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Abstract

Zero Shot Learning (ZSL) aims to learn projective functions on labeled seen

data and transfer the learned functions to unseen classes by discovering their

relationship with semantic embeddings. However, the mapping process often

suffers from the domain shift problem caused by only using the labeled seen

data. In this paper, we propose a novel explainable Deep Transductive Network

(DTN) for the task of Generalized ZSL (GZSL) by training on both labeled seen

data and unlabeled unseen data, with subsequent testing on both seen classes

and unseen classes. The proposed network exploits a KL Divergence constraint

to iteratively refine the probability of classifying unlabeled instances by learn-

ing from their high confidence assignments with the assistance of an auxiliary

target distribution. Besides, to avoid the meaningless ascription assumption of

unseen data on GZSL, we also propose an experimental paradigm by splitting

the unseen data into two equivalent parts for training and testing respectively.

Extensive experiments and detailed analysis demonstrate that our DTN can

efficiently handle the problems and achieve the state-of-the-art performance on

four popular datasets.
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Divergence, Deep Transductive Network (DTN)

1. Introduction

With the rapid development of machine learning and deep neural network,

object recognition [6, 20, 16] and image retrieval [25, 24, 44] have achieved great

success, and even beyond the ability of human beings. However, conventional

image classification methods [8, 43, 7] learn the mapping functions by relying5

on the assumption that both training and testing datasets have the same distri-

bution, i.e., the testing categories should be equal to the training categories. In

realistic scenarios, the number of new classes has undergone explosive growth

in recent years. For example, Taobao, one of the most well-known e-business

website, has shown hundreds of new-class products that have not appeared be-10

fore everyday. Therefore, the conventional full class training methods no longer

fulfill the demand of such situation.

The above problem can be formulated and solved by Zero Shot Learning

(ZSL) [23, 40], the core of which is to learn a model with dependency on the

labeled data of seen classes and then employ the learned models to predict the15

corresponding labels of the unlabeled data of unseen classes [19, 14]. Seen and

unseen categories are usually related in a high-dimensional vector space, named

as semantic space or attribute space, where the knowledge from seen categories

can be transferred to unseen categories. Since ZSL methods train their models

by only employing labeled seen data, also namely inductive ZSL (case 1+3 in20

Fig. 1), which often leads to projection domain shift problem. That is, if the

projection model from visual feature to semantic embedding is learned only from

the seen classes, the projection of unseen class image is likely to be shifted due

to the bias distribution of the training seen classes. Sometimes this bias might

be far away from the correct unseen class prototypes, and leads to failure of the25

subsequent nearest neighbor search.

There are many methods emerging to solve such problem [18], e.g., Seman-

tic Autoencoder and Visual Embedding, but these methods keep focusing on
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Figure 1: An illustration of different tasks for Zero Shot Learning, where ‘A’ and ‘B’ represent

the seen classes, and ‘C’ and ‘D’ stand for the unseen classes.

labeled seen data and even neglect the impact caused by the bias distribution.

An efficient approach is transductive ZSL [13] (case 2+3 in Fig. 1), which takes30

the unlabeled unseen data for test into training phase, and has made great

success in improving the classification accuracy. Although the conventional in-

ductive ZSL or transductive ZSL methods can obtain attractive results, a strong

assumption is required. Specifically, it is assumed that the test data is previ-

ously known to be lying in the unseen classes, but which is often not realistic35

as we cannot obtain the situation whether the new data belongs to seen classes

or unseen classes beforehand in most circumstances. Therefore, Chao et al. [4]

proposed to predict the category of test data on both seen classes and unseen

classes, which is often called Generalized Zero Shot Learning (GZSL) (case 1+4

in Fig. 1). Subsequently, a novel re-splitted benchmark is released for both40

ZSL and GZSL [38]. Based on the new setup, there are many new transductive

ZSL methods appear. For example, Quasi-Fully Supervised Learning (QFSL)
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[33], a deep neural network has been designed to solve the transductive GZSL

task (case 2+4 in Fig. 1). More specifically, QFSL imposes an independent loss

function on unlabeled unseen data, which constrains the summation of the prob-45

ability of unseen classes should be as large as possible. One problem of QFSL is

that the simply summation constraint is insufficient to guarantee the probability

of only one class is maximized. In addition, transductive setting assumes the

unlabeled test data belongs to the unseen classes in advance, while on GZSL

setting the label of unlabeled test data is predicted on both seen and unseen50

classes by assuming the test data is unknown for its ascription of seen or unseen

classes. Therefore, it is meaningless to use the same test data as the training

on transdutive GZSL setting [35]. Besides, most of these ZSL methods utilize

Deep Neural Networks (DNN) as black-boxes and define an objective, which is

then directly optimized with Stochastic Gradient Descent. However, the DNN55

behaviors in these methods are not clear, which make it less explainable.

To deal with the above problems, we propose an explainable end-to-end Deep

Transductive Network (DTN), which imposes a specific-designed loss function

by taking the seen data and unseen data into two independent parts. First, we

utilize the naive cross entropy for the seen part, and then design a combined60

loss function according to three special designed constraints for the unseen one.

Concretely, the three explainable constraints include the cross entropy loss for

the unlabeled unseen data on the seen classes, the summation loss for the un-

labeled data that it should be equal to one on unseen classes, and the KL

Divergence loss for the unlabeled data that the distribution of it should be as65

similar as the auxiliary target distribution. Furthermore, to address the point-

less test setting on transductive GZSL, we design a new experimental paradigm

which randomly splits the whole unseen data into two equivalent parts, i.e.,

one of them for training and the rest for unseen test. This paradigm can per-

fectly avoid the embarrassing setting on conventional tranductive GZSL. Our70

contributions can be summarized as follows,

1) To strengthen the prediction of unlabeled data on unseen classes for trans-
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ductive GZSL, we propose a novel explainable end-to-end deep network,

namely Deep Transductive Network (DTN), which exploits a KL Diver-

gence loss to encourage the assignment of unlabeled data to be certainty.75

2) An auxiliary distribution satisfying three important properties is defined

for the target of unseen data, it can constrain the probability of unlabeled

data on only one unseen class to be maximized to 1, while others are

minimized to 0 after times of iterations.

3) We propose a novel experimental paradigm to circumvent the meaningless80

ascription assumption of the unseen classes in conventional transductive

GZSL setting. Additionally, extensive experiments are conducted by fol-

lowing the new paradigm and achieve the state-of-the-art performance.

The main content of this paper is organized as follows: In section 2 we

briefly introduce the existing methods for inductive ZSL and transductive ZSL85

and the settings of ZSL and GZSL. Section 3 describes the proposed method and

the optimization strategy in detail. Section 4 gives the experimental results of

comparison with existing methods for both conventional ZSL and GZSL. Finally

in section 5, we conclude this paper and discuss the possible future work.

2. Related Works90

Inductive vs Transductive ZSL aims to discover the visual-semantic pro-

jection between visual image features and embedded semantic attributes. The

projection is trained dependent on seen classes, but are hoped to be transferred

to unseen classes. From the aspect of training data used, we can simply divide

the ZSL methods into two categories: inductive ZSL and transductive ZSL.95

Inductive ZSL methods only use labeled seen data during the training,

and the unlabeled unseen data is strictly inaccessible. Since visual attribute

learning [11] has been proposed, many researchers conduct their work to dis-

cover the intermediate attribute classifiers for zero-shot learning. One of the
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most popular framework is compatibility learning, which learns linear or non-100

linear mapping functions with only using seen data and attributes, and then be

applied on unseen data. DAP is one of the earliest compatibility frameworks,

which learns probabilistic attribute classifiers and estimates the label by inte-

grating the ranks of the learned classifiers. Attribute Label Embedding (ALE)

[1], Structured Joint Embedding (SJE) [2], and Deep Visual-Semantic Embed-105

ding (DeViSE) [12] employ bilinear compatibility functions to project features

into semantic embedding space, where the features and attributes belongs to the

same class with depending on the correlation is maximal or minimal. Embarrass-

ingly Simple Zero Shot Learning (ESZSL) [30] add an additional regularization

term to the unregularized risk minimization equation.110

To utilize the relationship between seen classes and unseen classes, some hy-

brid methods are proposed, e.g. Combination of Semantic Embeddings (CONSE)

[28] and Semantic Similarity Embedding (SSE) [42] exploit the attributes of seen

classes to construct those of unseen classes and make significant improvement.

Synthetic learning is a novel type of method, which typically synthesizes115

pseudo features from semantic attributes. The classifiers is trained by using

conventional algorithms such as Decision Tree (DT) or Support Vector Machine

(SVM). There are some well-known methods which have the similar structure

as the standard one. For example, Synthesised Classifiers (SYNC) [3], Unseen

Visual Data Synthesis (UVDS) [26].120

The earliest concept of transductive ZSL was proposed by Fu et al. [13],

who learned a multi-label regression model to generalize model to unseen classes

with utilizing both seen and unseen data. Semi-supervised framework [21] takes

both labeled and unlabeled data as input, and jointly learns a multi-class clas-

sification model on all classes. The framework can consistently learn both the125

label representations and the model parameters across the seen classes and un-

seen classes. Unsupervised Domain Adaptation (UDA) [17] casts the visual-

embedding projection learning problem as a sparse coding problem, which sets

each dimension of the semantic embedding space correspond to a dictionary

basis vector. The coefficients/sparse code of each visual feature vector is its130
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projection in the semantic embedding space. Guo et al. [15] proposed a method

to solve transductive zero-shot leaning with a Shared Model Space (SMS) with

replacing the shared attribute space in existing works. Recently, Li et al. [22]

exploited the intrinsic relationship between the semantic space manifold and

the transfer ability of visual-semantic mapping, then formalized their connec-135

tion and casted zero-shot recognition as a joint optimization problem. Song et

al. proposed a deep Quasi-Fully Supervised Learning network (QFSL) [33] by

designing two independent objective functions for seen data and unseen data

and integrates them into a whole during the training phase.

ZSL vs GZSL According to the assumption of whether the ascription of test140

data is known, the ZSL tasks can be classified into two categories: Conventional

ZSL and Generalized ZSL. Conventional ZSL assumes the ascription of test data

is known in advance, thus the nearest neighbor searching can be conducted on

only unseen classes. Chao et al. [4] suggested that the convention ZSL is incom-

patible under the actual situation, because in most scenarios, we cannot obtain145

the knowledge whether the test data belongs to the unseen classes beforehand.

Therefore, they proposed the new task—Generalized ZSL, which carries out the

nearest neighbor searching on both seen and unseen classes. Subsequently, Xian

et al. [38] put forward a new standard split of several popular datasets for GZSL

testing, and released the evaluation results of some recent ZSL methods.150

Semantic Embeddings ZSL related methods often rely on the intermediate

attributes, which represent the semantic embeddings of both seen and unseen

classes. Conventional attributes are high-dimensional, and usually annotated

by experts with real values, this type of annotation need experts’ knowledge,

and cost a lot of labor force. To solve this problem, some methods [5] turn155

to use Word2Vec [27] to generate attributes based on the dataset “WikiPedia”.

However, the textual description of the “WikiPedia” might be very noisy and not

directly related to the visual appearance, which often leads to great degradation

of performance. Another semantic attribute representation is based on similes,

which can be annotated by humans [41] with textual assistant.160
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Figure 2: Illustration of our Deep Transductive Network (taking AWA as an example).

3. Methodology

3.1. Problem Definition

In ZSL task, let Y = {c1, · · · , cs} and Z = {cs+1, · · · , cs+u} denote s

seen and u unseen class labels respectively, and they are disjoint Y ∩ Z =

∅. Besides, each class label corresponds to a predefined attribute. We de-165

note the seen attributes and the unseen attributes as AY
s = {a1, · · · ,as}

and AZ
u = {as+1, · · · ,as+u} respectively, where, each ai represents a pre-

defined attribute vector for class ci. Given Ns labeled seen samples: Xs ×

Y = {(xs
1, cxs

1
), · · · , (xs

Ns
, cxs

Ns
)}, and Nu unlabeled unseen samples: Xu =

{xu
1 , · · · ,xu

Nu
}, ZSL aims to learn a mapping function f with the seen data Xs170

to predict the label of the input image Xu among the unseen classes Z. In

inductive learning scenarios, the unlabeled unseen samples Xu are inaccessible

during training, while Xu will be exploited during the training process in trans-

ductive setting. In this paper, we focus on the latter one. Besides, when the

prediction scope is focused on only unseen classes Z, it is ZSL, otherwise on175
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both seen and unseen classes C = Y ∪Z, it is GZSL.

3.2. Deep Transductive Network

The proposed DTN is illustrated in Fig. 2, where the upper-left branch is the

embedding part of visual features, the bottom-left branch is the annotation part

of semantic attributes, and the right branch is utilized for generating labels and

designing loss function. Firstly, given a training image xi, our DTN employs a

deep convolutional neural network (CNN) φ(·), pre-trained ResNet-101 in this

paper, to extract its feature: fi = φ(xi), which is subsequently projected into

attribute space with a nonliner projection ψ(·): gi = ψ(fi). Secondly, based on

the predefined attributes A = AY
s ∪AZ

u , we can obtain the probability qij of

xi belongs to each class cj ∈ C by employing the following operation,

qij =
(1 + ‖gi − aj‖2)−1∑

j′∈C(1 + ‖gi − aj′‖2)−1
, (1)

where, aj ∈ A.

Since the training data contains both labeled seen images and unlabeled

unseen images, it is impossible to define the objective function with only one180

supervised loss function such as the cross entropy loss. As an alternative strat-

egy, we split the training batch into two independent parts which include seen

part tagged with flag ti = 1 and unseen part with ti = 0. In the following two

subsections, we will define the loss functions for the seen part and the unseen

part respectively.185

3.2.1. Training of seen data

In this subsection, we only take the seen data into consideration. Since the

seen images are labeled, we can conveniently utilize the cross entropy to define

the loss function,

L1 = −
ns∑
i=1

∑
j∈C

(sij log qij + (1− sij) log(1− qij)), (2)

where, sij is the jth entry of the one hot vector of yi, corresponding to the

labeled image xi, and ns is the size of labeled samples in a mini-batch.

9



3.2.2. Training of unseen data

Since the precise label of an unseen image xi cannot be obtained, the super-190

vised loss functions are not allowed to be the objective. However, we still have

several constraints as follows,

1) qij should equal or approximate 0 when qij falls into the seen classes Y ;

2) When qij falls into the unseen classes Z, only one of the entry of qij should

be equal to 1 and all others should be equal to 0;195

3) The summation of qij should be equal to 1 when qij falls into the unseen

classes Z.

For the first constraint, we can simply use the cross entropy to define the

objective. Since all qij should equal or approximate 0 when qij falls in to the

seen classes Y , we can define the following loss function,

L2 = −
nu∑
i=1

∑
j∈Y

log(1− qij), (3)

where, nu is the size of unlabeled samples in a mini-batch.

For the second constraint, we propose to iteratively refine the probability

of unseen instance by learning from their high confidence assignments with the

assistance of an auxiliary target distribution. Specifically, our model is trained

by matching the soft assignment to the target distribution. To this end, we

define our objective as a KL divergence loss between the probability qij and the

auxiliary distribution pij as follows,

L3 = KL(P‖Q) =

nu∑
i=1

∑
j∈Z

pij log
pij
qij
. (4)

The choice of target distributions pij is crucial for our DTN’s performance.

Since qij is soft assignment, it is more natural and flexible to use soft proba-

bilistic targets. Specifically, we would like our target distribution to have the

following properties: (1) strengthen predictions, (2) put more emphasis on data

points assigned with high confidence, (3) normalize loss contribution of each

10



class to prevent some large classes from distorting the probabilistic space [39].

Therefore, we define the target distribution as follows,

pij =
q2ij/kj∑
j′ q

2
ij/kj′

. (5)

where, kj =
∑

i qij is the soft assignment frequency. Here we explain why this

equation can satisfy the three properties. Firstly, we have defined the probability200

of assigning a sample to a class as qij , thus for an unlabeled unseen feature, the

summation of qij on unseen classes should be 1. Eq. 5 tries to apply square

operation to strengthen the large value of qij and weaken the small value of

qij (the first property). For example, if the initial probabilities qij of a sample

on three classes are 0.3, 0.3 and 0.4, after the process of Eq. 5 (suppose the205

batch size is one), the generated values of pij are 0.09/(0.09+0.09+0.16)=0.26,

0.09/0.34=0.26 and 0.16/0.34=0.48. Besides, the KL Divergence encourages qij

to approximate pij , i.e., to prompt the classification to be more certainty (the

second property). Therefore, after times of iterations, the final value of pij will

approximate one (only one entry) and many zeros. In addition, the operation210

of pij is performed in a normalized form, which can satisfy the third property.

For the third constraint, we utilize the least square error to define the ob-

jective,

L4 =

nu∑
i=1

(
∑
j∈Z

qij − 1)2. (6)

3.2.3. Objective and optimization

As the seen data and unseen data use different loss functions, we consider

integrating them into a single formulation for final optimization. Since the seen

or unseen tag of the data is known during training, we can use the following

formulation to define the final objective,

L =
1

n
(tiL1 + (1− ti)(L2 + αL3 + βL4)), (7)

where, n is the number of images in a training batch, α and β are balancing

coefficients.
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Subsequently, we jointly optimize the network parameters by exploiting

Stochastic Gradient Descent (SGD). Similar as the computation in [39], the

gradients of L1, L2, L3, and L4 with respect to each extracted data point gi are

computed as,

∂L1

∂gi
=−

ns∑
i=1

∑
j∈C

∂(sij log qij + (1− sij) log(1− qij))
∂gi

=−

∑
j∈C

sij∂ log qij
∂gi

+
∑
j∈C

(1− sij)∂ log(1− qij)
∂ log qij

∂ log qij
∂gi


=−

∑
j∈C

(
(sij −

(1− sij)qij
1− qij

)
∂ log qij
∂gi

)
,

(8)

where,
∂ log qij

∂gi
can be obtained through a further calculation,

∂ log qij
∂gi

=
∂
(
log

(1+‖gi−aj‖2)−1∑
j′ (1+‖gi−aj′‖2)−1

)
∂gi

=
∂
(
log(1+‖gi − aj‖2)−1

)
∂gi

−
∂
(
log
∑

j′(1+‖gi − aj′‖2)−1
)

∂gi

=− 2(gi − aj)

1+‖gi − aj‖2
+

2
∑

j′(gi − aj′)(1+‖gi − aj′‖2)−2∑
j′(1+‖gi − aj′‖2)−1

.

(9)

The derivative of L2 with respect to gi is,

∂L2

∂gi
=−

nu∑
i=1

∑
j∈Y

∂ log(1− qij)
∂gi

=
∑
j∈Y

qij
1− qij

∂ log qij
∂gi

.

(10)

By regarding pij as a constant, the derivative of L3 with respect to gi can

be represented as,

∂L3

∂gi
=

nu∑
i=1

∑
j∈Z

∂(pij log
pij

qij
)

∂gi

=
∑
j∈Z

∂(pij log pij − pij log qij)

∂gi

=−
∑
j∈Z

pij
∂ log qij
∂gi

.

(11)
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Similarly, the derivative of L4 with respect to gi is,

∂L4

∂gi
=

nu∑
i=1

∂(
∑

j∈Z qij − 1)2

∂gi

=2(
∑
j∈Z

qij − 1)
∂(
∑

j∈Z qij − 1)

∂gi
.

=2(
∑
j∈Z

qij − 1)
∑
j∈Z

(qij
∂ log qij
∂gi

).

(12)

The item
∂ log qij

∂gi
in Eq. 10, Eq. 11 and Eq. 12 can all be resolved with Eq.215

9. The gradients of ∂L
∂gi

= 1
n (ti

∂L1

∂gi
+ (1 − ti)(∂L2

∂gi
+ α∂L3

∂gi
+ β ∂L4

∂gi
)) are then

passed down to the deep network and exploited in standard back propagation to

calculate the network parameters. Therefore, the network is a standard end-to-

end model, and it can be easily optimized using mini-batch Stochastic Gradient

Descent (SGD). In addition, Fig. 3 illustrates the convergence curve of L on220

AWA.
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Figure 3: Convergence curve on AWA.

3.3. Classification on GZSL

When the training process is finished, we can apply the learned model for the

unseen image recognition. Given an unseen images xi, the probability qi on all

classes C could be achieved after the process of CNN φ(·), nonlinear projection

ψ(·), similarity computation and softmax. Thus, the corresponding label of xi

13



can be calculated with the following formulation,

`i = arg max
j∈C

pij = arg min
j∈C

‖ψ(φ(xi))− aj‖2. (13)

When conducting on conventional ZSL, the search scope can be narrowed

down to j ∈ Z in Eq. 13.
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Figure 4: Explanation of the proposed DTN with Neuron Importance-aware Weight Transfer

(NIWT) [31]. The solid color bold lines indicates the activated weights for important neurons.

3.4. Explanation of DTN225

In this subsection, we briefly explain our DTN by employing the concept of

Neuron Importance-aware Weight Transfer (NIWT) proposed in [31]. Actually,

in our approach, we learn a mapping between class-specific attribute and the

importance of individual neurons within a deep network, and this mapping is

learned using training features and corresponding knowledge of all classes. We230

then use this learned mapping to predict the neuron importance from domain

knowledge and optimize classification weights such that the resulting network

aligns with the predicted importance. The explanation of the entire learning

and prediction processes are illustrated in Fig. 4. Concretely, the processed can

be explained in the following three steps,235
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Table 1: Summarization of the four popular datasets used in our experiments, ‘#’ means

“number of”.

Dataset # classes(S/U) # images # train seen # test seen # train unseen # test unseen

SUN 645/72 14,340 10,320 2,580 720 720

CUB 150/50 11,788 7,057 1,764 1,483 1,484

AWA 40/10 30,475 19,832 4,958 2,842 2,843

aPY 20/12 15,339 5,932 1,483 3,962 3,962

1) Estimating the importance of individual neuron at a fixed layer w.r.t. the

decisions made by the network. For a given input, the importance of every

neuron in the network can be computed for a given instance, including a

seen sample and its corresponding class or an unseen sample and all the

unseen classes, via a single backward pass, which is shown as the inversed240

dashed color bold lines in Fig. 4.

2) Learning a mapping between domain knowledge and these neuron impor-

tance. As neuron importance is gradient based, we penalize errors in the

predicted importance based on Eq. 7, thus for an attribute of a seen class

or a series of attributes of unseen classes, the alignment of interpretable245

attributes with individual neuron, shown in the left-bottom corner of Fig.

4, can be achieved.

3) Computing classifier with respect to predicted neuron importance. Based

on domain knowledge, we can predict which neuron should matter in the

final classification decision. We can then obtain network weights such250

that the neurons predicted to matter actually do contribute to the final

decision. In this way, we can connect the description of a category to

weights of a classifier that can predict this category at test time.

4. Experiments

In this section, we first provide a brief introduction of the employed datasets255

in our experiments. Then, we give the experimental paradigm of how to split
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the unlabeled unseen data for training and test, and show the obtained results

on both GZSL and ZSL following the proposed splits. Finally, we analyze the

impact of the hyper-parameters α, β and batch size, and also demonstrate the

results of some ablation study.260

4.1. Datasets and Settings

4.1.1. Datasets

In our experiment, we evaluate our DTN on four datasets SUN [29], CUB

[36], AWA [10], and aPY [19], which are also used by other state-of-the-art ZSL

methods. The datasets are summarized in Tab. 1 and described as follows,265

(1) SUN (SUN attributes) SUN is a fine-grained and medium-sized

dataset, which contains 14,340 images from 717 types of scene. Among the total

number of 717 classes, 1,440 samples of 72 classes are used as unseen testing

data, and the left 645 classes are divided into two parts, including 10,320 seen

training samples and 2,580 seen testing samples.270

(2) CUB (Caltech-UCSD-Birds 200-2011) CUB is also a fine-grained

and medium-sized dataset, which is composed with 11,788 images from 200

different categories of birds. In our experiments, 50 of the total 200 classes are

set as the unseen training set, including 2,967 images, and the remains are set

as the seen training set, which contains 7,057 seen training images and 1,764275

seen testing images.

(3) AWA (Animals with Attributes) AWA is a coarse-grained and

medium-scale dataset, which contains 30,475 images coming from 50 categories.

The literature [38] proposed a split strategy that 40 classes are used for training,

in which 19,832 images are set as seen train set and 4,958 images are set as seen280

test set, and 10 left classes of 5,685 images are used for testing, we also follow

this setting.

(4) aPY (Attribute Pascal and Yahoo) aPY is a coarse-grained and

small-scale dataset, which has 15,339 image instances from 32 classes. Among

all the 32 classes, 20 Pascal classes of 7,415 images are utilised for training and285

the left 12 Yahoo classes are utilised for testing in our experiments. For the
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Table 2: The optimal hyper-parameters for GZSL on four datasets with cross-validation.

Param SUN CUB AWA aPY

α 200 10 0.5 1

β 5 5 0.005 0.001

purpose of GZSL, the 20 Pascal classes are also divided into seen training set of

5,932 images and seen test set of 1,483 images.

The training set and the testing set are disjoint in ZSL, meaning that the

samples belong to unseen classes do not have any supervised information. How-290

ever, the conventional split [19] contains many classes that appear in the Ima-

geNet [9], which was used for training the deep feature extraction model. Con-

cretely, there are 7 aPY, 6 AWA, 1 CUB and 6 SUN test classes appearing in

the ImageNet, which breaks the rules of disjoint of training and testing sets.

For fairly comparison, we choose to utilize the split strategy proposed by [38],295

which guarantees that there is no duplicate between test class and ImageNet.

Besides, to avoid the assumption problem existed in transductive GZSL, we

further randomly split the unseen dataset into two equivalent parts for training

and test respectively, which can be seen in Tab. 1.

4.1.2. Settings300

We strictly evaluate our methods using standard class-level attributes pro-

vided by [38]. In order to make a fair comparison with other methods, we simply

replace the output of the deep network φ(·) with the 2048 dimensional visual

features extracted by the pre-trained ResNet-101 from [38]. These features are

also used in the compared methods in the following experiments. The nonlinear305

projection ψ(·) from feature space to attribute space is two stacked full connec-

tion layers with 2048 → 2048 → da dimensions, where, da is the dimension of

attribute vector. During training, the batch size is set to 200, learning rate is

set to 1×10−5, and iteration number is selected as 5×104. We utilize the cross

validation to find the optimal parameters of α and β. We hereby compare the310

difference of ZSL cross-validation to conventional machine learning approaches.
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Compared to inner-splits of training samples within each class, ZSL problem

requires inter-splits by in turn regarding part of seen classes as unseen, for ex-

ample, 20% of the seen classes are selected as the validational unseen classes in

our experiments. The selected optimal α and β on training data are shown in315

Tab. 2 for both GZSL and ZSL. It should be noted that the parameters in Tab.

2 may not be the most suitable for the test set, because the labels of test data

are strictly inaccessible during training.

Table 3: Results of GZSL on four popular datasets (CMT*: CMT with novelty detection).

Method
SUN CUB AWA aPY

ts tr H ts tr H ts tr H ts tr H

DAP 4.2 25.1 7.2 1.7 67.9 3.3 0.0 88.7 0.0 4.8 78.3 9.0

CONSE 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.0 91.2 0.0

CMT* 8.7 28.0 13.3 4.7 60.1 8.7 8.4 86.9 15.3 10.9 74.2 19.0

SSE 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 0.2 78.9 0.4

LATEM 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 0.1 73.0 0.2

ALE 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 4.6 73.7 8.7

SJE 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 3.7 55.7 6.9

ESZSL 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 2.4 70.1 4.6

SYNC 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 7.4 66.3 13.3

SAE 17.1 28.1 21.3 17.4 50.7 25.9 11.0 83.8 19.5 6.7 59.6 12.1

GFZSL-Trans 5.9 40.7 10.3 1.8 52.9 3.4 26.8 79.3 40.1 18.0 85.1 29.8

QFSL 20.8 39.2 27.2 38.3 66.4 48.6 48.4 89.3 62.5 7.5 86.2 13.8

DTN 35.8 38.7 37.2 42.6 66.0 51.8 54.8 88.5 67.7 37.4 87.9 52.5

4.2. Comparison with state-of-the-art methods

In the conventional evaluation methods, such as SSE [42] and SAE [18], ZSL320

accuracy is often calculated by averaging on all the test images. This operation

has potential to give rise to the bad circumstance that high performance on

densely populated classes is encouraged, e.g., on aPY, the category ‘person’,

whose number accounts for 64% of all the total unseen samples. However, our

target is to achieve higher performance on all classes, even in sparsely populated325

classes. Hence, we choose to use the mean accuracy of each class [38], which
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can be described as following,

accS =
1

|S|

|S|∑
c=1

# correct predictions in c

# samples in c
, (14)

where, |S| is the number of test classes S. In conventional ZSL, we set S = Z,

while on GZSL, we set S = Y ∪Z.

To balance the seen test and unseen test, we employ the harmonic accuracy

computed from training and testing accuracy that introduced in [38] instead of

the arithmetic mean in GZSL.

H =
2× acctr × accts
acctr + accts

, (15)

where, acctr and accts are accuracy of test seen features and test unseen features330

respectively on all classes, both are computed using Eq. 14.

We compare our algorithm with 12 recently proposed inductive and trans-

ductive methods. The inductive methods include DAP [19], CONSE [28], CMT

[32], SSE [42], LATEM [37], ALE [1], SJE [2], ESZSL [30], SYNC [3], and SAE

[18], the transductive methods include GFZSL-Trans [34] and QFSL [33], and335

all the results are recorded in Tab. 3, in which SAE, GFZSL-Trans and QFSL

are implemented by us according to the algorithms described in their original

papers, and the others are directly cited from [38]. Since the splits of the unseen

dataset are conducted randomly, the results of transductive methods in Tab. 3

are the average values of 10 executions.340

From Tab. 3, we can discover that our DTN can outperform all the state-

of-the-art methods on both ts and H. Some inductive methods have higher

tr, because these methods focus on the seen classes and do not concern the

unseen classes, i.e., they have very low ts. Our DTN can not only perform the

best on ts, but also achieve high level on tr, which finally leads to the best345

harmonic accuracies. For H, our DTN can surpass the best method at least

3.2%, particularly, 10% on SUN and 22.7% on aPY. QFSL is the most similar

method as our DTN, but lacking of the item that constrains the single maximum

of 1 among all the unseen class probabilities. Its performance is much worse
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Table 4: Results of test accuracy of ZSL on four popular datasets.

Method SUN CUB AWA aPY

DAP 39:9 40.0 44.1 33.8

CONSE 38.8 34.3 45.6 26.9

CMT 39:9 34.6 39.5 28.0

SSE 51:5 43.9 60.1 34.0

LATEM 55.3 49.3 55.1 35.2

ALE 58.1 54.9 59.9 39.7

SJE 53.7 53.9 65.6 32.9

ESZSL 54.5 53.9 58.2 38.3

SYNC 56.3 55.6 54.0 23.9

SAE 53.4 42.0 58.1 32.9

GFZSL-Trans 59.4 45.2 74.7 35.9

QFSL 63.7 56.2 60.4 8.6

DTN 65.6 61.1 69.0 41.5

than us on ts and H, especially on the datasets SUN and aPY.350

Since most of the existing approaches focus on conventional ZSL, we also

make this comparison and record the results in Tab. 4. The results show that

our DTN can outperform almost all the other state-of-the-art methods except

the GFZSL-Trans. However, it can win our method only on AWA at about

5.7%, but we should notice that it performs much worse on other three datasets.355

Furthermore, if we look back to the task of GZSL, and we could find the results

in Tab. 3 show that GFZSL-Trans only performs well on ZSL, and achieves bad

performance on GZSL, especially on the fine-grained dataset CUB.

4.3. Analysis of hyper-parameters

α and β: Although α and β are learned by employing cross-validation, we360

still need to analyze the performances of our DTN can be influenced under

different α and β. We choose β = {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5} for all

the four datasets, α = {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50} for CUB, AWA and aPY,
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Figure 5: Accuracy of ZSL and H of GZSL with different coefficients.

and α = {0.5, 1, 2, 5, 10, 20, 50, 100, 200} for SUN to test the accuracies of both

ZSL and GZSL. We draw 3D bar figures in Fig. 5, from which the following365

phenomenons can be observed,

1) On the dataset SUN for ZSL, bigger β can lead to higher accuracy, while

α is not very important to the final result. However, for H of GZSL, both α

and β contribute to the final performance, and higher α or higher β, either

can cause better results. Because SUN has 645 seen class, much more than 72370

unseen classes, the unseen classes learning should be strengthened greatly to

address the unbalance between seen classes and unseen classes.

2) The performances on CUB are similar as that on SUN under different α

or β. But for H of GZSL, we can found that when β = 5, DTN achieves the

best performance no matter what α is. In addition, higher α with β fixed, we375

can also obtain better H except β = 5. Since CUB is a fine-grained dataset,

which has 150 seen classes and 50 unseen classes, it should reinforce the training

on unseen classes too.

3) There are same phenomenons for both ZSL and H of GZSL under different

different α and β on AWA, i.e., from α = 5 and β = 1, the higher the coefficients380
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are, the lower the accuracies are. These phenomenons imply two conclusions:

firstly, AWA has well defined attributes, which can achieve well classification

model with only a few unseen data included in training, secondly, since AWA

is a coarse grained dataset, and only has 10 unseen classes, it will lead to bad

projection on unseen data if we strengthen unseen classes training while pay385

less attention to seen classes.

4) We obtain the best performances at α = 1 and β = 0.001 for both ZSL

and H on aPY. α = 1 implies it is the best balancing coefficient for the seen

and unseen classes, β = 0.001 reveals L4 is not the dominant item for aPY,

and larger β will cause performance degradation. APY has 20 seen classes and390

12 unseen classes, approximately equivalent training data and testing data, and

large intraclass variance. Therefore, strong constraint is needed to correctly

assign the unseen data to its corresponding class.
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Figure 6: Accuracy of ZSL and H of GZSL with different batch sizes on four datasets.

Effect of different batch size: From Eq. 5, we can find the loss item

L3 has relationship with the batch size, concretely, pij is computed within a395

batch. Therefore, whether the batch size plays an important role in the final

performance should be analyzed. We compute both ZSL and H on all the four

datasets with different batch sizes 50, 100, 150, 200, 250, 300, 350, and illustrate

the results in Fig. 6. From this figure, we can discover all the accuracies are
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nearly same on one dataset no matter for ZSL or H of GZSL, i.e., different400

batch size does not make sense to the final performance.
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Figure 7: Accuracy of ZSL and H of GZSL with or without L4/L3 on four datasets.

4.4. Ablation study

Difference between L3 and L4: L3 is proposed to optimize the assignment

for the unlabeled data of unseen classes. Each sample should be assigned only

one class with high probability to be maximized as 1, and other class probabili-405

ties should be minimized to 0. L4 is utilized to constrain the summation of the

probabilities of unseen class should be equal to 1. From the objectives of L3

and L4, we can found that L3 insinuates part of the function of L4, thus, we

analyzes whether L4 is necessary, and draw the accuracies of DTN with L4 and
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without L4 in Fig. 7(a). From Fig. 7(a), we can observe that the performance410

will degrade without L4 for both ZSL and H on all four datasets. Because L3

only constrain the probabilities should approximate to 1 or 0, but it cannot

guarantee there should be at least one probability equals 1. Besides, different

coefficients indicates different importances of L4, which also contributes to the

final performance. In addition, we also conduct experiments by removing L3 to415

show how does the DTN perform without L3, and the results are recorded in

Fig. 7(b). Because L3 is the core part of DTN, and it encourages only one class

should be maximized and others should be minimized, while L4 only constrains

the summation of all probabilities to be 1 and cannot guarantee only one be

maximized, thus the performance without L3 degrades dramatically on both ts420

and H as shown in Fig. 7(b).
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Figure 8: Accuracy of ZSL and H of GZSL with different loss items.

Separated effects of L2, L3 and L4: To show the effect of each item in

Eq. 7, in this paragraph we conduct experiments on each item of L2, L3, L4.

Since L1 is the only item for training the labeled seen data, it is indispensable

that it should appear in each experiment. The experiments include L1 + L2,425

L1 + L3, L1 + L4, L1 + L2 + L3 + L4, and the results are shown in Fig. 8. In

this figure, it can be clearly discovered that all the items together can achieve

the best performance in each dataset. Besides, L1 + L4 can outperform other

single item (+L1) losses except that on aPY, which indicates that L4 plays a
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more important role than other items for training the unlabeled unseen data430

in most circumstances. L1 + L2 obtains the worst performance among them,

this phenomenon is caused by that L2 does not make constraint for the unseen

classes, which finally leads to bad performance on these classes.

Table 5: The results of our DTN with Word2Vec embeddings of class names.

Datasets ZSL
GZSL

ts tr H

SUN 28.8 8.2 35.4 13.4

CUB 9.7 6.4 51.9 11.4

AWA 38.8 28.2 90.2 43.0

aPY 23.4 20.9 88.4 33.8

Effect with Word2Vec embeddings: In the previous experiments, the

results recorded in Tab. 3 and Tab. 4 are generated with expert-annotated435

attributes. However, there are also many other semantic attributes, such as

Word2Vec embeddings of class names, thus in this experiment we replace the

expert-annotated attributes with Word2Vec embeddings, which are trained with

the corpus of “Google News”, and the generated dimension is 300. The exper-

imental results are recorded in Tab. 5, from which it can be clearly discovered440

that the accuracy of both ZSL and H has dropped significantly. This phe-

nomenon is mainly caused by that the expert-annotated attributes are appear-

ance related, such as color, shape and texture, while the Word2Vec embeddings

are generated from only the relationship of textual information.

5. Conclusion and future work445

In this paper, we proposed a novel deep transductive network for Generalized

Zero Shot Learning. The proposed network utilizes both labeled seen data and

unlabeled unseen data for training, and defines a new objective that employs

a KL Divergence to encourage the certainty of classification with the assistant

of an auxiliary target distribution, which can maximize only one probability450
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of unseen classes to be 1 and minimize others to be 0. Furthermore, to avoid

the pointless ascription assumption of unseen data during test on transductive

GZSL, we also proposed an experimental paradigm that we divide the unseen

data into two equivalent parts for training and testing respectively. Based on

this paradigm, we tested our DTN on four popular datasets, and the results455

show that our method can outperform state-of-the-art methods in most circum-

stances. Although our DTN can achieve great success in transductive GZSL

setting, it still cannot process the totally open-set image classification task, be-

cause both our DTN and conventional ZSL methods focus on a fixed size of

classes. Therefore, the future work for us is to find a method to extend DTN460

to class-incremental learning.
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