus not on improving the training performance of collab-
orative learning framework, but instead on evaluating the
proposed approach within the existing CLF protocol.

MNIST experiments show that fixed layers yield better
scores only when dkey = 128. For other key dimensional-
ities and when same hyper-parameters used, we see that
a fixed layer delays the convergence time of participants.
In the Olivetti Faces experiments we see that in all cases
all participants can achieve at least 95% test set accuracy.
All these results suggest that fixed layer can be used as
an effective tool for increasing the embedding dimension-
ality without increasing the model complexity, with some
penalty mainly in the convergence speed.

Unless otherwise stated, from now on, in all experi-
ments, we share a fixed layer among the participants dur-
ing their local trainings.

5.3. Preventing GAN Attack
In this section we evaluate the success of our approach

in preventing GAN attacks. We perform three sets of ex-
periments to cover different aspects of our proposed solu-
tion:

I. The class key of one of the classes is given to the
adversary.

II. Adversary generates random keys that are δ far (mea-
sured in Euclidean distance) from some class key
(‖ψattack − ψc‖ = δ for some c).

III. Adversary generates random keys.
We evaluate samples generated by attackers both quali-
tatively (by visual inspection) and quantitatively by com-
puting accuracies of the samples using an MNIST model
pre-trained on centralized data. For this evaluation, we
pre-train a CNN model to classify the MNIST digits over
the complete dataset and use this model to classify syn-
thetic samples generated by an adversary.

In Experiment I., we demonstrate the extreme case in
which adversary guesses the same key of any class in col-
laborative learning framework. Although this is very un-
likely to happen in practice with high-dimensional class
keys, this case can be considered as a baseline where the
GAN attack is expected to be successful. The results for
this case over the MNIST and Olivetti Faces datasets are
presented in Figure 4. In the figure, we additionally show
results when a vanilla classifier is being used instead of our
embedding based model. In these results, we observe that
the attacker succeeds in reconstructing target class images

with high visual similarity both when using the vanilla
classifier and the embedding model with exact attack keys,
as expected. These results verify the effectiveness of the
GAN attack in our experimental setup.

In Experiment II., we conduct a study to understand
the success of the GAN attack as a function of the mini-
mum similarity between the GAN attack key and one of
the actual class keys. For this purpose, we provide the
attacker a function that takes the key of the victim class
(ψdesired), and a predefined degree of similarity (δ), and,
generates an `2 normalized random key ψattack such that
the generated key approximates the key of the victim class:
‖ψattack − ψdesired‖ ≈ δ. We experiment with several val-
ues of δ ∈ [0, 1.3] and see that as δ decreases, the attacker
starts to generate visually more similar images to the ones
in the victim. By visually inspecting the reconstructions
of the adversary, we deduce that for δ ≥ 1.1 on Olivetti
Faces, the GAN attack produces incomprehensible results.
In almost all attack experiments we observe that generator
of an adversary tends to collapse into a single mode that is
either a noise or a meaningful image, depending on the δ
value. Consequently, on MNIST, we find a sharp threshold
at δ = 0.5 such that when δ ≥ 0.5 the synthesized samples
become unrecognizable for the pre-trained MNIST classi-
fier. Reconstructions for different values of δ are given in
Figure 5 for the Olivetti Faces and MNIST datasets.

In Experiment III., we show that our model is robust
against the GAN attack when there is no constraint on key
generation, i.e. all keys are randomly and independently
generated by the participants, including the guessed ones.
We show in Figure 6 and Figure 7 that for sufficiently large
key dimensionalities, the GAN attack fails on both MNIST
and Olivetti Faces, respectively. In addition, we observe
that the pre-trained MNIST classifier obtains 0% accuracy
on the generated examples, which also support our claim
that GAN attack fails. This situation occurs in practice
since the local generators of the adversaries collapse to
singular modes whose samples are unrecognizable for the
pre-trained classifier.

5.4. Shared Classes Among Participants
So far, we have assumed that there are no overlap-

ping training classes across the participants. However, our
approach can be utilized even in the cases where partic-
ipants own samples from shared classes, without sharing
their private class keys. We claim that as class keys be-
comes nearly orthonormal to each other, a properly trained
shared model would learn to map samples belonging to
same class but hosted by different participants to an space
spanned by the private class keys defined for that class
by different participants. In this section, we show that
our formulation works well when there exist shared classes
among the participants.

Let c be a class shared by the participants i and j.
Let there exist two class key vectors in R2, namely ψic
and ψjc , which are two distinct keys of class c generated
by participants i and j, respectively. φθ is the network

10

(a) MNIST

(b) Olivetti Faces

Figure 4: Demonstrations of GAN attacks i) in the vanilla classification model where all class logits are seen by the
participants [52], and ii) in our key-protected classification model when the attacker has access to the exact key
of the class that it is attacking, on the (a) MNIST and (b) Olivetti Faces datasets. We split the classes among two
participants, one being an adversary. In each dataset, we perform 5 different experiments, where the adversary attacks
one of the classes owned by the victim. In MNIST (a), the victim owns the digit classes 0-4, and we present the GAN
attack results in the vanilla (upper row) and our key-protected (lower row) classification models. In Olivetti Faces (b),
the victim owns the photos of 20 people, and, we show the original class samples (upper row), the GAN attack results
in the vanilla (middle row) and our key-protected (lower row) classification models. Overall, the results demonstrate the
effectiveness of the GAN attack, when key-based protection is not utilized.

that maps input data (e.g., images) into the embedding
space. Let Xc

i and Xc
j be the samples that participants i

and j have for class c. For our analysis, we assume that
the angle between ψic and ψjc are approximately orthogo-
nal, which is correct in practice when the class keys are
high-dimensional, `2-normalized vectors. In addition, as
we expect observing similar examples in Xc

i and Xc
j , we

assume, for simplicity, that the sets Xc
i and Xc

j contain a
single shared sample xc.

Then, since ‖ψic‖ = ‖ψjc‖ = 1 by definition, and, ‖φθ(xc)‖ =
1 due to the `2-normalization layer at the output of the
network, the training objective, i.e. maximization of the
dot product between the sample embedding and class key,
for xc can equivalently expressed in terms of minimizing
the angle between ψic and φθ(x

c) (denoted by α1), and,
between ψjc and φθ(x

c) (denoted by α2) 5. In this sim-
ple example devised in R2, maximizing 〈ψic, φθ(xc)〉 and
〈ψjc , φθ(xc)〉 with respect to θ by participants i and j iter-

5〈ψc, φθ(xc)〉 = ‖ψc‖2 · ‖φθ(xc)‖2 · cos(α) = cos(α)

atively would converge to a model such that 〈ψic, φθ(xc)〉 ≈
〈ψjc , φθ(xc)〉 ≈ 0.7 (i.e. cos(π/4)), and α1 ≈ α2 ≈ π/4.

In consideration of this behavior in much higher di-
mensional spaces, we perform the following experiments.
For demb = {64, 256, 1024, 4096, 16384}, we generate three
`2 normalized vectors, namely ψic, ψjc and φ(xc). Then
we update φ(xc) to maximize 〈ψic, φ(xc)〉 and 〈ψjc , φ(xc)〉
until convergence, by simple gradient descent. We repeat
this procedure 1000 times and plot maximum of the scores
obtained either by 〈ψic, φ(xc)〉 or by 〈ψjc , φ(xc)〉 for all dkey
in Figure 8 (left). We see that scores converge to 0.7 as
we increase the class key dimensionality.

We continue our analysis by measuring the dot prod-
uct of the tuned φ(xc) with random class keys representing
other classes. Our purpose is to interpret the optimization
output of the previous experiment. For each tuned φ(xc)
we generate `2 normalized vectors ψnew

k for k = 1, . . . , 1000
and plot maximum absolute dot products of all ψnew

k and
φ(xc), in Figure 8 (right). Results indicate that when dkey
is sufficiently high, multiple participants can declare the

11

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5: We approximate the maximum Euclidean distance between any class key and ψ(cattack) necessary for the
adversary to succeed in attack. From (a) to (f) and (g) to (l), reconstructions of the adversary when it generates random
keys that are δ ∈ {1.3, 1.2, 1.1, 1.0, 0.5, 0.1} far from the key of the class whose label is 24 in Olivetti Faces dataset and
0 in MNIST dataset, respectively.

Figure 6: GAN attack results on the MNIST dataset using random attack keys. We split MNIST among 5 participants
which are also attackers. Figures from left to right correspond to sample reconstructions obtained by each adversary,
when dkey = 16834. We run the experiments until each participant achieves 97% accuracy on its local dataset. One can
see that generators fail at capturing a valid digit mode which indicates that the GAN attack is prevented.

same set of labels. For each common label, the accu-
mulated model is likely to map samples belonging to the
shared class onto a space spanned by the embeddings de-
fined for that class among the participants. The resulting
space is likely to be nearly orthogonal to any other class
key. At test time, as labels are assigned according to the
Equation 3, having multiple keys for a class does not con-
stitute an issue, i.e. we can simply assign a test sample to
the class whose one of the keys maximizes the classification
score.

These observations confirm that the approach is likely
to behave well when training over shared classes, despite
using different private keys across the participants. Over-
all, the network is likely to map samples to points that are
highly correlated with all duplicate keys of their ground-
truth classes, and highly uncorrelated with the other ones.
In fact, we have empirically verified that training with
shared classes perform with no observable issues on both
MNIST and Olivetti Faces (example results are omitted
for brevity). Our experiments also suggest that when us-
ing sufficiently long (i.e. high-dimensional) keys, generator
of each attacker is able to capture some mode that does
not match with any of the modes of the classes in the col-
laborative learning framework, according to fake class key
generated by the attacker.

5.5. Evaluating the Key Based Regression Loss
We are also curious about the performance of our re-

gression based objective that we formulate in Equation 9

when it is used out of the privacy context, e.g . in the super-
vised classification setup where all the training data is cen-
tralized. For this purpose, we train several ResNet-10 [53]
models on the CIFAR-10 and CIFAR-100 datasets [18] by
optimizing the cross entropy loss and the key-based cosine
similarity loss, which we refer to as the key-based regres-
sion, and compare their results.

In the original ResNet models, there is one fully con-
nected layer mapping non-negative image embeddings (ob-
tained at the output of the last convolutional layer) to
classification scores by computing dot products between
weight vectors in the fully connected layer and the im-
age embeddings then adding bias terms in the fully con-
nected layer. Instead, in our experiments we compute co-
sine similarity scores between the weight vectors in the
fully connected layer and the image embeddings. In cross
entropy experiments, the weights of the fully connected
layer are trainable, whereas in key-based regression ex-
periments we replace the trainable weights with fixed or-
thonormal class keys, which we obtain by QR decompo-
sition before training starts. Finally, we modify the last
convolutional layer by replacing the ReLU activation func-
tion with the tanh, based on the observation that comput-
ing cosine similarities by using non-negative image embed-
dings φθ(x) tends to make training unstable.

Top-1 accuracies obtained for both loss functions are
shown in Table 1. We see that key-based regression
outperforms cross entropy on CIFAR-10 by a small margin,
whereas on cross-entropy performs better on CIFAR-

12

Figure 7: GAN attack results on the Olivetti Faces dataset using random attack keys. From left to right, reconstructions
of adversary for dkey ∈ {128, 1024, 4096, 16834}, respectively. We show that the mode that GAN learns is likely to belong
one of the classes in collaborative learning framework, for small dkey. However, as dkey become larger, the quality of the
GAN attack reconstructions degrade drastically.

64 128 1024 4096 16384

Vector Size

0.65

0.75

0.85

M
S

64 128 1024 4096 16384

Vector Size

0.000
0.125
0.250
0.375
0.500

M
A

D
P

Figure 8: (Left) We randomly generate `2
normalized ψic, ψ

j
c , φ(x

c) ∈ Rdkey for dkey ∈
{64, 128, 1024, 4096, 16384}. Then we find the opti-
mal φ(xc) such that its dot product with ψic and ψjc
are maximized. Bars indicate that as we increase the
dimensionality, ψic and ψjc are more likely to be or-
thogonal, therefore φ(xc) ends up being a vector at
0.7 correlation with each one. MS: Maximum score.
(Right) We generate new `2 normalized vectors in Rdkey
for dkey ∈ {64, 128, 1024, 4096, 16384}, and check their
maximum absolute dot product with the final φ(xc). We
see that as we increase dkey, φ(xc) converges towards
the space spanned by ψic and ψjc . This confirms that
the approach is likely to behave well when training over
shared classes, despite using different private keys across
the participants. MADP: Maximum absolute dot product.

Objective Dataset Top-1
Key-based regression CIFAR-10 94.8%

Cross entropy CIFAR-10 94.0%

Key-based regression CIFAR-100 73.6%

Cross entropy CIFAR-100 74.2%

Table 1: Key-based regression versus cross entropy.

100. These results indicate that orthonormal class keys
enforce the network to produce sufficiently orthonormal
class codes at the last fully connected layer, and make the
overall training formulation discriminative. We leave an
elaborate study for key-based regression in a future work.

6. Conclusion

We have presented a collaborative learning technique
that is resilient to the GAN attack. More specifically,
we have introduced a classification model for participants,
where random class keys represents classes. This key-
based model provides effective learning over the partici-
pants and by utilizing high dimensional keys, class scores
of an input is protected against an active adversary that
may aim to execute a GAN attack. We have presented
a principled training technique for the case of restricting
the access of each participant to only its own private keys,
and, a way to increase key dimensionality without increas-
ing the model complexity. We have verified the effective-
ness of our formulation by empirically showing that (i)
the adversary is no longer able to choose which class to
exploit, and (ii) generator trained by the adversary can-
not capture data distribution well enough to reconstruct
any class. We believe that the proposed approach makes a
step towards making collaborative learning safe and prac-
tical, which can potentially have a fundamental impact on
learning models in sensitive data domains.

7. Acknowledgements

This work was supported in part by the TUBITAK
Grant 116E445.

References

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Im-
ageNet: A Large-Scale Hierarchical Image Database, in: Proc.
CVPR, 2009.

[2] Y. Guo, L. Zhang, Y. Hu, X. He, J. Gao, MS-Celeb-1M: A
dataset and benchmark for large scale face recognition, in: Proc.
ECCV, 2016.

[3] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici,
B. Varadarajan, S. Vijayanarasimhan, Youtube-8m: A large-
scale video classification benchmark, arXiv:1609.08675 (2016).

[4] R. Shokri, V. Shmatikov, Privacy-preserving deep learning, in:
ACM SIGSAC Conference on Computer and Communications
Security, 2015.

13

[5] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, B. A. y Ar-
cas, Communication-efficient learning of deep networks from de-
centralized data, in: Proc. AISTATS, 2017.

[6] A. Bellet, R. Guerraoui, M. Taziki, M. Tommasi, Personalized
and private peer-to-peer machine learning, in: Proc. AISTATS,
2018.

[7] P. Vanhaesebrouck, A. Bellet, M. Tommasi, Decentralized Col-
laborative Learning of Personalized Models over Networks, in:
Proc. AISTATS, 2017.

[8] M. Fredrikson, S. Jha, T. Ristenpart, Model inversion attacks
that exploit confidence information and basic countermeasures,
in: ACM SIGSAC Conference on Computer and Communica-
tions Security, 2015.

[9] K. Chaudhuri, C. Monteleoni, A. D. Sarwate, Differentially pri-
vate empirical risk minimization, Journal of Machine Learning
Research 12 (2011).

[10] C. Dwork, Differential privacy, in: Encyclopedia of Cryptogra-
phy and Security, 2011.

[11] N. Phan, Y. Wang, X. Wu, D. Dou, Differential privacy preser-
vation for deep auto-encoders: an application of human behav-
ior prediction, in: AAAI Conference on Artificial Intelligence,
2016.

[12] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, L. Zhang, Deep learning with differential privacy, in:
ACM SIGSAC Conference on Computer and Communications
Security, 2016.

[13] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, K. Tal-
war, Semi-supervised knowledge transfer for deep learning from
private training data, in: Proc. ICLR, 2016.

[14] B. Hitaj, G. Ateniese, F. Perez-Cruz, Deep models under the
gan: Information leakage from collaborative deep learning, in:
ACM SIGSAC Conference on Computer and Communications
Security, 2017.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial
nets, in: Proc. NeurIPS, 2014.

[16] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based
learning applied to document recognition, in: Proceedings of
the IEEE, 1998.

[17] F. S. Samaria, A. C. Harter, Parameterisation of a stochastic
model for human face identification, in: IEEE Workshop on
Applications of Computer Vision, IEEE, 1994.

[18] A. Krizhevsky, Learning multiple layers of features from tiny
images, Tech. rep. (2009).

[19] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay,
D. Mukhopadhyay, Adversarial attacks and defences: A survey,
arXiv preprint arXiv:1810.00069 (2018).

[20] L. Melis, C. Song, E. D. Cristofaro, V. Shmatikov, Exploiting
unintended feature leakage in collaborative learning, in: IEEE
Symposium on Security and Privacy, 2019.

[21] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, H. Qi, Beyond
inferring class representatives: User-level privacy leakage from
federated learning, in: IEEE Conference on Computer Commu-
nications, 2019.

[22] C. Dwork, Differential privacy, in: Automata, Languages and
Programming, 2006.

[23] K. Chaudhuri, C. Monteleoni, Privacy-preserving logistic re-
gression, in: Proc. NeurIPS, 2009.

[24] S. Song, K. Chaudhuri, A. D. Sarwate, Stochastic gradient de-
scent with differentially private updates, in: IEEE Global Con-
ference on Signal and Information Processing, 2013.

[25] S. Song, K. Chaudhuri, A. Sarwate, Learning from data with
heterogeneous noise using sgd, in: Proc. AISTATS, 2015.

[26] A. Rajkumar, S. Agarwal, A differentially private stochas-
tic gradient descent algorithm for multiparty classification, in:
Proc. AISTATS, 2012.

[27] N. Hynes, R. Cheng, D. Song, Efficient deep learning on multi-
source private data, arXiv preprint arXiv:1807.06689 (2018).

[28] T. Zhang, Z. He, R. B. Lee, Privacy-preserving machine learn-
ing through data obfuscation, arXiv preprint arXiv:1807.01860
(2018).

[29] J. Hamm, Y. Cao, M. Belkin, Learning privately from multi-
party data, in: Proc. ICML, 2016.

[30] M. Pathak, S. Rane, B. Raj, Multiparty Differential Privacy via
Aggregation of Locally Trained Classifiers, in: Proc. NeurIPS,
2010.

[31] P. Mohassel, Y. Zhang, SecureML: A system for scalable
privacy-preserving machine learning, in: IEEE Symposium on
Security and Privacy, 2017.

[32] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B.
McMahan, S. Patel, D. Ramage, A. Segal, K. Seth, Practical
secure aggregation for privacy-preserving machine learning, in:
ACM SIGSAC Conference on Computer and Communications
Security, 2017.

[33] F.-J. González-Serrano, Á. Navia-Vázquez, A. Amor-Martín,
Training support vector machines with privacy-protected data,
Pattern Recognition 72 (2017).

[34] M. Gomez-Barrero, E. Maiorana, J. Galbally, P. Campisi,
J. Fierrez, Multi-biometric template protection based on ho-
momorphic encryption, Pattern Recognition 67 (2017).

[35] S. Wang, J. Hu, Design of alignment-free cancelable fingerprint
templates via curtailed circular convolution, Pattern Recogni-
tion 47 (2014).

[36] A. Anees, Y.-P. P. Chen, Discriminative binary feature learning
and quantization in biometric key generation, Pattern Recogni-
tion 77 (2018).

[37] Cancellable speech template via random binary orthogonal ma-
trices projection hashing, Pattern Recognition 76 (2018).

[38] L. Xie, K. Lin, S. Wang, F. Wang, J. Zhou, Differen-
tially private generative adversarial network, arXiv preprint
arXiv:1802.06739 (2018).

[39] C. Xu, J. Ren, D. Zhang, Y. Zhang, Z. Qin, K. Ren, GANobfus-
cator: Mitigating information leakage under gan via differential
privacy, IEEE Transactions on Information Forensics and Secu-
rity 14 (2019).

[40] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, D. N.
Metaxas, StackGAN: Text to photo-realistic image synthesis
with stacked generative adversarial networks, in: Proc. ICCV,
2017.

[41] R. A. Yeh, C. Chen, T. Yian Lim, A. G. Schwing, M. Hasegawa-
Johnson, M. N. Do, Semantic image inpainting with deep gen-
erative models, in: Proc. CVPR, 2017.

[42] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, X. Chen, X. Chen, Improved techniques for training gans,
in: Proc. NeurIPS, 2016.

[43] M. Mirza, S. Osindero, Conditional generative adversarial nets,
arXiv preprint arXiv:1411.1784 (2014).

[44] I. O. Tolstikhin, S. Gelly, O. Bousquet, C.-J. Simon-Gabriel,
B. Schölkopf, AdaGAN: Boosting generative models, in: Proc.
NeurIPS, 2017.

[45] T. Che, Y. Li, A. P. Jacob, Y. Bengio, W. Li, Mode regularized
generative adversarial networks, in: Proc. ICLR, 2017.

[46] I. Goodfellow, Neurips 2016 tutorial: Generative adversarial
networks, arXiv preprint arXiv:1701.00160 (2016).

[47] A. L. Maas, A. Y. Hannun, A. Y. Ng, Rectifier nonlinearities
improve neural network acoustic models, in: ICML Workshop
on Deep Learning for Audio, Speech and Language Processing,
2013.

[48] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep
network training by reducing internal covariate shift, in: Proc.
ICML, 2015.

[49] J. L. Ba, J. R. Kiros, G. E. Hinton, Layer normalization, arXiv
preprint arXiv:1607.06450 (2016).

[50] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schus-
ter, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:
Large-scale machine learning on heterogeneous systems.

14

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Des-
maison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Py-
torch: An imperative style, high-performance deep learning li-
brary, in: Proc. NeurIPS, 2019.

[52] B. Hitaj, G. Ateniese, F. Pérez-Cruz, Deep models under the
gan: information leakage from collaborative deep learning, in:
ACM SIGSAC Conference on Computer and Communications
Security, ACM, 2017.

[53] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for
image recognition, in: Proc. CVPR, 2016.

15

Appendix A. Softmax Over Infinitely-many Classes

In this section, we show the detailed derivation of our softmax generalization to infinitely-many classes. Below, we
use the subscript notation on ψ to denote dimensions, instead of classes, and, use d instead of dkey for brevity. In order
to compute p(c|x) = exp gθ(x,ψc)

Eψ[exp(gθ(x,ψ))] , we need to compute the expectation in the denominator:

Eψ∼N [exp(gθ(x, ψ))] =

∫
ψ

f(ψ) exp (gθ(x, ψ)) dψ. (A.1)

Since the class keys are assumed to follow multivariate standard normal distribution, the integration can be simplified
as follows:∫

ψ

f(ψ) exp (gθ(x, ψ)) dψ =

∫
ψ1

...

∫
ψd

f(ψ1)...f(ψd) exp (g(x, ψ)) dψ1...dψd. (A.2)

By re-arranging the terms and plugging-in Eq. 4.1, we obtain:∫
ψd

f(ψd)...

∫
ψ1

f(ψ1) exp
(
ψTφ(x)

)
dψ1...dψd, (A.3)

By converting the exponent of summation into a product of exponents, we obtain:∫
ψd

f(ψd) exp (φd(x)ψd) ...

∫
ψ1

f(ψ1) exp (φ1(x)ψ1) dψ1...dψd, (A.4)

where φi(x) refers to the i-th dimension of the φ(x) vector. Here, the inner-most term can be integrated out easily:∫
ψ1

f(ψ1) exp (φ1(x)ψ1) dψ1 (A.5)

=
1√
2π

∫
ψ1

exp

(
−1

2
ψ2
1

)
exp (φ1(x)ψ1) dψ1 (A.6)

=
1√
2π

∫
ψ1

exp

(
−1

2
(ψ1 − φ1(x))2

)
exp

(
1

2
φ1(x)

2

)
dψ1 (A.7)

= exp

(
1

2
φ1(x)

2

)
, (A.8)

where the last step is based on the observation that the remaining terms correspond to integrating out Gaussian proba-
bility density function with µ = φ1(x) and σ = 1. Now, we can plug-in this result into Eq. A.4 and repeatedly integrate
out each dimension:

exp

(
1

2
φ1(x)

2

)∫
ψd

f(ψd) exp (φd(x)ψd) ...

∫
ψ2

f(ψ2) exp (φ2(x)ψ2) dψ2...dψd (A.9)

=

d∏
i=1

exp

(
1

2
φi(x)

2

)
= exp

(
1

2

d∑
i=1

φi(x)
2

)
= exp

(
1

2
‖φ(x)‖2

)
. (A.10)

Finally, by plugging-in Eq. 4, we obtain a constant value of exp(0.5):

Eψ∼N [exp(gθ(x, ψ))] = exp

(
1

2
‖φ(x)‖2

)
(A.11)

= exp

(
1

2

∥∥∥∥ φu(x)

‖φu(x)‖

∥∥∥∥2
)

(A.12)

= exp (0.5) , (A.13)

which completes the proof that our generalization of softmax to infinitely-many classes takes the following final form:

exp gθ(x, ψc)

Eψ[exp gθ(x, ψ)]
=

1

exp(0.5)
exp (gθ(x, ψc)) . (A.14)

16

	1 Introduction
	2 Related work
	3 Background
	3.1 Collaborative Learning of Participants
	3.2 Generative Adversarial Network
	3.3 GAN Attack in Collaborative Learning

	4 Proposed Method
	4.1 Key Protected Classification Model
	4.2 Learning with Restricted Class Key Access
	4.3 Class Key Generation
	4.4 Learning with High Dimensional Keys
	4.5 Summary

	5 Experiments
	5.1 Experimental setup
	5.2 Collaborative Learning Evaluation
	5.3 Preventing GAN Attack
	5.4 Shared Classes Among Participants
	5.5 Evaluating the Key Based Regression Loss

	6 Conclusion
	7 Acknowledgements
	Appendix A Softmax Over Infinitely-many Classes

