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Abstract

Defocus map estimation (DME) is very useful in many computer vision applications and has drawn much

attention in recent years. Edge-based DME methods can generate sharp defocus discontinuities but usually

su↵er from textures of the input image. Region-based methods are free of textures but cannot catch the

defocus discontinuities very well. In this paper, we propose a DME method combining edge-based and

region-based methods together to keep their respective advantages while eliminating the shortcomings. The

combination is achieved via regression tree fields (RTF). In an RTF, the input feature and the linear basis

are of vital importance. For our RTF, they are obtained as follows. (i) Two orthogonal gradient operators

with the corresponding subsets of Gabor filters are employed in localized 2D frequency analysis to generate

accurate likelihood, and the first K highest local maximums of likelihood are sent to an RTF as input feature.

(ii) At the same time, the input image is processed by three edge-based methods and the results serve as the

linear basis of RTF. The experiments demonstrate that the proposed method outperforms state-of-the-art

DME methods. Moreover, the proposed method can be readily applied to defocused image deblurring and

defocus blur detection.
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1. Introduction

Defocus blur is very common in images of three-dimensional scenes, especially when the aperture of the

camera or the depth range of the scene is large. The defocus amount is often spatially-varying as the depth of

the scene usually varies spatially [1]. Therefore, the defocus amount can be used as a cue of depth estimation

[2]. Moreover, it can also apply to many other computer vision tasks, such as defocus magnification [3],5

image quality assessment [4], image focus editing [5], defocused image deblurring [6], saliency detection [7],
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Figure 1: Framework and an example of the proposed method.

multi-focus image fusion [8], foreground/background segmentation [9], and extension of depth of field [10].

Consequently, defocus map estimation (DME), a technique to estimate the defocus blur amount at each

pixel of the input RGB image, is important and has attracted much attention in the past decades.

Early DME methods usually require at least two images captured with di↵erent camera settings [11–13].10

This implicitly assumes the scene to be static to avoid parallax. Early single image DME methods are usually

based on some specially-designed hardware, such as light field camera [14], coded aperture [15] and active

illumination [16]. Though they can get good estimations, they employ some specially-designed hardware,

which induces inconvenience for the majority of people. These shortcomings limit their applications.

In this paper, the goal is to develop a method for DME from a single image captured with conventional15

cameras. The framework and an example of the proposed method can be found in Figure 1. The first K

highest local maximums of the likelihood function L (r) with respect to defocus amount r are first obtained

through localized 2D frequency analysis and then sent to a regression tree fields (RTF) [17] as input feature.

At the same time, the input image is processed by three edge-based methods and the results serve as linear

basis of the RTF. Finally, the final defocus map is predicted via RTF.20

The motivations and contributions of this paper are summarized as follows. (i) In existing localized

2D frequency analysis [18], a gradient operator and a set of Gabor filters with all possible orientations are

employed. However, if the angle between the orientations of the gradient operator and the Gabor filter

is near to 90�, the filtering response will approximate to 0. Consequently, such Gabor filters can hardly

provide any useful information. Therefore, to extract information as e↵ectively as possible and obtain more25

accurate likelihood, two orthogonal gradient operators and the corresponding subsets of Gabor filters are

employed for localized 2D frequency analysis in this paper. (ii) Based on the observation that the first

several highest local maximums of likelihood can catch the true defocus amount with a high probability, in

this paper, the first K highest local maximums of likelihood are extracted as the input feature of RTF. This

feature can catch and present all the essential information with a low dimension. (iii) The extracted feature30
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is region-based feature and usually cannot catch defocus discontinuities very well. Fortunately, edge-based

methods can catch the discontinuities well. Therefore, in this paper, three typical edge-based methods are

integrated into the framework by using them as the linear basis of RTF. Consequently, the proposed method

is not only free from the influence of textures but also can catch defocus discontinuities reasonably well.

The rest of the paper is organized as follows. Section 2 gives a brief review of the related work. Section35

3 describes the proposed method in detail. The experiments and discussions are shown in Section 4. Section

5 demonstrates that the proposed method can be readily applied to defocused image deblurring and defocus

blur detection. Finally the paper is concluded in Section 6.

2. Related work

According to the way of analyzing defocus information, existing methods for DME from a single image40

captured with conventional cameras can be sorted into two categories, i.e., edge-based methods and region-

based methods.

2.1. Edge-based methods

Defocused edges contain the information of defocus amount and there are many edges in natural images.

Therefore, it is a natural cue to estimate defocus amount from edges. In [3], a two-step framework for DME45

is proposed: firstly, the defocus amount is estimated at edge pixels to get a sparse defocus map; then, the

full defocus map is obtained via an interpolation guided by the input image. Though the defocus map might

su↵er from textures in the input images, this is the first approach to obtaining full defocus map and the

framework has been widely used in other edge-based methods since then.

In [5], the position of edge points is analyzed at the sub-pixel level and the full defocus map is interpolated50

from the sparse defocus map at edge points in the same way as [3]. It can get better estimations at edge

points than [3], however, it also su↵ers from the influence of textures. The authors of [19] propose to use

local contrast to measure defocus amount at edge points and employ a graph-cut algorithm to get the full

defocus map, which usually cannot catch the defocus discontinuities very well. In [20], the defocus amount

is estimated by analyzing the ratio of the variances of the first- and second- order gradients. The algorithm55

is very fast, however, it can only get correct estimations at edge regions.

In [21], the ratio of the gradients of original and reblurred images at edge points is analyzed to obtain

a sparse defocus map, and the full defocus map is interpolated from the sparse map by using Laplacian

matting [22] with the input image as guidance. This is a very typical edge-based method and many other

latter methods borrow its idea. The authors of [23] prove that the interpolation can be viewed as an60

↵-matting procedure, and use guided image filter [24] to speed up the interpolation. In [25], spectrum

contrast is calculated to measure defocus amount and the relationship between them is established to
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transform spectrum contrast to defocus amount. The authors of [26] adaptively select the strength of the

reblurred kernel used in [21]. In [27], non-isolated edges are preprocessed before reblurring to eliminate their

undesirable influence. The authors of [28] take the local image patch near an edge point as a matrix and65

use its rank to measure and estimate the defocus amount. After obtaining sparse defocus map, the above

four methods [25–28] employ Laplacian matting guided by the input image to generate the full defocus map.

Because textures in the guided image are often transferred into the target image [22, 24], the full defocus

map of these methods [21, 23, 25–28] usually su↵er from the influence of textures of input image.

To address this problem, some studies are conducted. The authors of [29] use KNN matting [30] for70

interpolation and introduce a post-processing, where firstly the input image is over-segmented into super

pixels and then the defocus amount is averaged within the super pixel. In [31], the input image is also

over-segmented into super pixels and defocus amount is estimated for each super pixel using transductive

inference. In our previous work [32], structure-texture decomposition is employed to eliminate textures in

the guided image. The authors of [33] unify multi-scale deep and hand-crafted features together to estimate75

defocus amount at edge points and employ Laplacian matting guided by a smooth version of the input

image to obtain the full defocus map. These four methods [29, 31–33] can ease the problem to some extent,

however, the influence of textures cannot be perfectly eliminated. The authors of [34] propose to use the

domain transfer filter (an edge-aware smoothing filter) to avoid textures in the guided image. The estimated

defocus map is smooth, however, it may su↵er from numerical instability since it uses the division of the80

filtering results of the sparse defocus map and the edge map as the final defocus map.

2.2. Region-based methods

To avoid the propagation procedure in edge-based methods, the region-based methods try to directly

estimate the defocus amount for each image patch. In [35], a circular Radon transform is designed and the

defocus amount is estimated in the frequency domain for spatially-invariant defocus blur. In [36], a general85

regression neural network is proposed to first obtain the blur type and then estimate its parameters. The

method is e↵ective, however, it can only handle spatially-invariant defocus blur.

In [37], a sparsity feature, i.e., the sparsity of the local image patch on a defocused patch dictionary, is

proposed to measure defocus amount. Their method can only get accurate estimation for small defocus areas

since the relationship between the sparsity feature and the defocus amount is not reliable when the defocus90

amount is large. The authors of [38] use log averaged spectrum residual to obtain a coarse defocus map and

refine it iteratively by exploiting the relevance of similar neighbor regions. Since the log averaged spectrum

residual is insensitive to defocus amount varying when the defocus amount is large, their defocus map is

not reliable for high-level defocus regions. In [39], a novel blur feature based on high frequency of multi-

scale local discrete cosine transform is proposed to measure blur amount. The authors of [40] proposes a95

blur feature based on multi-scale singular value decomposition to measure blur amount. These two methods
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[39, 40] can only tell whether a local patch is blurry. Recently, as deep learning can get awesome performance

on many computer vision tasks, some researchers try to use it for DME. However, since there is not enough

RGB-defocus amount pairs, the deep learning based DME is not truly investigated. Fortunately, benefitting

from the CUHK blur detection dataset [41], there are several trials using deep learning for a relaxed problem100

of DME, i.e., defocus blur detection. The authors of [42] propose an end-to-end defocus detection method

based on a multi-stream bottom-top-bottom fully convolutional network. In [43], a fully convolutional neural

network with pyramid pooling and boundary refinement layers is employed to generate defocus blur map. In

[44], locally relevant features at the super-pixel level are learnt by a multiple convolutional neural networks.

Since the training dataset only has two or three levels of blur amount, there are also mainly two [42, 44] or105

three [43] levels in the blur map.

A framework of localized 2D frequency analysis for spatially-varying blur is first proposed in [18]. A set

of orthogonal filters is employed to derive the likelihood for certain blur kernels. Based on this framework,

the authors of [18] use rectangular filter windows to estimate motion blur. In [9], Gabor filters, whose

filter windows are Gaussian windows, are employed to estimate defocus blur and the authors find that the110

true defocus radius r is usually caught by the first several local maximums of the likelihood. Based on this

discovery, they took the local maximums as coarse defocus maps and developed a coherent labeling procedure

to refine them. In [10], the likelihoods for a predefined candidate set of blur kernels were calculated and

sorted from high to low. Then the order of the candidates was sent to an RTF as input feature to obtain the

final defocus map. They also established a small realistic defocus dataset in the sense of image deblurring115

with the help of a light field camera [14]. Usually, the defocus map estimated via localized frequency

analysis tends to enlarge the slightly defocused area and therefore the discontinuity of the defocus map does

not always coincide with the real defocus discontinuity.

2.3. Summary

The performance of edge-based methods or region-based methods is good for di↵erent parts of the input120

image: the former performs well for edge regions and defocus discontinuities, while the latter performs well

for regions where there are no defocus discontinuities. They are complementary to each other. Therefore,

we propose to combine them together, in order to keep their respective advantages while eliminating the

shortcomings. In contrast to deep learning-based methods, there are two advantages for the proposed

method: firstly, the proposed method is much more interpretable than deep learning-based methods; and125

secondly, unlike deep learning-based methods, the proposed method does not need a large number of training

samples to train the model.
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3. Proposed method

The framework of the proposed method is shown in Figure 1. The defocus map is obtained via an RTF,

of which there are two very important elements: the input feature and the linear basis. The input image is130

processed via localized 2D frequency analysis to obtain the likelihood function L (r) with respect to defocus

amount r, and then the first K highest local maximums of the likelihood are taken as the input feature of

RTF. At the same time, the estimations of some edge-based DME methods are calculated and serve as the

linear basis of RTF. The details are described as follows.

3.1. Localized 2D frequency analysis for likelihood135

Frequency spectrum of the input image is a natural cue to estimate the defocus amount. Localized 2D

frequency in [18] and [9] can be used to estimate the likelihood that a small image patch is blurred with a

candidate blur kernel. However, in the derivation of their analysis, the orientations of the gradient operator

and the frequency analysis filters are not fully considered. To understand this, in this subsection we start

with the localized 2D frequency analysis in [18] and [9].140

The assumptions for localized 2D frequency analysis are listed as follows. (i) The point spread function

(PSF) of the camera can be parameterized by defocus amount r as h(r)[n], where n is the location of image

pixel. (ii) The captured image y[n] can be viewed as the convolution of the latent all-sharp image x[n] and

PSF, corrupted by additive noise z[n], i.e., y[n] = x[n]⌦h(rn)[n]+ z[n]. (iii) In any small local window w[n]

of size N ⇥ N , the defocus amount rn keeps the same. (iv) In any local window w[n], the gradient of the145

latent image xr[n] is independent and identically distributed (i.i.d.) following a Gaussian distribution, i.e.,

xr[n]
i.i.d.⇠ N (0, sr), where N (0, sr) is the isotropic zero-mean Gaussian distribution whose variance is sr.

(v) For the whole image, the additive noise z[n] is Gaussian white, i.e., z[n]
i.i.d.⇠ N (0,�2

z).

The localized 2D frequency analysis is conducted by applying a set of Gabor filters {fi [n]}i to the

gradient of the input image yr[n]. In [18], it is proven that the filtering results {yri [n]}i are jointly

Gaussian distributed and that each dimension is uncorrelated with the rest dimensions. Therefore, the joint

distribution of the filtering results can be written as the production of the marginal distributions:

p
�
{yri [n]}i

��h(r), sr
�
=
Y

i

N
�
yri [n]

��0, sr�2
hi + �2

zi

�
, (1)

where sr is the variance of the gradient of the all-sharp image (which can be estimated via fixed point

iteration as [9, 18] did), �2
hi =

P
n |(h (r)⌦ fi) [n]|2 and �2

zi = �2
z

P
n |(r⌦ fi) [n]|2 denote the blur spectrum

and the noise spectrum (�2
z is the variance of noise and r is the gradient filter), respectively. Then the log
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likelihood Lr (r) can be calculated from the following equation:

Lr (r) = ln p
�
{yri }i

��h(r), sr
�

=
X

i

 
�1

2
ln
�
2⇡
�
sr�2

hi + �2
zi

��
�

��yri
��2

2 (sr�2
hi + �2

zi)

!
. (2)

Here, Lr (r) and yri vary over pixel location n and are abbreviated for convenience and simplification.

Now let us analyze each term in the likelihood. The first term in Equation (2) comes from the nor-150

malization factor of the Gaussian distribution and the second term comes from the shape factor. For a

Gaussian distribution, usually, the shape factor contains much more information than the normalization

factor. Consequently, the second term can often provide more information than the first term. Please note

that �2
hi and �2

zi are independent of the input image y[n]. Since di↵erent image patches can have the same

sr, the first term can only provide very limited information to the likelihood. In contrast, yri [n] is highly155

dependent on image content and usually di↵ers from patch to patch. Therefore, the information contributed

by applying filter fi[n] to image y[n] is mainly provided by the second term.

In the derivation of [9], the authors use the gradient operator of 0� and a Gabor filter set with all possible

orientations. However, the response would be less meaningful and unreliable when the orientations of the

gradient operator and the Gabor filter are orthogonal. Please note the fact that for any image patch, if160

it is filtered by two filters with orthogonal orientations, the response will be very small. Mathematically,

yr0�
i [n] ! 0 when ori (fi) ! 90�. Consequently, the second term of (2) will go to 0 when ori (fi) ! 90�,

which means that the filters whose orientations are close to 90� can hardly provide any useful information

in their case. Therefore, in order to avoid small responses, we propose to use the Gabor filters whose

orientations are close to the gradient operator r0� . However, as a result, the filters whose orientations are165

close to 90� are not used.

To make full use of the Gabor filter set, we employ two gradient operators with orthogonal orientations,

i.e., r0� and r90� . To avoid small filter responses, we only employ the Gabor filters whose orientations are

in [0�, 45�] [ [135�, 180�] for gradient r0� and the filters whose orientations are in [45�, 135�] for gradient

r90� . It can be easily verified that for r0� and r90� , the frequency spectrums are uncorrelated. Therefore,

the joint distribution of {yr0�
i [n]}i and {yr90�

i [n]}i can be written as the production of the two marginal

distributions. Consequently, the (log) likelihood can be written as follows:

L (r) = Lr0� (r) + Lr90� (r) . (3)

Therefore, the likelihood for each orientation can be calculated separately and summed up to obtain the

final likelihood. The whole workflow is illustrated in Figure 2. Now the likelihood that an image patch is

defocused by the blur kernel h(r) is obtained. Then the defocus amount r can be directly estimated via

maximum likelihood (ML).170
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Figure 2: Workflow of the localized 2D frequency analysis.

(a) (b)

(c) (d) (e)

(f)

(g) (h) (i)

Figure 3: Example of using two orthogonal gradients and the corresponding subsets of Gabor filters: gradually varying defocus

blur. (a) Input image. (b) Ground truth defocus map. (c) ML result, using r0� with all Gabor filters. (d) ML result, using

r0� with the selected subset of Gabor filters. (e) ML result, using r0� and r90� with the corresponding subsets of Gabor

filters. (f) Likelihood calculated at pixel (166,120), which is the center of the black ellipse in (a-e). (g) Detailed likelihood

for the selected subset at pixel (166,120). (h) Detailed likelihood for the remaining subset at pixel (166,120). (i) Likelihood

calculated at pixel (161,94), which is the center of the red ellipse in (a-e). For (f) and (i), the first 3 highest local maximums

are marked as pentagram(I), square(⇤) and circle(�), respectively. See the text for details.

An example demonstrating the advantage of using two orthogonal gradients with the corresponding

subsets of Gabor filters is shown in Figure 3, where the input image and the ground truth defocus map are

given in (a) and (b) respectively. In this example, the image is distorted by gradually varying defocus blur.

We directly conduct ML on the likelihoods estimated by (i) using r0� with all Gabor filters, (ii) using r0�

with the corresponding selected subset of Gabor filters, and (iii) using r0� and r90� with the corresponding175

subsets of Gabor filters. The estimated defocus maps are shown in (c), (d) and (e) respectively. It can be
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(a) (b)

(c) (d) (e)

(f)

(g) (h) (i)

Figure 4: Example of using two orthogonal gradients and the corresponding subsets of Gabor filters: uniform defocus blur. (a)

Input image. (b) Ground truth defocus map. (c) ML result, using r0� with all Gabor filters. (d) ML result, using r0� with

the selected subset of Gabor filters. (e) ML result, using r0� and r90� with the corresponding subsets of Gabor filters. (f)

Likelihood calculated at pixel (69,178), which is the center of the black ellipse in (a-e). (g) Detailed likelihood for the selected

subset at pixel (69,178). (h) Detailed likelihood for the remaining subset at pixel (69,178). (i) Likelihood calculated at pixel

(171,87), which is the center of the red ellipse in (a-e). For (f) and (i), the first 3 highest local maximums are marked as

pentagram(I), square(⇤) and circle(�), respectively.

easily found that using r0� and r90� with the corresponding subsets of Gabor filters can obtain the most

accurate estimation. Figure 3 (f) gives the detailed likelihood of the pixel at the center of the black ellipse

in (a-e), where using the corresponding selected subset of Gabor filters can get better estimation than using

all Gabor filters. The first three local maximums of the likelihood are marked as pentagram(I), square(⇤)180

and circle(�), respectively. As can be seen, the first local maximum when using the selected subset is close

to the true defocus amount r⇤, while when using all filters the first local maximum is extremely larger than

r⇤. To appreciate this, we plot the detailed likelihoods for the selected and remaining subsets, shown in (g)

and (h) respectively. It can be found that the dash-dot lines in (g) and (h) are quite similar. That is to say,

the likelihoods contributed by the first term of Equation (2) are very similar for the selected and remaining185

subsets (the di↵erence of the range is caused by the di↵erent number of filters in the subsets). In other

words, the first term can hardly provide any useful information. On the other hand, the dash line in (g)
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is far from 0 and fluctuates notably with r, meaning that the second term can provide useful information

for the selected subset. However, the dash line in (h) is very close to 0, meaning that the second term

cannot provide any useful information for the remaining subset. Therefore, for using all filters, the useful190

information provided by the selected subset can be concealed by the remaining subset. Now we can conclude

that using the selected subset filters can get more accurate likelihood because the remaining subset filters

can provide no useful information but undesirable noise. Figure 3 (i) shows the detailed likelihood of the

pixel at the center of the red ellipse in (a-e), where using r0� and r90� with the corresponding subsets of

Gabor filters can get better estimation than using only r0� . As can be seen, using two orientations can195

catch the true defocus amount r⇤ by the first local maximum (marked as pentagram(I)), while using one

orientation cannot catch r⇤ by any of the first three highest local maximums. The reason is: Lr0� (r) and

Lr90� (r) can provide complementary information, therefore, using r0� and r90� together can obtain more

accurate likelihood.

We also conduct demonstration experiments on images distorted by uniform defocus blur and piecewise200

uniform defocus blur. The results are shown in Figures 4 and 5. These experiments can also provide

similar conclusions to that for gradually varying defocus blur. These three experiments demonstrate that

the proposed two-orientation localized 2D frequency analysis is e↵ective and can obtain more accurate

likelihood than the original one-orientation localized 2D frequency analysis. As shown by Figures 3-5, the

ML estimations are insensitive to textures of the input image. This owes to the advantage of the region-based205

approach, i.e., using 2D localized frequency analysis to extract defocus information from defocused regions.

3.2. Likelihood feature

As demonstrated in the last subsection, the likelihood can be used to estimate the defocus map via ML

directly. However, due to noise and calculation errors, the second highest local maximum can surmount

the latent maximum, which is the maximum for ideal condition. Consequently, the ML estimation can be210

unreliable. Therefore, to obtain more accurate defocus map, we propose to extract a proper feature from

the likelihood and refine it with an RTF. It should be noted that the extracted feature will be insensitive

to textures of the input image since the likelihood is calculated in a region-based way, i.e., via 2D localized

frequency analysis.

Intuitively, the likelihood itself can be directly selected as the input feature. However, it contains too215

much redundant information to train the RTF. Further, the dimension is so high that the training of the

RTF will be too time-consuming. Moreover, the ranges of the likelihood are di↵erent for di↵erent images

and need to be normalized properly. Therefore, extracting a more expressive feature from the likelihood is

necessary.

A feature extracted by uniformly discrete sampling of likelihood is employed in [10]. Specifically, the order220

of the sampling points, which are sorted by their likelihoods from high to low, serves as the input feature.
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(a) (b)

(c) (d) (e)

(f)

(g) (h) (i)

Figure 5: Example of using two orthogonal gradients and the corresponding subsets of Gabor filters: piecewise uniform defocus

blur. (a) Input image. (b) Ground truth defocus map. (c) ML result, using r0� with all Gabor filters. (d) ML result, using

r0� with the selected subset of Gabor filters. (e) ML result, using r0� and r90� with the corresponding subsets of Gabor

filters. (f) Likelihood calculated at pixel (235,153), which is the center of the black ellipse in (a-e). (g) Detailed likelihood

for the selected subset at pixel (235,153). (h) Detailed likelihood for the remaining subset at pixel (235,153). (i) Likelihood

calculated at pixel (46,18), which is the center of the red ellipse in (a-e). For (f) and (i), the first 3 highest local maximums

are marked as pentagram(I), square(⇤) and circle(�), respectively.

However, since sampling points that are far from local maximums cannot provide any useful information, this

feature is also redundant and needs to be further refined. Therefore, to reduce the redundant information,

we take the first K highest local maximums instead of the order of sorted sampling points as the input

feature. The motivation is that the first several highest local maximums of likelihood can catch the true225

defocus amount with a high probability. This can reduce the feature dimension while catching all the

essential information. For each pixel, there will be K local maximums and thus the feature is a K-channel

feature. When there is not enough local maximums, the shortage is complemented via copying the lowest

local maximum.

We briefly justify the proposed feature by comparing it with the feature of [10] on three synthetically

defocused images, which are blurred by uniform defocus, gradually varying defocus and piecewise uniform

defocus with sharp discontinuities. Since the features are to be refined via RTF, we evaluate them in the
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(a) (b) (d) (e)

(f)

(g) (h)

(i)(c)

Figure 6: E↵ectiveness of the likelihood feature. (a) Input image blurred by uniform defocus. (b) Ground truth. (c) Mean

of the squared distance (MSD). (d) Input image blurred by gradually varying defocus. (e) Ground truth. (f) MSD. (g) Input

image blurred by piecewise uniform defocus with sharp discontinuities. (h) Ground truth. (i) MSD.

perspective of refinement. Therefore, the metric is selected as the mean of the squared distance (MSD) from

the feature fea[n] to the ground truth defocus amount r⇤[n]. Here, the distance is defined as

dism(fea[n], r
⇤[n]) = min

im
|fea(i)[n]� r⇤[n]|, (4)

where fea(i)[n] is the i-th channel of the extracted feature at pixel n, m is the number of the employed230

channels and | · | denotes the absolute value. After the distance is calculated at each pixel, the MSD can be

obtained as the average of the squared distances. The comparison results are shown in Figure 6, where the

input images are given in (a), (d) and (g), and the ground truth are provided in (b), (e) and (h). To show the

e↵ect of di↵erent choices of likelihood, we provide three versions of likelihood calculated by using r0� with

all Gabor filters, r0� with the selected subset of Gabor filters, and r0� and r90� with the corresponding235

subsets of Gabor filters, respectively. They are shown as blue long dash line, green short dash line, and cyan

solid line in Figure 6.

From (c), (f) and (i), it can be found that for all the four features the MSD decreases very slowly

when m is large. Therefore, the most proper dimension of the feature can be decided according to the

MSD curve. As can be seen, for the three local maximum based features, the one calculated by using two-240

orientation localized 2D frequency analysis can achieve the lowest MSD. This demonstrates again that the

two-orientation localized 2D frequency analysis is e↵ective and can obtain more accurate likelihood. The

MSD of the proposed feature decreases faster and is small enough in all the three cases when m = 5, while

for the feature of [10] m needs to be 7 to achieve the same MSD. That is to say, the proposed feature can

catch the essential information with a lower dimension. It should be pointed out that though the feature245
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(a) (b) (c) (d) (e) (f)

Figure 7: E↵ect of using edge-based methods as linear basis. (a) Input image. (b) Ground truth defocus map. (c) The first

channel of the proposed feature. (d) Defocus map estimated by [32]. (e) Refined defocus map via RTF without linear basis.

(f) Refined defocus map via RTF with linear basis.

of [10] can achieve lower MSD, it sacrifices the feature dimensionality for MSD. The possible lowest MSD

depends on the length of sampling interval: the shorter the interval, the lower the MSD. In the extreme

case where the sampling interval approximates to 0, the MSD will also approximate to 0. However, the

feature dimension will be infinity at the same time. Among the numerous channels of the feature, only a

few are e↵ective, since the rest channels are far from the true defocus amount. Therefore, the feature of [10]250

contains much redundant information and needs a higher dimension to catch essential information than the

proposed feature (the first K highest local maximums of likelihood calculated by two-orientation localized

2D frequency analysis).

Once extracted, the proposed feature can be directly sent to an RTF to obtain a defocus map.

3.3. Combination with edge-based methods via RTF255

As mentioned in Section 2, region-based methods cannot catch defocus discontinuities very well, while

edge-based methods can. The proposed feature in the last subsection is region-based and may possibly not

catch defocus discontinuities very well, see Figure 7 for example, where the input images and ground truth

are shown in (a) and (b) respectively. The first channel of the proposed feature is provided in Figure 7

(c): As can be seen, it cannot catch the blur discontinuity denoted by the red line. If sending the feature260

directly to an RTF, we can obtain a refined defocus map, as shown in Figure 7 (e). The refined map is much

better than the input feature, however, it still cannot catch the defocus discontinuity very well. Fortunately,

edge-based methods can catch the defocus discontinuity well, as shown in Figure 7 (d), where the result

of our previous work [32] is provided as an example. Therefore, to solve the aforementioned problem, we

propose to incorporate edge-based methods into our method by taking them as the linear basis of the RTF.265

Introduced by [17], RTF is a specially-designed Gaussian conditional random field to predict the label

image d (noted purposely to match the notation of a defocus map) of an input image y in a globally

consistent way. The energy function is defined as the sum of local potentials:

E (d|y) =
X

t

X

F2Ft

1

2
dT
FQt (yF )dF � dT

FWt (yF )bt (yF ). (5)
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Here t is the factor type and Ft is the set of all factors with type t. dF and yF denote the label image

and input image at pixels related to factor F , respectively. Qt (yF ) and Wt (yF ) are the parameters of

RTF, which are determined by the input image y in a regression tree manner. bt (yF ) is the linear basis.

The only hyper parameter to be tuned is the maximum depth of the regression trees, which makes the RTF

non-parametric. Once the global energy function is calculated, the predicted defocus map d⇤ can be written

as

d⇤ = [Q(y)]�1 l(y), (6)

where Q(y) =
P

t

P
F2Ft

Qt (yF ) and l(y) =
P

t

P
F2Ft

Wt (yF )bt (yF ) are the quadratic matrix and the

linear term, respectively. Since Q(y) is a symmetric positive definite matrix, the inference can be solved via

conjugate gradient very fast once Q(y) and l(y) are obtained.

Let us now focus on the linear basis bt(yF ) of RTF. As demonstrated by the application of image

denoising in [45], using linear basis can integrate the complementary information from the basis into the270

input feature, to obtain better results. The simplest choice for linear basis is a 1 vector whose elements are

1, which is employed by [10] in their DME method. However, for this choice, no complementary information

is incorporated. In this work, to make full use of the complementary information from edge-based methods,

we employ the results of three edge-based methods as the linear basis, instead of a 1 vector. The methods

of [20, 21, 32] are selected as the linear basis since they are very typical edge-based methods and can275

catch defocus discontinuities reasonably well. The results of these three methods are directly concatenated

together as a three-channel linear basis.

Through this improvement, the aforementioned problem can be solved and the refined defocus map via

RTF with linear basis is shown in Figure 7 (f). From (e) and (f), we can find that using edge-based methods

as linear basis can obtain sharper discontinuities at correct locations. This means that the complementary280

information has been successfully integrated into the input feature.

4. Experiments

Our experiments are conducted on the synthetic and realistic datasets generated by [10]. The synthetic

dataset contains 125 synthetically defocused gray images of size 239 ⇥ 239. The realistic dataset contains

22 RGB images of size 360 ⇥ 360, captured with a light field camera. The proposed method is compared285

with several state-of-the-art DME methods, including [10, 21, 32–34, 37]. Among these methods, [21, 32–

34] are edge-based methods, and [10, 37] are region-based methods. All the methods are conducted with

their default settings. It should be pointed out that the PSFs employed in [21, 32–34, 37] are in the form

of isotropic 2D Gaussian function and the PSF used in [10] is in the form of disk function. To compare

these methods with the proposed method, a conversion (suggested by [34]) from the standard deviation of290

Gaussian PSF to the radius of disk PSF is conducted.
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4.1. Implementation details

In the implementation of the proposed method, K is set to 5 to catch all essential information while

avoiding redundant information. Following the settings of [10], all other parameters are set as follows. The

defocus kernel is in the form of disk function and the range of defocus amount is [0.5, 6]1. In the localized295

2D frequency analysis, the window size N is set to 41 and the Gabor filters are the same with [9]. The

neighborhood connectivity of the RTF is 5 ⇥ 5 (i.e., 1 unary tree with 12 pairwise trees, whose o↵sets are

[-2,-2], [-1,-2], [0,-2], [-2,-1], [-1,-1], [0,-1], [-2,0], [-1,0], [-2,1], [-1,1], [-2,2] and [-1,2]). The stacked depth of

RTF DS is 3 and the maximum depth of each tree DT is 10. The RTF is trained to minimize the mean

square error (MSE) on the same 100 images with [10], which are from the synthetic dataset, and tested on300

the rest 25 synthetic images as well as the realistic dataset.

The synthetic dataset comes from [10]. It is generated by synthetically defocusing some all-in-focus

images with predefined defocus maps. The all-in-focus images are cropped from the all-in-focus areas of the

images in the Berkeley segmentation dataset [46]. The predefined defocus maps are of uniform, piecewise

uniform and gradually varying formulations, respectively. The range of defocus amount in the defocus maps305

is [0.5, 6] and the PSF is in the form of disk function.

4.2. Ablation studies

To show the e↵ect of each hyper parameter, ablation studies are conducted on the synthetic dataset.

Local window size N . N is analyzed for {21, 31, 41, 51, 61} on the whole synthetic dataset. The

likelihoods are calculated and the defocus map is estimated via ML. The prediction errors are shown in310

Table 1, where the quantitative metrics are mean absolute error (MAE) and MSE, for which the lower the

better. As can be seen, the errors first decrease and then increase as N increases. The reason is explained

as follows. For small local window, the Gabor filter set is also small, therefore, the likelihood might be

influenced by noise and calculation errors heavily. For large local window, the assumption that the defocus

amount keeps the same in any local window does not hold very well, therefore, the likelihood might be315

inaccurate. Consequently, N should be chosen appropriately. For example, 41 or 51 is a suitable value.

When conducting ablation studies on the neighborhood connectivity of RTF, the stack depth of RTF

DS and the maximum depth of each tree DT , we vary one of the three parameters while keeping the other

1We have investigated the maximum defocus amount used in the literature and find that they are usually no more than

8 [9]. For middle and low resolution images, the defocus amount 6 is a large defocus blur, and [0.5, 6] can cover almost all

situations. For ultra-high resolution images, there might be extremely defocused areas whose defocus amount is larger than

6. If we directly apply existing methods to these areas, perhaps wrong estimations will be produced. Fortunately, in these

areas, the problem can be eased to some extent by down-scaling the input image and up-scaling the estimated defocus map

afterwards.
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Table 1: Ablation study on local window size N .

N
MAE

Mean/Std. dev

MSE

Mean/Std. dev

21 0.862/0.192 1.459/0.547

31 0.630/0.228 0.897/0.562

41 0.473/0.188 0.619/0.430

51 0.457/0.208 0.587/0.462

61 0.470/0.217 0.606/0.495

Table 2: Ablation study on the neighborhood connectivity of RTF.
neighborhood MAE MSE

connectivity Mean/Std. dev Mean/Std. dev

1 ⇥ 1 0.290/0.098 0.292/0.251

3 ⇥ 3 0.263/0.097 0.260/0.216

5 ⇥ 5 0.247/0.091 0.237/0.213

7 ⇥ 7 0.256/0.095 0.252/0.210

Table 3: Ablation study on the stack depth of RTF DS .

DS
MAE

Mean/Std. dev

MSE

Mean/Std. dev

1 0.329/0.101 0.321/0.231

2 0.272/0.091 0.260/0.214

3 0.252/0.089 0.245/0.216

4 0.250/0.088 0.241/0.206

5 0.242/0.088 0.238/0.206

6 0.241/0.088 0.238/0.205

7 0.246/0.088 0.239/0.201

two fixed to the values specified in the last subsection. The RTF is trained on 100 images of the synthetic

dataset and tested on the rest 25 images.320

Neighborhood connectivity of RTF. The neighborhood connectivity is analyzed for {1⇥1, 3⇥3, 5⇥

5, 7 ⇥ 7}. The test errors are shown in Table 2. Due to the spatial continuity of images, the defocus map

also possesses some spatial continuity, i.e., a pixel usually have similar defocus amount with its neighbor

pixels. This character is e↵ective only in a limited size of neighborhood. As can be seen in Table 2,

the performance first ameliorates and then distorts as the neighborhood size increases. Therefore, the325

neighborhood connectivity of RTF should also be selected appropriately and 5⇥ 5 is an appropriate choice.

Stack depth of RTF DS. DS is analyzed for {1, 2, 3, 4, 5, 6, 7}. The test errors are shown in Table 3.

Theoretically, for a stacked RTF, the deeper stack can be viewed as a refinement of the shallower stack [17].

Therefore, the deeper the RTF is stacked, the more powerful the RTF is. Consequently, better performance

would be produced for larger DS . However, deeper stack means more running time. Moreover, due to over330

fitting, the performance improvement would decrease as DS increases, as can be seen in Table 3. Therefore,

DS should not be too small or too large. In this paper, DS is set to 3 as a tradeo↵ between performance

and running time.

Maximum depth of each tree DT . DT is analyzed for {8, 9, 10, 11, 12}. The test errors are shown

in Table 4. As can be seen, the errors first decrease and then increase as DT increases. In theory, larger335

maximum depth of a tree means more degree of freedom and thus larger model capacity. However, with
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Table 4: Ablation study on the maximum depth of each tree DT .

DT
MAE

Mean/Std. dev

MSE

Mean/Std. dev

8 0.269/0.108 0.258/0.249

9 0.256/0.098 0.246/0.234

10 0.247/0.091 0.237/0.213

11 0.279/0.107 0.289/0.229

12 0.266/0.097 0.266/0.213

Table 5: Test errors on synthetic, clean realistic and noisy realistic datasets.

Method

Synthetic dataset Clean realistic dataset Noisy realistic dataset

MAE MSE MAE MSE MAE MSE

Mean/Std. dev Mean/Std. dev Mean/Std. dev Mean/Std. dev Mean/Std. dev Mean/Std. dev

ML1ori 0.562/0.166 0.948/0.487 0.400/0.109 0.409/0.169 0.417/0.097 0.442/0.155

D’Andrès et al. [10] 0.269/0.098 0.295/0.236 0.196/0.072 0.094/0.086 0.206/0.067 0.099/0.078

ML2oris 0.555/0.173 0.895/0.524 0.371/0.100 0.298/0.126 0.389/0.086 0.330/0.108

L2oris + RTFK 0.244/0.088 0.278/0.240 0.178/0.067 0.076/0.071 0.199/0.063 0.091/0.072

L2oris + RTFK + Matting 0.240/0.087 0.255/0.227 0.176/0.067 0.073/0.068 0.197/0.064 0.090/0.072

L2oris + RTFK + Basis 0.247/0.091 0.237/0.213 0.179/0.066 0.073/0.068 0.195/0.061 0.086/0.067

limited training data, the model capacity should be carefully chosen to avoid over fitting. From Table 4, we

find that 10 is a suitable value for DT .

Improvements. To show the e↵ect of each improvement, we compare the proposed method with ML1ori

(ML using r0� with all Gabor filters), ML2oris (ML using r0� and r90� with the corresponding subsets of340

Gabor filters) and L2oris+RTFK (refine the first K highest local maximums of the two-orientation likelihood

via RTF without edge-based basis). Here, the proposed method is denoted as L2oris +RTFK +Basis (refine

the first K highest local maximums of the two-orientation likelihood via RTF with edge-based basis). We

also give the results of [10] as the method is also trained and tested on the same dataset. As suggested by

the reviewers, we also try using traditional matting instead of edge-based basis (denoted as L2oris+RTFK +345

Matting). The test is conducted not only on the 25 test images of synthetic dataset, but also on the clean

and noisy realistic datasets. The noisy realistic dataset is generated by corrupting the clean version with

additive Gaussian white noise whose standard variance �z = 1 for luminance range of [0, 255]. The test

errors on are shown in Table 5.

As can be seen, ML2oris has smaller MAE and MSE than ML1ori, L2oris + RTFK has smaller MAE350

and MSE than ML2oris, and L2oris + RTFK + Basis can obtain much smaller MSE than L2oris + RTFK

(though their MAEs are comparable). It means that all the three improvements are e↵ective in reducing the

prediction errors. L2oris+RTFK +Basis also has smaller MAE and MSE than [10], showing the e↵ectiveness

of the improvements from another perspective. L2oris + RTFK +Matting has comparable MAE and MSE

with L2oris +RTFK +Basis, and they both have smaller MAE and MSE than L2oris +RTFK , meaning that355

both matting and using linear basis can improve the performance. It should be noted that for the noisy

realistic dataset, L2oris +RTFK + Basis has the smallest MAE and MSE, showing its robustness to noise.
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Table 6: DME comparison on clean realistic dataset.

Input

Image

Zhuo and

Sim [21]

MAE/MSE

Shi et al.

[37]

MAE/MSE

D’Andrès et

al. [10]

MAE/MSE

Liu et al.

[32]

MAE/MSE

Park et al.

[33]

MAE/MSE

Karaali and

Jung [34]

MAE/MSE

Proposed

Method

MAE/MSE

Image 01 0.459/0.286 0.615/0.453 0.132/0.037 0.329/0.149 0.155/0.043 0.212/.074 0.139/0.040

Image 02 0.734/0.687 0.680/0.639 0.178/0.059 0.527/0.361 0.228/0.097 0.328/0.148 0.179/0.058

Image 03 0.448/0.261 0.730/0.680 0.216/0.114 0.430/0.248 0.163/0.043 0.285/0.114 0.162/0.048

Image 04 0.441/0.276 0.570/0.420 0.162/0.046 0.314/0.171 0.180/0.050 0.236/0.088 0.177/0.065

Image 05 0.429/0.232 0.853/0.909 0.139/0.036 0.502/0.339 0.118/0.025 0.328/0.152 0.166/0.051

Image 06 0.524/0.345 0.468/0.298 0.153/0.047 0.352/0.205 0.211/0.077 0.247/0.087 0.146/0.045

Image 07 0.451/0.256 0.672/0.540 0.187/0.090 0.360/0.205 0.220/0.084 0.367/0.189 0.166/0.052

Image 08 0.961/1.377 0.940/1.042 0.199/0.123 0.849/1.110 0.372/0.219 0.835/1.195 0.156/0.090

Image 09 0.752/0.603 0.675/0.677 0.214/0.095 0.491/0.283 0.136/0.039 0.409/0.216 0.137/0.045

Image 10 0.563/0.389 0.451/0.244 0.204/0.066 0.299/0.143 0.113/0.027 0.181/0.060 0.184/0.056

Image 11 0.802/0.788 0.520/0.376 0.163/0.067 0.544/0.383 0.225/0.075 0.341/0.206 0.142/0.050

Image 12 0.862/0.884 0.737/0.713 0.158/0.055 0.638/0.546 0.275/0.114 0.384/0.216 0.137/0.035

Image 13 0.479/0.306 0.597/0.453 0.144/0.036 0.427/0.253 0.175/0.060 0.283/0.108 0.182/0.052

Image 14 0.685/0.614 0.779/1.040 0.472/0.398 0.608/0.491 0.490/0.378 0.515/0.410 0.453/0.357

Image 15 0.935/1.009 0.445/0.263 0.191/0.079 0.647/0.518 0.246/0.089 0.623/0.476 0.130/0.041

Image 16 0.526/0.408 0.535/0.373 0.196/0.072 0.380/0.268 0.177/0.052 0.320/0.145 0.187/0.062

Image 17 0.897/0.921 0.566/0.457 0.171/0.057 0.637/0.513 0.407/0.349 0.508/0.347 0.169/0.055

Image 18 0.636/0.508 0.663/0.517 0.156/0.050 0.479/0.304 0.173/0.049 0.322/0.159 0.135/0.036

Image 19 0.681/0.570 0.915/1.116 0.317/0.291 0.695/0.623 0.194/0.074 0.509/0.356 0.239/0.144

Image 20 0.665/0.562 0.507/0.333 0.185/0.074 0.540/0.364 0.194/0.060 0.287/0.126 0.189/0.094

Image 21 0.672/0.527 0.671/0.662 0.181/0.074 0.450/0.287 0.167/0.044 0.237/0.090 0.171/0.058

Image 22 0.956/1.019 0.876/0.990 0.200/0.107 0.880/0.910 0.328/0.188 0.409/0.264 0.196/0.084

Mean 0.662/0.583 0.658/0.600 0.196/0.094 0.517/0.394 0.225/0.102 0.371/0.238 0.179/0.073

Std. dev 0.182/0.308 0.148/0.271 0.072/0.086 0.161/0.242 0.096/0.097 0.152/0.242 0.066/0.068

4.3. Comparison on realistic dataset

The prediction errors on the realistic dataset are shown in Table 6 (clean version) and Table 7 (noisy

version, �z = 1), where the best prediction is in bold. It can be easily found that the proposed method can360

produce the smallest MAE and MSE on both clear and noisy input images.

To further analyze the quantitative results, we conduct statistical significance tests on the data of Tables

6 and 7. Since the distribution of the data might not be Gaussian distribution, a non-parametric test is

adopted: we employ the Friedman test and the results are shown in Figure 8, where (a) is for the clean

realistic dataset and (b) is for the noisy version. For each cell, if the row index method is significantly365

better than the column index method, it is marked as green; otherwise, it is marked as red. It can be found

that the proposed method is significantly better than state-of-the art methods on clean dataset. For noisy

dataset, the best two methods — [10] and the proposed method — are comparable.

Figure 9 gives visual results on four images from the realistic dataset (two without noise and two with

noise). The input images and ground truths are provided in Figure 9 (a) and (b) respectively. It can be370

found from (c) and (f) that both the methods of [21] and [32] can catch the defocus discontinuities (see

the second and third images in (c) and (f)) but su↵er from textures of the input image (see the areas of

the wall for the first image, the tree trunk for the second and third images and the stones for the forth

image). The method of [37] can get correct estimations for slightly defocused areas but often fails with a

constant estimation for middle and high levels of defocus areas (see all the four images in Figure 9 (d)). The375

method of [33] uses a smooth version of the input image as the guidance of Laplacian matting, therefore, it
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Table 7: DME comparison on noisy realistic dataset (�z = 1).

Input

Image

Zhuo and

Sim [21]

MAE/MSE

Shi et al.

[37]

MAE/MSE

D’Andrès et

al. [10]

MAE/MSE

Liu et al.

[32]

MAE/MSE

Park et al.

[33]

MAE/MSE

Karaali and

Jung [34]

MAE/MSE

Proposed

Method

MAE/MSE

Image 01 0.475/0.309 0.577/0.413 0.183/0.080 0.370/0.197 0.218/0.110 0.206/0.072 0.161/0.056

Image 02 0.743/0.718 0.565/0.431 0.189/0.066 0.547/0.387 0.232/0.109 0.305/0.134 0.180/0.056

Image 03 0.460/0.272 0.528/0.366 0.228/0.143 0.434/0.242 0.155/0.038 0.290/0.118 0.211/0.118

Image 04 0.438/0.266 0.553/0.420 0.164/0.049 0.315/0.175 0.210/0.082 0.228/0.083 0.163/0.053

Image 05 0.421/0.224 0.638/0.479 0.155/0.042 0.477/0.303 0.126/0.029 0.337/0.161 0.161/0.044

Image 06 0.534/0.358 0.445/0.270 0.177/0.067 0.381/0.225 0.236/0.104 0.247/0.087 0.181/0.073

Image 07 0.451/0.253 0.648/0.511 0.213/0.130 0.373/0.206 0.233/0.093 0.364/0.186 0.191/0.066

Image 08 1.014/1.549 0.825/0.919 0.206/0.111 0.992/1.565 0.454/0.302 0.871/1.288 0.217/0.136

Image 09 0.758/0.619 0.649/0.661 0.213/0.096 0.521/0.315 0.143/0.042 0.416/0.224 0.143/0.046

Image 10 0.570/0.402 0.387/0.185 0.207/0.070 0.350/0.195 0.136/0.037 0.189/0.064 0.213/0.085

Image 11 0.811/0.807 0.483/0.320 0.146/0.056 0.571/0.419 0.233/0.081 0.331/0.190 0.139/0.050

Image 12 0.887/0.943 0.710/0.667 0.160/0.053 0.736/0.742 0.311/0.147 0.393/0.230 0.153/0.047

Image 13 0.497/0.337 0.572/0.411 0.153/0.041 0.473/0.306 0.212/0.088 0.290/0.113 0.176/0.050

Image 14 0.694/0.629 0.760/0.997 0.475/0.417 0.620/0.502 0.496/0.390 0.515/0.412 0.444/0.363

Image 15 0.955/1.059 0.478/0.318 0.215/0.099 0.705/0.630 0.349/0.177 0.641/0.512 0.198/0.106

Image 16 0.553/0.471 0.473/0.315 0.199/0.067 0.439/0.391 0.230/0.087 0.325/0.149 0.198/0.071

Image 17 0.921/0.974 0.529/0.392 0.181/0.062 0.756/0.712 0.507/0.453 0.541/0.386 0.196/0.070

Image 18 0.651/0.536 0.684/0.566 0.191/0.096 0.523/0.372 0.248/0.134 0.320/0.158 0.154/0.069

Image 19 0.694/0.593 0.917/1.120 0.277/0.153 0.710/0.637 0.247/0.167 0.514/0.360 0.225/0.091

Image 20 0.693/0.619 0.494/0.332 0.186/0.075 0.609/0.491 0.225/0.088 0.300/0.136 0.203/0.108

Image 21 0.676/0.533 0.651/0.625 0.186/0.082 0.492/0.328 0.177/0.051 0.242/0.090 0.171/0.057

Image 22 0.997/1.105 0.874/0.983 0.227/0.121 1.028/1.175 0.357/0.232 0.440/0.292 0.214/0.090

Mean 0.677/0.617 0.611/0.532 0.206/0.099 0.565/0.478 0.261/0.138 0.378/0.247 0.195/0.086

Std. dev 0.191/0.340 0.141/0.261 0.067/0.078 0.193/0.340 0.109/0.113 0.161/0.263 0.061/0.067
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Figure 8: Significance test for DME results. (a) Clean realistic dataset. (b) Noisy realistic dataset. For each cell, if the row

index method is significantly better than the column index method, it is marked as green; otherwise, it is marked as red.

can catch the defocus discontinuities reasonably well and reduce the influence of textures to a low level, as

shown in Figure 9 (g). However, for strong textures, the influence cannot be eliminated perfectly (see the

areas of the fence for the second image and the blue chair for the forth image). The method of [34] can catch

the defocus trend and usually obtain smooth estimations (see Figure 9 (h)). However, since the defocus380
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 9: DME results on realistic dataset. (a) Input image. (b) Ground truth. (c) Zhuo and Sim [21]. (d) Shi et al. [37].

(e) D’Andrès et al. [10]. (f) Liu et al. [32]. (g) Park et al. [33]. (h) Karaali and Jung [34]. (i) The proposed method. Rows

from top to down: image 07 without noise, image 08 without noise, image 15 with additive Gaussian white noise (�z = 1) and

image 19 with additive Gaussian white noise (�z = 1).

amount is achieved by a division operation (where the numerator and denominator are the domain transform

filtering results of sparse defocus map and edge map respectively), it may su↵er from numerical instability.

Consequently, it might obtain wrong estimations and can probably not catch the defocus discontinuities

very well (see the second and third images in Figure 9 (h)). Based on region-based feature, the method of

[10] can get smooth estimations for textual regions but cannot catch the defocus discontinuities very well385

(see the second and third images in Figure 9 (e)). The proposed method combines edge-based methods with

region-based feature. Consequently, it can catch the defocus discontinuities well (see the second and third

images in Figure 9 (i)), and can obtain smooth estimations for textural regions (see the areas of the wall for

the first image, the tree trunk for the second and third images and the stones for the forth image).

All the methods are tested on a computer with an Intel Xeon E5 2.4GHz CPU and 128GB RAM. The390

average running time of each method is shown in Table 8. As can be seen, the running time of the proposed

method is comparable with that of [10]. However, the error is smaller than [10], as shown in Tables 6-7

and Figure 8. Compared with [34], the proposed method is significantly superior, though its running time

is about 10 times longer. Currently, the only optimization adopted in the implementation of the proposed

method is parallel computing. To further improve its e�ciency, there are at least two optimizations that395

can be done. On one hand, the algorithm for searching local maximum can be better designed, for example,

coordinate descent algorithm with random initial seeds can be employed as [9] did. On the other hand,

C++ implementation and code optimization can also be considered.
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Table 8: Average running time on realistic dataset.

Method
Zhuo and

Sim [21]

Shi et al.

[37]

D’Andrès et

al. [10]

Liu et al.

[32]

Park et al.

[33]

Karaali and

Jung [34]

Proposed

Method

Time (second) 14.2 9.7 162.3 49.6 34.6 1.6 184.0

(a) (b) (c) (d)

Figure 10: Example showing the limitation of the proposed method. (a) Input image. (b) Defocus map by [32], serving as one

of the three linear basis. (c) The first channel of feature. (d) Estimated defocus map.

Since the method can be viewed as a unified approach of edge-based method and region-based method,

it might fail when both methods produce inaccurate estimations. For example, the proposed method oc-400

casionally obtains incorrect defocus values in large homogeneous areas. For these areas, the estimations of

edge-based methods (linear basis) are not reliable because they are propagated from far away edge points;

the extracted feature might produce inaccurate estimations since the likelihood might be very sensitive to

noise for these areas (the reason is that the response of Gabor filters will be small for homogeneous areas).

See Figure 10 for an example. For an input image with large homogeneous area, both edge-based linear405

basis (b) and region-based feature (c) might produce inaccurate estimations. Consequently, the final result

(d) is also inaccurate. Generally, this limitation is hard to overcome. To improve the results for these

areas, maybe multi-scale patch size (trying to avoid homogeneous patches) can be employed in the feature

extraction step as [33] did.

Another limitation of the proposed method is that it might get inaccurate estimation for areas where the410

defocus amount is larger than 6. This limitation comes from the training dataset since the defocus amount

range of the training dataset is [0.5, 6]. Fortunately, it can be further addressed by designing a new training

dataset with a larger range of defocus amount.

5. Applications

As mentioned in Section 1, DME can be used in many applications. In this section, we demonstrate415

the usage of the proposed method for two applications, i.e., defocused image deblurring and defocus blur

detection. The proposed method is also compared with several competitive methods.
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Table 9: Quantitative results of deblurring on clean realistic dataset.

Input

Image

Blurry

Image

PSNR/SSIM

Zhuo and

Sim [21]

PSNR/SSIM

Shi et al.

[37]

PSNR/SSIM

D’Andrès et

al. [10]

PSNR/SSIM

Liu et al.

[32]

PSNR/SSIM

Park et al.

[33]

PSNR/SSIM

Karaali and

Jung [34]

PSNR/SSIM

Propose

Method

PSNR/SSIM

Image 01 25.43/0.811 22.87/0.776 21.42/0.748 27.47/0.888 23.25/0.794 24.46/0.824 25.06/0.845 27.41/0.886

Image 02 24.51/0.694 23.15/0.676 20.08/0.646 25.89/0.811 22.31/0.678 23.98/0.715 24.32/0.732 25.83/0.810

Image 03 23.99/0.875 22.56/0.873 19.51/0.808 24.28/0.907 21.17/0.857 22.91/0.889 23.08/0.888 25.37/0.921

Image 04 23.78/0.748 22.57/0.758 21.33/0.746 25.46/0.842 21.69/0.761 23.32/0.788 22.90/0.791 25.27/0.839

Image 05 25.63/0.886 22.16/0.826 20.75/0.750 26.76/0.921 20.38/0.781 24.23/0.875 23.12/0.859 26.69/0.917

Image 06 24.30/0.836 20.75/0.806 22.15/0.830 25.65/0.895 20.80/0.811 23.49/0.846 23.48/0.856 25.42/0.897

Image 07 27.33/0.860 24.18/0.842 22.96/0.813 27.84/0.897 23.44/0.842 25.88/0.874 25.00/0.861 28.85/0.910

Image 08 23.52/0.753 23.94/0.773 21.33/0.744 25.53/0.847 23.73/0.776 23.84/0.785 23.97/0.775 25.58/0.849

Image 09 22.81/0.764 21.16/0.689 20.04/0.690 24.29/0.852 21.64/0.734 21.73/0.740 21.79/0.748 24.61/0.867

Image 10 23.83/0.742 23.11/0.749 21.59/0.763 25.37/0.843 24.28/0.795 24.07/0.804 24.07/0.798 25.46/0.847

Image 11 23.29/0.658 22.02/0.634 21.75/0.671 24.70/0.792 22.61/0.660 23.02/0.691 22.37/0.683 24.88/0.798

Image 12 23.71/0.743 22.95/0.731 21.29/0.718 25.96/0.845 22.91/0.742 23.50/0.760 23.18/0.755 26.06/0.848

Image 13 28.08/0.871 23.11/0.813 22.32/0.785 28.74/0.914 22.61/0.810 26.21/0.865 26.63/0.880 27.65/0.899

Image 14 24.11/0.842 22.68/0.809 20.28/0.718 25.41/0.886 21.87/0.791 22.66/0.813 22.74/0.822 25.61/0.896

Image 15 20.68/0.624 19.42/0.563 19.16/0.630 22.60/0.791 19.79/0.597 19.92/0.624 20.04/0.604 22.83/0.813

Image 16 24.04/0.805 23.45/0.809 21.63/0.778 25.78/0.884 23.91/0.825 23.92/0.828 23.98/0.823 25.85/0.887

Image 17 24.43/0.606 22.10/0.579 21.24/0.612 25.51/0.760 20.64/0.585 23.67/0.622 24.28/0.627 25.55/0.762

Image 18 22.63/0.756 21.28/0.727 18.86/0.650 24.04/0.859 21.34/0.746 21.04/0.745 21.24/0.771 24.28/0.862

Image 19 24.47/0.870 22.95/0.841 20.61/0.767 26.00/0.913 21.63/0.809 23.11/0.851 22.46/0.837 26.04/0.916

Image 20 22.48/0.721 20.62/0.690 20.50/0.692 24.12/0.840 21.07/0.709 21.59/0.726 21.68/0.740 23.91/0.834

Image 21 25.53/0.923 23.99/0.892 21.18/0.842 26.07/0.930 22.87/0.876 25.48/0.920 25.39/0.921 26.28/0.934

Image 22 23.85/0.890 21.28/0.819 20.82/0.799 24.48/0.904 19.70/0.786 22.97/0.861 22.55/0.854 24.71/0.909

Mean 24.20/0.785 22.38/0.758 20.94/0.736 25.54/0.865 21.99/0.762 25.35/0.861 23.33/0.794 25.64/0.868

Gain –/– -1.82/-0.027 -3.26/-0.049 1.34/0.079 -2.22/-0.023 1.15/0.075 -0.87/0.009 1.44/0.083

5.1. Defocused image deblurring

One application of DME is defocused image deblurring, i.e., using the estimated defocus map to deblur

the input image. The deblurring algorithm is achieved by solving the following optimization problem [34]:

min
x

kBx� yk22 + � (kDhxk↵↵ + kDvxk↵↵) . (7)

Here, B is the blur matrix generated from the defocus map, x and y denote the deblurred and input

images, Dh and Dv denote the horizontal and vertical discrete derivative operators, and x is optimized420

using the iteratively reweighted least squares (IRLS) method similar to [15]. Following the settings of [34],

the parameters are set as: � = 2 · 10�3,↵ = 0.8.

The deblurring experiments are conducted on the realistic dataset and the quantitative results are shown

in Table 9 (clean version) and Table 10 (noisy version), where the metrics are peak signal to noise ratio

(PSNR) and structural similarity (SSIM), for which the higher the better. The best results are in bold.425

It can be found that the proposed method can obtain the best deblurring result for most images, with an

average gain of 1.44dB/0.083 for clear images and 0.71dB/0.064 for noisy images. Only the methods of

[10, 33] and the proposed method can produce positive gains in terms of PSNR and SSIM, meaning that

only these three methods are suitable for image deblurring.

To better analyze the quantitative results, we conduct significance tests on the data of Tables 9 and 10.430

Since the distribution of the data might not be Gaussian distribution, a non-parametric test is adopted: we

employ the Friedman test and the results are shown in Figure 11, where (a) is for the clean realistic dataset
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Table 10: Quantitative results of deblurring on noisy realistic dataset (�z = 1).

Input

Image

Blurry

Image

PSNR/SSIM

Zhuo and

Sim [21]

PSNR/SSIM

Shi et al.

[37]

PSNR/SSIM

D’Andrès et

al. [10]

PSNR/SSIM

Liu et al.

[32]

PSNR/SSIM

Park et al.

[33]

PSNR/SSIM

Karaali and

Jung [34]

PSNR/SSIM

Propose

Method

PSNR/SSIM

Image 01 25.31/0.802 22.24/0.738 22.00/0.741 25.26/0.832 23.11/0.765 24.46/0.824 24.46/0.815 25.45/0.836

Image 02 24.40/0.684 22.47/0.631 21.10/0.647 25.02/0.776 21.99/0.638 23.98/0.715 23.78/0.699 24.87/0.773

Image 03 23.86/0.870 21.74/0.837 20.67/0.821 22.92/0.871 20.66/0.822 22.91/0.889 22.45/0.860 23.50/0.870

Image 04 23.71/0.737 22.36/0.734 21.80/0.733 24.30/0.801 21.42/0.737 23.32/0.788 22.39/0.765 24.18/0.801

Image 05 25.48/0.868 21.69/0.764 21.55/0.739 25.22/0.888 20.14/0.720 24.23/0.875 22.23/0.790 25.19/0.877

Image 06 24.24/0.833 20.61/0.794 22.29/0.826 24.98/0.877 20.78/0.802 23.49/0.846 23.34/0.848 24.60/0.875

Image 07 27.27/0.857 24.10/0.835 23.24/0.813 27.08/0.884 23.57/0.836 25.88/0.874 24.84/0.854 28.16/0.896

Image 08 23.49/0.750 23.64/0.763 22.60/0.762 24.94/0.833 23.44/0.766 23.84/0.785 23.66/0.764 25.00/0.836

Image 09 22.79/0.762 21.04/0.680 20.14/0.687 23.86/0.840 21.45/0.721 21.73/0.740 21.59/0.738 24.11/0.854

Image 10 23.79/0.739 22.60/0.728 22.09/0.758 24.36/0.816 23.74/0.771 24.07/0.804 23.56/0.779 24.32/0.816

Image 11 23.24/0.651 21.67/0.612 21.99/0.670 24.50/0.781 22.44/0.639 23.02/0.691 22.14/0.667 24.58/0.785

Image 12 23.66/0.737 22.64/0.715 21.72/0.720 25.79/0.837 22.79/0.728 23.50/0.760 22.98/0.742 25.79/0.837

Image 13 28.01/0.869 22.85/0.801 22.73/0.788 27.84/0.900 22.74/0.804 26.21/0.865 26.24/0.870 27.32/0.890

Image 14 24.08/0.840 22.49/0.799 20.56/0.722 24.93/0.874 21.84/0.784 22.66/0.813 22.50/0.809 25.08/0.884

Image 15 20.65/0.621 19.23/0.546 19.32/0.608 21.87/0.752 19.67/0.581 19.92/0.624 19.88/0.589 21.99/0.758

Image 16 23.99/0.802 23.10/0.793 22.01/0.778 25.06/0.863 23.72/0.810 23.92/0.828 23.71/0.810 25.15/0.867

Image 17 24.34/0.600 21.97/0.559 21.75/0.613 25.10/0.743 20.60/0.559 23.67/0.622 24.01/0.609 25.11/0.741

Image 18 22.59/0.751 21.08/0.705 19.29/0.653 23.19/0.832 21.32/0.727 21.04/0.745 21.07/0.758 23.32/0.836

Image 19 24.43/0.866 22.80/0.830 20.91/0.766 24.97/0.894 21.54/0.800 23.11/0.851 22.21/0.825 25.12/0.899

Image 20 22.44/0.718 20.48/0.677 20.62/0.688 23.67/0.825 21.04/0.697 21.59/0.726 21.52/0.728 23.44/0.817

Image 21 25.48/0.921 23.92/0.887 21.43/0.843 25.58/0.921 22.81/0.871 25.48/0.920 25.17/0.915 25.82/0.927

Image 22 23.82/0.889 21.29/0.817 20.98/0.799 24.12/0.894 19.97/0.787 22.97/0.861 22.41/0.848 24.55/0.906

Mean 24.14/0.780 22.09/0.738 21.40/0.735 24.75/0.842 21.85/0.744 24.29/0.830 23.01/0.776 24.85/0.845

Gain –/– -2.05/-0.042 -2.74/-0.045 0.61/0.062 -2.29/-0.037 0.15/0.050 -1.13/-0.004 0.71/0.064

and (b) is for the noisy version. For each cell, if the row index method is significantly better than the column

index method, it is marked as green; otherwise, it is marked as red. It can be found that only [10] and the

proposed method can produce significantly better results than the blurry input image. These two methods435

are comparable.

Figure 12 gives visual results on four images from the realistic dataset (two without noise and two with

noise). As can be seen, the proposed method can obtain the best deblurring results for both clear and noisy

images, with the sharpest restoration (see the cirrus in the right top corner of the first image, the window

and tree in the right top corner of the second image, the vertical railing in the left top corner of the third440

image, and the texture on the trunk of the forth image).

5.2. Defocus blur detection

Another application of DME is defocus blur detection, i.e., to detect the defocused regions in an image.

Once the defocus map d is obtained, the defocused region can be detected by simply thresholding:

LD[n] =

8
<

:
1, if d[n] > ⌧,

0, otherwise.
(8)

Here LD[n] is the detection result at pixel n and ⌧ = (1� �)dmin + �dmax is the threshold. dmin and dmax

denote the minimum and maximum of the defocus map, respectively. � is a parameter to determine the

threshold. The threshold is usually determined by setting � empirically.445
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Figure 11: Significance tests for deblurring results. (a) Clean realistic dataset. (b) Noisy realistic dataset. For each cell, if the

row index method is significantly better than the column index method, it is marked as green; otherwise, it is marked as red.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 12: Deblurred results on realistic dataset. (a) Input image. (b) Ground truth all-sharp image. (c) Zhuo and Sim [21].

(d) Shi et al. [37]. (e) D’Andrès et al. [10]. (f) Liu et al. [32]. (g) Park et al. [33]. (h) Karaali and Jung [34]. (i) The proposed

method. Rows from top to down: image 14 with no noise, image 18 with no noise, image 03 with additive Gaussian white noise

(�z = 1) and image 08 with additive Gaussian white noise (�z = 1).

24



Table 11: Average accuracy of defocus detection.

Method
Zhuo and

Sim [21]

Shi et al.

2014 [41]

Shi et al.

2015 [37]

D’Andrès et

al. [10]

Liu et al.

[32]

Park et al.

[33]

Karaali and

Jung [34]

Propose

Method

� 0.25 0.20 0.40 0.14 0.32 0.30 0.26 0.20

Average accuracy 0.757 0.728 0.711 0.735 0.758 0.796 0.755 0.799

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Zhuo and Sim [21] 
Shi et al. 2014 [41] 
Shi et al. 2015 [37] 
D'Andrès et al. [10] 
Liu et al. [32]
Park et al. [33]
Karaali and Jung [34]
Proposed method

Figure 13: Average precision-recall curve.

The experiments are conducted on the CUHK dataset [41], where there are 704 partially defocused images

as well as the corresponding ground truth for defocus region label. The proposed method is compared with

[10, 21, 32–34, 37, 41]. The metric is detection accuracy and precision-recall curve. They are defined as

follows.

Accuracy =
TP + TN

TP + TN + FP + FN
, (9)

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
. (11)

Here TP, TN,FP, FN are the number of pixels where the estimated label is 1 and the ground truth label

is also 1, the estimated label is 0 and the ground truth label is also 0, the estimated label is 1 while the

ground truth label is 0, the estimated label is 0 while the ground truth label is 1, respectively.

For di↵erent methods, � needs to be set appropriately. We set � empirically to achieve the highest

average detection accuracy for each method. The exact value for � as well as the corresponding average450

accuracy are shown in Table 11. As can be seen, the proposed method can achieve the highest average

accuracy.

By varying � from 0 to 1, we can obtain the precision-recall curve for each method. The average precision-

recall curves are shown in Figure 13. It can be easily found that the proposed method and the method in
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Table 12: Area under the precision-recall curve.

Method
Zhuo and

Sim [21]

Shi et al.

2014 [41]

Shi et al.

2015 [37]

D’Andrès et

al. [10]

Liu et al.

[32]

Park et al.

[33]

Karaali and

Jung [34]

Propose

Method

Area under curve 0.904 0.870 0.862 0.883 0.915 0.910 0.902 0.915

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 14: Visual comparison for defocus blur detection. (a) Input image. (b) Ground truth. (c) Zhuo and Sim [21]. (d) Shi

et al. 2014 [41]. (e) Shi et al. 2015 [37]. (f) D’Andrès et al. [10]. (g) Liu et al. [32]. (h) Park et al. [33]. (i) Karaali and Jung

[34]. (j) Proposed method.

[33] are dominant. Specifically, for low and middle recall, the proposed method performs the best; for high455

recall, the method of [33] performs the best. As pointed out in [47], the area under the precision-recall curve

can reflect the average performance of a method. Therefore, the area under the curve is calculated for each

method and the results are shown in Table 12. As can be seen, the proposed method and the method of

[32] have the largest area, meaning that these two methods perform the best on average.

Some visual results for defocus blur detection can be found in Figure 14. As can be seen in (j), the460

results of the proposed method are closest to the ground truth. The method of [33] can also obtain satisfied
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results, as shown in (h). For [21], the defocus map is usually influenced by textures of the input image,

therefore, the detection result can also be influenced by textures, as shown by the last image in (c). The

method of [32] can improve the performance of [21], however, the improvement is very limited. Neither of

the methods of [10] or [34] can catch the defocus discontinuities very well, therefore, their detection results465

cannot either catch the boundary of in-focus/defocused area, as shown in (f) and (i). The features of [41]

and [37] usually cannot distinguish high level defocused area and smooth area, therefore, there are often

holes in the in-focus area, as shown in (d) and (e).

6. Conclusion

In this paper, we propose a single image DME method based on localized 2D frequency analysis and RTF.470

Two orthogonal gradient operators with the corresponding Gabor filter subsets are employed to calculate the

likelihood, avoiding the negative impact of very small filter responses. After the likelihoods are calculated,

only the first K highest local maximums are taken as input feature of the RTF, reducing the feature

dimension without losing its power of expressiveness. Furthermore, the superiority of edge-based methods

are incorporated in our method by designing the linear basis of RTF as the results of three edge-based475

methods. These improvements enable the proposed method to get better defocus maps. The experiments

demonstrate that our method outperforms both edge-based and region-based DME methods. Finally, the

proposed method is successfully applied to defocused image deblurring and defocus blur detection. One

limitation of the proposed method is that it might occasionally obtain incorrect defocus values in large

homogeneous areas where both the input feature and the linear basis are inaccurately estimated. Since the480

lack of RGB-defocus amount datasets is the bottleneck for developing end-to-end deep learning based DME

methods, in the future, we plan to first break through this bottleneck by building a much larger realistic

dataset than that used in this paper, and then try to explore end-to-end deep learning based methods for

the DME problem.
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[10] L. D’Andrès, J. Salvador, A. Kochale, S. Süsstrunk, Non-parametric blur map regression for depth of field extension, IEEE

Transactions on Image Processing 25 (4) (2016) 1660–1673. doi:10.1109/TIP.2016.2526907.
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