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Abstract

In this paper, we propose a new single shot method for multi-person 3D hu-
man pose estimation in complex images. The model jointly learns to locate
the human joints in the image, to estimate their 3D coordinates and to group
these predictions into full human skeletons. The proposed method deals with
a variable number of people and does not need bounding boxes to estimate
the 3D poses. It leverages and extends the Stacked Hourglass Network and
its multi-scale feature learning to manage multi-person situations. Thus, we
exploit a robust 3D human pose formulation to fully describe several 3D hu-
man poses even in case of strong occlusions or crops. Then, joint grouping
and human pose estimation for an arbitrary number of people are performed
using the associative embedding method. Our approach significantly outper-
forms the state of the art on the challenging CMU Panoptic and a previous
single shot method on the MuPoTS-3D dataset. Furthermore, it leads to
good results on the complex and synthetic images from the newly proposed
JTA Dataset.

Keywords: multi-person, 3D, human pose, deep learning

1. Introduction

3D human pose is a low dimensional and interpretable representation
which is used a lot in action recognition [1]. 3D human pose estimation
based on RGB images is a challenging task from the computer vision per-
spective. Recent Convolution Neural Network (CNN) based approaches [2, 3]
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achieve excellent performance in 2D human pose estimation thanks to large
scale in the wild datasets. Nevertheless, methods for 3D human pose esti-
mation require 3D ground truth that is only available using Motion Capture
(Mocap) systems [4, 5, 6]. Therefore, these methods have good performance
in controlled environment but bad generalisation to real in the wild images.
Furthermore, most of the 3D pose estimation methods are restricted to a
single fully visible subject. In real-world scenarios, multiple people interact
in cluttered or even crowded scenes containing both self-occlusions of the
body and strong inter-person occlusions. Therefore, inferring the 3D pose
of all the subjects (without knowing in advance their number) from a single
and monocular RGB image is a harder problem and recent single-person 3D
human pose estimation methods fail in this case.

A natural approach is to decompose the multi-person ill-posed problem
into multiple single-person 3D estimations. These top-down approaches are
based on the generation of multiple pose proposals that are evaluated and
refined in a second time [7]. Thus, they perform many redundant estimations
and scale badly for a large number of subjects.

Another way to solve this problem is bottom-up strategy [8, 9, 10] that
manages the whole scene in a single forward pass to give multi-person 3D hu-
man pose estimates. By their principle, they are more effective in managing
occlusions between people and take advantage of context-related information
to predict the different poses.

In the present article, we propose a new bottom-up approach that man-
ages the whole scene in a single forward pass to give multi-person 3D human
pose estimates. Our method is based on the Stacked Hourglass architec-
ture [11] that has demonstrated its effectiveness for 2D human pose estima-
tion. Single shot multi-person 3D human pose estimation is challenging as
it needs to properly locate human joints and to regroup these estimations
into final 3D skeletons. By associating the Hourglass architecture with a
powerful joints grouping method named the associative embedding [3] and
a robust multi-person 3D pose description [10], we design an end-to-end ar-
chitecture that jointly performs 2D human joints detection, joints grouping
and full body 3D human pose estimation even when the subjects are par-
tially occluded or truncated by the image boundary. The proposed method
surpasses state of the art results on the CMU-Panoptic [12] dataset, achieves
higher accuracy than a state of the art single-shot method on the MuPoTS-
3D dataset [10], and shows good results on the Joint Track Auto dataset[13],
a synthetic but realistic dataset with a large number of people, various cam-
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era viewpoints and backgrounds. So far, this dataset has only been used for
joint tracking.

2. Related Work

Human pose estimation is more and more studied as it is very useful for
many applications (e.g. motion capture, human image synthesis, activity
recognition, sign language recognition, robotics vision, etc.). In this section,
we present recent deep learning approaches for 2D human pose estimation
and single/multi-person 3D human pose estimation.

2D human pose estimation: Most methods for single-person 2D pose
estimation extract probabilistic maps called heatmaps that estimates the
probability of each pixel to contain a particular joint. At inference time, the
2D joint positions correspond to the local maxima of the heatmaps. Most of
these methods [11, 14] are also iterative. A refined estimate of the heatmap
is obtained from the previous estimates and the convolutional features. Wei
et al. [14] refine the predictions over successive stages with intermediate
supervision at each stage. The Stacked Hourglass networks [11] processes
and consolidates features across scales to capture the spatial relationships of
the human body. Bin et al. [15] extend the Stacked Hourglass networks with
a Pose Graph Convolutional Network to model the structural relationships
between body key points. Li et al. [16] introduce a Temporal Consistency
Exploration module that captures geometric transformations between frames.

Both top-down and bottom-up human approaches have been proposed
for multi-person 2D human pose estimation. Top down methods [17, 18] first
detect human bounding boxes and then estimate 2D human poses. Never-
theless, these methods fail when the detector fails, in particular when there
are strong occlusions. Bottom-up approaches [2, 3] first estimate the 2D lo-
cation of each joint and then associate them into full skeletons. Cao et al.
[2] regress affinity between joints that means the direction of the bones in
the image. Unlike this approach that needs complex post-processing joints,
Newell et al. [3] propose to learn this association in an end-to-end network
thanks to the Associative Embeddings. Zhao et al. [19] exploit multi-level
contextual association with a cluster-wise feature aggregation network.

Single-person 3D human pose estimation: Motivated by the recent
advances in 2D human pose estimation, some existing approaches [20, 21,
22, 23, 24, 25, 26, 27, 28, 29] use only 2D human poses estimated by other
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methods [11, 2] to predict 3D human poses. Atrevi et al. [29] perform 2D
body silhouette matching to assign 3D joints. Chen and Ramanan [26] per-
forms a nearest neighbour search on a given 3D pose library with a large
number of 2D projections. Moreno-Noguer [27] formulate the problem of the
3D human pose estimation as a 2D to 3D distance matrix regression. Nie
et al. [28] predict depth on joints using LSTM. Martinez et al. [20] lift 2D
joints to 3D space using a deep residual neural network. Nevertheless, these
approaches are limited by the 2D pose estimator performance and do not
take into account important images clues, such as contextual information, to
make the prediction.

Other methods predict 3D human poses from images features[30, 31, 32,
33, 34]. Recent methods make this prediction directly from monocular images
[35, 36, 37, 38, 39, 40, 41] or from sequences of images [42, 43] using Convo-
lutional Neural Networks. The learning procedure needs images annotated
with 3D ground-truth pose. Since no large scale 3D in the wild annotated
dataset exists, current approaches tend to overfeat on the constrained envi-
ronment they have been trained on. The existing in the wild approaches use
either synthetic data [38, 39, 44] or are trained on both 3D and in the wild
2D datasets [45, 46, 47, 48, 49, 50, 51, 52]. Mehta et al. [45] use a pretrained
2D pose network to initialize the 3D pose regression network. Zhou et al.
use geometric constraints [50] in a weakly supervised setting. Pavlakos et
al. [51] take another approach by relying on weak 3D supervision in form
of a relative 3D ordering of joints which can be easily annotated even for in
the wild images. Yang et al. [52] use an adversarial loss that transfers the
3D human pose structures learned from the indoor annotated dataset to the
in-the-wild images. Although performing well with a single fully visible sub-
ject, these methods fail with several interacting people that are at different
image scale and that occult each other.

Multi-person 3D human pose estimation: In a top-down approach,
Rogez et al. [7, 53] generate human pose proposals that are further refined
using a regressor. Moon et al. [54] propose a camera distance aware multi-
person top-down approach that performs human detection (DetectNet), ab-
solute 3D human localisation (RootNet) and root relative 3D human pose
estimation (PoseNet) for each person independently. Zanfir et al. [9] esti-
mate the 3D human shape from sequences of frames using a pipeline process
followed by a 3D pose refinement based on a non-linear optimisation process
and semantic constraints. MubyNet [8] is a bottom-up multi-task network
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that identifies joints and learns to score their possible associations as limbs.
These scores are used to solve a global optimisation problem that groups the
joints into full skeletons following the human kinematic tree. Mehta et al.
[10] propose an approach that predicts 2D heatmaps, part affinity fields [2]
and Occlusions Robust Pose Maps (ORPM). This approach manages multi-
person 3D human pose estimation even for occluded and cropped people.
Nevertheless, the architecture used in [10] is not a stacked architecture while
the stacking strategy [2, 3] performs well in the 2D context.

The proposed method deals with multi-person 3D human pose estimation.
Unlike [9], it does not need sequence of images to refine the pose estimates.
It is based on the stacked hourglass networks [11] devoted to mono-person
2D pose estimation and showing very good performance on this task. Thus,
we extend this approach using the multi-person 3D poses description robust
to occlusions proposed in [10] and the associative embedding [3] to group
joints into full skeletons. The final network architecture is notably trained in
an end-to-end manner and the inference requires a single forward pass. Our
work is similar to Mehta et al. [10] as both methods perform bottom-up 3D
multi-person pose estimation but differ in two ways. First, a stacked archi-
tecture is used while a ResNet-50 [55] is used in [10]. Recent works show
the effectiveness of such a refinement strategy for 2D pose estimation [2, 11]
but also for 3D pose estimation [50]. Secondly, our work differ in the group-
ing method used to group joints’ detections into full human skeletons. Part
Affinity Fields are used in [10] which may be a sub-optimal way of grouping
joints because the grouping is performed by solving a bipartite graph match-
ing problem while the associative embedding method is a more direct way
to perform this grouping. Indeed, no multi-stage pipelines is required in our
model and the network simultaneously learn to perform pose estimation and
joints’ grouping. Furthermore, the experimental results detailed in Newell
et al. [3] show that the associative embedding method is more effective than
Part Affinity Fields in a 2D context.

3. Proposed Method

3.1. Description

Given a monocular RGB image I of size W × H, we seek to estimate
the 3D human poses PI = {Pi | i ∈ [1, . . . , N ]} where N is the number of
visible people, Pi ∈ R3×K are the 3D joints locations and K is the number of
predicted joints. The 3D joint coordinates are expressed relatively to their
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parents joints in the kinematic tree and converted to pelvis relative locations
for evaluation in a 3D coordinate reference oriented like the camera one. The
model is composed of several stacked hourglass networks. The image is first
sub-sampled to images features I’ of size W ′×H ′ by convolution and pooling
layers. Each hourglass module outputs heatmaps for 2D joints detection,
ORPM for 3D joints localisation and associative embeddings maps for joint
grouping, each map being of size W ′ × H ′. Except for the first hourglass
that takes as input only image features I’, other hourglasses takes as input
images features I’ and the prediction of the previous hourglass that is refined.
Figure 1 1 depicts an overview of the proposed method.

3.2. Occlusions Robust Pose Maps

Suppose we have an image I and the corresponding 3D poses PI . A good
3D pose representation to train a Convolutional Neural Network should have
the following characteristics:

• a fixed dimension regardless of the number of people in the image;

• being robust to occlusions and crops.

To address these two problems, we adopt the ORPM formulation. For
each joint, each hourglass network outputs three maps of dimensions W ′×H ′,
one for each X,Y,Z dimension. The size of these maps does not depend on
the number of visible people which allows the estimation of the 3D pose of
an arbitrary number of people. In these maps, the 3D joint coordinates of
each person are stored at different 2D locations:

• at the 2D positions of the pelvis and the neck;

• at the 2D position of the joint;

• at the 2D positions of the joints belonging to the same limb.

For instance, the 3D coordinates of the wrist joints are stored in the wrist
ORPM at the pelvis, the neck, the elbow and the shoulder 2D positions.
This redundancy in the ORPM allows a robustness to occlusions and crops.
Indeed, neck and pelvis are the joints that are the best estimated and the
less prone to occlusions.

At inference time, the 3D pose readout of a person is performed in two
steps: a full 3D pose readout followed by a 3D pose refinement.

The full 3D pose readout is performed by reading the full person 3D pose
at the following 2D positions in the ORPM:
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• at the pelvis 2D position, if the pelvis is detected;

• at the neck 2D position, if the neck is detected and the pelvis is not.

The full 3D pose readout is followed by the 3D pose refinement. During
this step, for each joint, we refine the predicted 3D coordinates previously
obtained by reading in the ORPM at one of the following 2D locations:

• at the joint 2D position in the ORPM if this 2D position is a valid
readout location;

• at the 2D position of a joint belonging to the joint’s limb. We take the
extremity of the joint’s limb and we go back in the kinematic tree until
a valid readout location is found.

If no valid readout location is found in the joint’s limb, the 3D coordinates
are not refined. A 2D readout position is considered valid if it satisfies the
following criteria:

• the confidence associated to the 2D predicted position of the joint is
higher than a given threshold τC ;

• the distance between the 2D joint position and the 2D position of the
other joints must be less than a given distance τD;

• the 3D coordinates read at this 2D position in the ORPM must be
anthropomorphically correct. In this purpose, we compute the mean
length of each limb in the training dataset and we reject each pre-
dicted 3D coordinates that gives limbs whose length is too far from the
corresponding computed mean.

3.3. Associative embedding

The network predicts for each joint a 2D heatmap and 3 ORMP for each
X, Y, Z joint coordinates. This description is independent of the number
of people. Now, we use the associative embedding to associate the joint to
full skeletons. Predicted heatmaps contain peaks at the 2D joint positions
of different subjects. To regroup the joints belonging to the same person,
an additional output is added to the network for each joint corresponding
to embeddings. Detections are then grouped by comparing the embedding
values of different joints at each 2D peak position in the heatmap. If two

7



joints have a close embedding value, they belong to the same person. The
network is trained to perform this grouping by predicting close embeddings
for joints belonging to the same person and distant embeddings for joints of
distinct people.

Formally, let Ek ∈ RW ′×H′
be an embedding map predicted by the net-

work for the kth joint and ek(x) be the embedding value at the 2D position
x. Let us consider an image composed of N people, each having K joints.
Let xk,n be the 2D ground-truth position of the kth joint of the person n. We
refer by reference embedding, the predicted embedding of a person obtained
as the mean of its embedding’s joints:

en =
1

K

∑
k

ek(xk,n) (1)

The grouping loss is then defined by:

LAE =
1

NK

∑
n

∑
k

(en − ek(xk,n))2 +
1

N2

∑
n

∑
n′ 6=n

exp

(
− 1

2σ2
(en − en′)2

)
(2)

The first term of equation (2) corresponds to a pull loss that brings sim-
ilar embeddings for joints belonging to a same person and the second part
corresponds to a push loss that gives different embeddings to joints of differ-
ent subjects. σ is a parameter giving more or less importance to the push
loss. It has been experimentally fixed to 1.

3.4. Network loss

We learn jointly the three following tasks: i) 2D joint localisation by pre-
dicting heatmaps; ii) 3D joint coordinates estimation with ORPM prediction;
iii) Joint grouping with associative embedding prediction. The network loss
is then:

L3DMP = L2D + LORPM + λAE LAE (3)

Where L2D is the euclidean distance between the ground-truth 2D heatmaps
and the predicted 2D heatmaps, LORPM is the euclidean distance between the
predicted ORMP and the ground-truth ORMP and LAE is the loss defined
by equation (2). λAE = 0.001 is the weight of the Associative Embeddings
loss.
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3.5. Multi-Scale Inference

Although being single-shot and working well when there are a reduced
number of people that are close to the camera, our method with a single
scale inference tends to fail in complex and crowded images like those from
the JTA dataset. In these images, visible people are at very different dis-
tances from the camera. Consequently, these people are projected with very
different pixel resolutions and the model has difficulties to handle properly
all these scales with a single image resolution. To handle these cases, Multi-
Scale Heatmaps, Multi-Scale Associative Embeddings maps and Multi-Scale
ORPM are computed.

Suppose that we have an input image I for which we want to extract
Multi-Scale Heatmaps, Multi-Scale Associative Embeddings maps and Multi-
Scale ORPM. Let S = s1, s2, . . . , sM the scale pyramid for which we want to
compute these maps, sM being the highest resolution scale.

First, for each scale si, we compute HMsi ∈ RK×Wsi×Hsi , Asi ∈ RK×Wsi×Hsi

, Osi ∈ R3×K×Wsi×Hsi respectively the predicted heatmaps, associative em-
bedding maps and ORPM for scale si. Each HMsi , Asi and Osi is resized to
maps HM’si , A’si and O’si that match the resolution of scale sM , as shown
in Figure 2.

The Multi-Scale Heatmaps are the mean of the rescaled heatmaps. Let
MSH ∈ RK×WsM

×HsM be the Multi-Scale Heatmaps, msh(j,x) be the value
of MSH at position x for joint j and h′si(j,x) be this value for the rescaled
heatmaps HM’si . Then, we have :

msh(j,x) =
1

M

M∑
i=1

h′si(j,x) (4)

The Multi-Sacle Associative Embeddings maps MSA ∈ RK×WsM
×HsM

×sM

are the concatenation of the rescaled associative emedings maps A’si .
In order to compute the Multi-Scale ORMP MSO ∈ R3×K×WsM

×HsM ,
we cannot compute a simple average like done for the heatmaps. Indeed, if
a person is detected at a given scale but not in another one, if we simply
compute the average between the ORPM at each scale, the well estimated
3D pose at one scale could be altered by this operation. To avoid this, the
mean is weighted by the predicted heatmaps and we take into account the
different readout locations induced by the ORPM formulation. This way,
more the model is confident about a predicted joint at a given scale, more
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the ORPM at this scale will contribute to the MSO. Let mso(c, j,x) be
the value of MSO for coordinate c (X, Y or Z coordinate) and joint j at
2D position x, O′si(c, j,x) be this value for the rescaled ORPM O’si and

RLj = rlj1, rl
j
2, . . . , rl

j
Lj

be the set of readout locations for the joint j in the
ORPM. Then, we have:

mso(c, j,x) =

∑M
i=1

∑Lj

l=1 h
′
si

(rljl ,x)o′si(c, j,x)∑M
i=1

∑Lj

l=1 h
′
si

(rljl ,x)
(5)

3.6. Final prediction

Once the network is trained, the final prediction is obtained in several
stages. First, a non-maximum suppression is applied on the heatmaps to
obtain the set of joint detections. Then, all the neck embeddings are read
from the neck embedding map at the predicted neck 2D positions. This pool
of 2D neck positions with their corresponding embedding gives the initial set
of detected people. The other joints associated to these necks need now to
be found. Each person is characterised by its reference embedding. The next
joint associated to a given person is the one having the highest detection
score and having a distance with the person embedding lower than a given
threshold τAE. We repeat this step until there is no more joint that respects
these two criteria. Once this process is done, the non-associated joints are
used to create a new pool of people. At the end, the 2D pose of each person
is obtained and used to read the 3D pose in the ORPM as described in
Section 3.2.

4. Experiments

In this paper, we address the problem of single shot multi-person 3D
human pose estimation. To evaluate our method, we perform separate ex-
periments on:

• single-person 3D pose estimation in a controlled environment (Human
3.6M dataset [56])

• multi-person 3D pose estimation in a controlled environment (CMU-
Panoptic dataset [12]); some images are depicted in Figure 3.

• multi-person 3D pose estimation in outdoor and indoor scenes (MuPoTS-
3D dataset [10]).
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• multi-person 3D pose estimation in virtual environments with many
people (JTA dataset [13]). This dataset is more complex and richer
than the previous one. Some images are shown in Figure 4. No previ-
ous method for 3D human pose estimation has been evaluated on this
dataset to the best of our knowledge.

Evaluation Metrics: To evaluate our Multi-Person 3D pose approach,
we use two metrics. The first one is the Mean per Joint Position Error
(MPJPE) that corresponds to mean Euclidean distance between ground truth
and prediction for all people and all joint. The second one is the 3DPCK
which is the 3D extension of the Percentage of Correct Keypoints (PCK)
metric used for 2D Pose evaluation, as well. A joint is considered correctly
estimated if the error in its estimation is less than 150mm. If an annotated
subject is not detected by our approach, we consider all of its joints to be
incorrect in the 3DPCK metric. We distinguish between 3DPCKr that is
calculated after root joints alignment and 3DPCKa that is calculated in the
orginal camera 3D space.

Training Procedure: The method was implemented with PyTorch. The
hourglass component is based on the public code in [3]. We used four stacked
hourglasses in our model, each one outputting 2D heatmaps, ORPM and
associative embeddings. We trained the model using mini-batches of size 30
on 8 Nvidia Titan X GPU during 240k iterations. We used the Adam[57]
optimiser with an initial learning rate of 10−4.

4.1. Single-person 3D pose estimation on Human 3.6M
Human 3.6M [56] is a dataset containing 3.6 million single-person RGB

images with 3D human poses annotated by MoCap systems. We used the
standard protocol for the evaluation: S1, S5, S6, S7 and S8 subjects for
training and the subjects S9 and S11 for testing.

Table 1 provides results of our method on the Human 3.6M dataset. Let
us notice that all models that achieve high performance on Human3.6m are
single-person models that take as input cropped images containing a single
fully visible subject. This setting is not representative of real world images
where people can be anywhere in the image, at various scales, truncated and
occulted by other people. The proposed model treats this general case and
produces reliable results in a single person setting with an MPJPE of 66.4
mm on the Human 3.6M dataset, better than most compared approaches. In
particular, it has a lower error than [10] that also uses ORPM but differs in
the architecture used and in the joint grouping method.
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Direction Discussion Eating Greet Phone Photo Pose Purchase

[35] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3
[20] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1
[45] 52.5 63.8 55.4 62.3 71.8 79.8 52.6 72.2
[36] 62.6 78.1 63.4 72.5 88.3 93.8 63.1 74.8
[50] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6
[7] 76.2 80.2 75.8 83.3 92.2 79.9 105.7 71.7
[10] 58.2 67.3 61.2 65.7 75.82 84.5 62.2 64.6
[21] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7

Ours 50.1 66.4 56.4 65.0 69.4 81.5 55.6 52.1

Sitting SittingD Smoke Wait WalkD Walk WalkT AVG

[35] 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
[20] 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
[45] 86.2 120.6 66.0 64.0 76.8 48.9 53.7 68.6
[36] 106.6 138.7 93.8 73.9 82.0 55.8 59.6 80.5
[50] 75.2 111.6 64.2 66.1 51.4 63.2 55.3 64.9
[7] 105.9 127.1 88.0 83.7 86.6 64.9 84.0 87.7
[10] 82.0 93.0 68.8 65.1 72.0 57.6 63.6 69.9
[21] 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4

Ours 83.8 115.4 62.7 64.4 78.1 48.0 53.1 66.4

Table 1: Mean per joint position error (MPJPE) in mm on the Human3.6M dataset.

4.2. Multi-person 3D pose estimation on CMU-Panoptic

CMU Panoptic [12] is a dataset containing images with several people
performing different scenarios (playing an instrument, dancing, etc.) in a
dome where several cameras are setup. This dataset is challenging because
of complex interactions and difficult camera viewpoints. We evaluate our
model following these protocols:

• Panoptic-1 protocol: it is the protocol used in [9, 8]. The model is eval-
uated on 9600 frames from HD cameras 16 and 30 and for 4 scenarios:
Haggling, Mafia, Ultimatum, Pizza. The model is trained on the other
28 HD cameras of this dataset.

• Panoptic-2 protocol: This protocol is an extension of the previous one.
Instead of evaluating on a subset of arbitrary selected frames, we eval-
uate on the entire sequences from cameras 16 and 30. The training
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dataset in this protocol is the frames from all the HD cameras (except
cameras 16 and 30) for the Haggling, Mafia, Ultimatum, Pizza scenar-
ios. The model is evaluated on the same scenarios by taking one frame
every ten frames from HD cameras 16 and 30.

• Panoptic-3 protocol: Previous protocols use a large number of training
cameras. To evaluate the robustness to the number of cameras and
to the amount of training data, we propose protocol Panoptic-3. The
model is trained on the Haggling, Mafia, Ultimatum, Pizza scenarios
but only a subset of the training cameras is used:

– Panoptic 3a: HD cameras 0, 2, 4, 6, 8, 10, 12, 14, 18, 20, 22, 24,
26 and 28 are used during training

– Panoptic 3b: HD cameras 0,4,8,12,20,24 and 28 are used during
training

– Panoptic 3c: HD cameras 0,8, and 24 are used during training

The test set is the same as Panoptic 2.

• Panoptic-4 protocol : In the previous protocols, the model is trained
and evaluated on the same scenarios. To evaluate the robustness to an
unseen scenario in new camera viewpoints, we propose the Panoptic-4
protocol. The training dataset in this protocol is the frames from all
the HD cameras (except cameras 16 and 30) from the Haggling, Mafia
and Ultimatum scenarios. The model is evaluated on the pizza scenario
by taking one frame every ten frames from HD cameras 16 and 30.

Comparison with prior work: On Panoptic-1 protocol, our model
improves the results over the recent state of the art methods on all the
scenarios (Table 2). It shows a global improvement of 5.0% compared to [8].
Note that unlike [8] we do not learn on any frame from the cameras 16 and
30 and on any external data. Actually, the proposed model does not need
a trained attention readout process thanks to the effective ORPM readout
process.

Ablative studies: Table 3 provides ablative results of our method
following Panoptic-1 protocol on the Haggling, Mafia, Ultimatum and Pizza
scenarios. Firstly, we present the results obtained by stacking one, two or
three hourglass modules. Each time an hourglass module is added, the Mean
per Joint Position Error (MPJPE) decreases (from 91.8 mm for one hourglass
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Method Haggling Mafia Ultimatum Pizza Mean

[37] 217.9 187.3 193.6 221.3 203.4
[9] 140.0 165.9 150.7 156.0 153.4
[8] 72.4 78.8 66.8 94.3 72.1

Ours, full 70.1 66.6 55.6 78.4 68.5

Table 2: Mean per joint position error (MPJPE) in mm on the Panoptic Dataset following
Panotic-1 Protocol

Method Nb of HG ORPM Haggling Mafia Ultimatum Pizza Mean
Ours, 1-HG 1 92.3 86.1 82.7 103.8 91.8
Ours, 2-HG 2 77.1 74.8 68.0 89.8 78.3
Ours, 3-HG 3 72.4 72.4 60.12 85.2 73.8
Ours, NR 4 × 101.5 124.2 105.7 130.3 118.8
Ours, full 4 70.1 66.6 55.6 78.4 68.5

Table 3: Mean per joint position error (MPJPE) in mm on the Panoptic Dataset following
Panoptic-1 protocol. (i-HG stands for i stacked hourglasses and NR for Naive Readout).

module to 68.5 mm for our full four hourglass modules model). This shows
the importance of the stacking scheme and the refinement process in the
model architecture. The penultimate line of this table shows the results
obtained with four hourglass modules and a Naive Readout (NR) in the
ORPM, that means when the 3D joint coordinates are read directly from
their 2D positions. Because of frequent crops and occlusions in the panoptic
dataset, this model has poor performance with an MPJPE of 118.8 mm.
This proves the importance of the ORPM storage redundancy to manage
occlusion. Our complete model(last row) with four hourglass modules and the
readout procedure described in Section 3.2 has the lowest MPJPE (68.5mm)

Examples of 3D human pose estimations on the Panoptic dataset are
shown in Figure 3. Our method can estimate the 3D pose of multiple people
even in case of truncation (1st, 2nd and last rows) or people overlap (2nd
and 4th rows)

Robustness to the number of training cameras : Protocols Panop-
tic 1 and 2 results are obtained by using a large number of training cameras.
What is the robustness of our model when using a reduced number of cam-
eras ? Table 4 provides Panoptic 3 protocol results. Panoptic 3a and 3b
results show that even by using only half and fourth of the training cam-
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Protocol Haggling Mafia Ultimatum Pizza Mean

Panoptic 2 78.3 60.7 84.2 78.3 68.1
Panoptic 3a 82.4 64.3 88.7 82.2 72.3
Panoptic 3b 84.0 74.2 87.4 92.0 76.4
Panoptic 3c 149.4 151.3 155.5 167.9 150.9
Panoptic 4 79.4 79.4

Table 4: Mean per joint position error (MPJPE) in mm on the Panoptic Dataset following
Panoptic-2, Panoptic-3 and Panoptic-4 protocols

eras, the MPJPE is only increased respectively by 6.9% and 12.2%. On the
other hand, where only 3 training cameras are used, the MPJPE is 2.2 times
greater than the Panoptic 2 MPJPE. This number of cameras is insufficient
to learn such a complex task. Even single person 3D human pose models are
trained on datasets[5, 45] that provides images from four cameras or more.

Performance on an useen scenario: Protocols Panoptic 1,2 and
3 show the ability of the model to generalise to unseen camera viewpoints.
Panoptic 4 results show the ability of the model to generalise to new scenarios.
The model is trained only on the Haggling, Mafia and Ultimatum scenarios
and evaluated on the unseen Pizza scenario. The Panoptic 4 MPJPE (79.4)
is close the MPJPE obtained on the Panoptic 2 protocol for the Pizza sce-
nario showing that model does not overfeat on the training scenarios and can
generalise to new ones.

4.3. Multi-person 3D pose estimation on JTA dataset

JTA (Joint Track Auto) is a dataset for human pose estimation and track-
ing in urban environment. It was collected from the realistic video-game the
Grand Theft Auto V and contains 512 HD videos of 30 seconds recorded at
30 fps. The collected videos feature a vast number of different body poses,
in several urban scenarios at varying illumination conditions and viewpoints.
People perform different actions like walking, sitting, running, chatting, talk-
ing on the phone, drinking or smoking. Each image contains a number of
people ranging between 0 and 60 with an average of more than 21 people.
The distance from the camera ranges between 0.1 to 100 meters, resulting
in pedestrian heights between 20 and 1100 pixels. None existing (virtual
or real) dataset with annotated 3D pose is comparable with JTA dataset
in terms of number of people per image, people and background variability.
As far as we know, we are the first to demonstrate the ability of a trained
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model to deal with such complex and rich environments with many people
at different camera distances and with different resolutions. 256 videos are
used for training and 128 for testing (the remaining 128 videos are used for
validation). From the testing videos, we take one frame every ten frames for
the evaluation.

Table 5 presents per camera distance results on the the JTA Dataset.
We evaluate our model on this dataset at different resolutions (S1=512px,
S2=1024px and S3=1536px) and also with the multi-scale inference described
in section 3.5. The images from this dataset contain a large number of people
in various distances from the camera. The distance from the camera can
have a significant impact on the performance of a 3D human pose estimator.
Indeed, distant people require higher image resolution and are more likely
to be occulted. For this reason, we provide in Table 5 results for people
in different ranges of distance from the camera. Note that our testing set
contains 262510 people. Among these people, 10% have a distance from the
camera less than 10 meters, 23% have a distance from the camera between
10 and 20 meters, 21% have a distance from the camera between 20 and 30
meters, 14% have a distance from the camera between 30 and 40 meters and
31% have a distance from the camera greater than 40 meters.

The resolution having the best overall 3DPCKr is the resolution S2 with a
3DPCKr of 37.8%. This resolution performs a good compromise to estimate
the pose of the high resolution people that S3 cannot handle properly and
low resolution people that are too small from scale S1. Resolution S1 has the
best results for people that are close to the camera (less than 10 meters) with
an MPJPE of 165.2mm and a 3DPCKr of 68.5%. Resolution S2 has the best
results for people that have a distance from the camera between 10 and 20
meters with a 3DPCKr of 62.3% and an MPJPE of 194.50. Resolution S3
has the best results for people that are far from the cameras (greater than
20 meters). These results show that each resolution is adequate to a given
range of people distance and consequently to a resolution of people.

The multi-scale inference (MSI) improves the overall 3DPCKr and MPJPE.
The 3DPCKr goes from 37.8 to 43.9 for the MSI and the MPJPE goes from
258.9mm to 193.5mm. MSI has better results than scale S2 and S3 for close
to the camera people (less than 10 meters) taking advantages from poses es-
timated from scale S1 but without improving over this scale for these people.
It surpasses all the scales for people that have a distance from the camera
greater than 10 meters.

Joint-wise analysis (Table 6) shows that the results are unequal from one
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joint to another one. Regardless of the distance to the camera, spines and
hips are always the best estimated joints. These articulations have a reduced
variability compared to the extremity joints like wrists and ankles that have
the worst MPJPE and 3DPCKr. Indeed, since the 3D joint coordinates are
expressed relatively to their parents joints in the kinematic tree and converted
to pelvis relative locations, errors in the estimation of a parent joint impact
the estimation of all its descendent in the kinematic tree. One way to solve
this issue could be to express the joints’ coordinates relatively to more stable
joints than their parent joints. For instance, the coordinates of the wrist
could be expressed relatively to the elbow but also to the shoulder which is
more stable and less prone to errors. A mechanism would be necessary to
fuse these predictions expressed relatively to different joints and chose the
more precise one. We leave this for a future work.

Examples of 3D human pose estimations on the JTA dataset are shown in
Figure 4. Our method can estimate the 3D pose in several urban scenarios
at varying illumination conditions and viewpoints. Nevertheless, very far
people are not detected and the method fails in case of crowded people.

4.4. Multi-person 3D pose estimation on MuPoTS-3D dataset

MuPoTS-3D [10] is a dataset containing 20 indoor and outdoor sequences
with ground truth 3D poses for up to three subjects. Like Mehta et. al [10],
our model is trained on the MuCo-3DHP dataset that has been generated by
compositing the existing MPI-INF-3DHP 3D single-person pose estimation
dataset [6] and the COCO-dataset [58] to ensure better generalisation. Each
mini-batch consists of half MuCo-3DHP and half COCO images. For COCO
data, the loss value for the ORPM is set to zero.

We compare our approach with the single-shot approach proposed by
Mehta et al. [10] and a recent two-stage approach [54]. Like [10], our model
is based on the ORPM formulation but differs in the stacked architecture used
and in the bottom-up joints association method. Table 7 provides 3DPCKr

results on this dataset. Our model achieves higher accuracy with a 3DPCKr

of 67.5% ( 72.7% when evaluating only on well detected people) compared
to the approach of Mehta et. al [10] that has a 3DPCKr of 65% (69.8
for matched people). Compared to the approach of Moon et. al. [54],
our approach has a lower 3DPCKr. This top-down approach uses Faster-R
CNN [59], an external two-stage object detector to compute human bounding
boxes. Each cropped box is then forwarded to a single-person 3D person
approach [60]. Consequently, the computational complexity of this model
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Scale Distance to camera MPJPE 3DPCKr

S1 (512 px)

<10m 165.2 68.5
>10m and <20m 220.6 61.6
>20m and <30m 358.7 42.2
>30m and <40m 409.7 36.0
>40m 382.1 32.2
All 294.0 33.1

S2(1024px)

<10 m 275.53 43.5
>10m and <20m 194.50 62.3
>20m and <30m 281.5 51.25
>30m and <40m 358.8 41.0
>40m 368.2 35.5
All 258.9 37.8

S3(1536px)

<10m 319.0 33.9
>10m and <20m 231.16 49.4
>20m and <30m 222.75 53.3
>30m and <40m 269.1 47.5
>40m 305.90 38.8
All 274.3 34.8

Multi Scale Inference(MSI)

<10m 175.5 55.8
>10m and <20m 137.3 68.4
>20m and <30m 187.3 57.8
>30m and <40m 231.8 49.3
>40m 262.1 41.7
All 193.5 43.9

Table 5: MPJPE and 3DPCKr on the JTA dataset. Results are provided per scale and
per camera distance that means by taking into account in the metrics computation only
the people that are in the corresponding distance range from the camera.

Distance to camera Metric head neck clavicles shoulders elbows wrists spines hips knees ankles all

>0
MPJPE 196.5 174.7 174.9 215.3 264.6 329.4 42.3 76.3 253.2 425.5 193.5
3DPCKr 41.1 44.6 44.9 33.8 27.2 19.0 74.4 73.9 25.7 8.9 43.9

<10m
MPJPE 131.7 195.1 191.8 219.5 218.7 254.6 45.8 66.97 236.1 395.9 175.5
3DPCKr 68.1 48.1 48.5 37.5 39.5 30.6 94.2 94.0 29.0 7.3 55.8

>10m and <20m
MPJPE 117.4 115.4 117.5 152.9 186.9 237.5 29.8 60.2 189.0 317.0 137.3
3DPCK 76.2 115.4 75.9 62.9 55.2 40.4 98.5 93.1 46.8 17.8 68.4

>20m and <30m
MPJPE 162.3 133.0 140.4 200.2 270.0 348.1 34.1 85.1 264.9 437.7 187.3
3DPCKr 61.0 70.6 67.8 46.5 33.5 20.8 97.5 85.8 30.2 11.1 57.8

>30m and <40m
MPJPE 211.4 166.4 177.6 257.6 347.3 347.3 41.2 105.1 311.9 516.9 231.8
3DPCKr 48.0 60.9 56.0 30.3 19.8 11.0 95.7 79.8 20.8 6.8 49.3

>40m
MPJPE 248.0 200.3 212.1 310.8 410.6 505.2 49.7 119.0 324.7 528.5 262.1
3DPCKr 39.2 50.1 45.3 18.0 11.1 6.0 89.7 72.1 13.1 4.5 41.7

Table 6: Joint wise MPJPE and 3DPCKr on the JTA Dataset of our approach with the
Multi-Scale Inference
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depends on the number of people in the image. If this number is large, this
approach scales badly while the proposed bottom-up model has a constant
inference time regarding the number of people.

While absolute 3D human pose estimation is not in the scope of this
work, absolute 3D poses can be obtained by minimising the reprojection
error between predicted root-relative 3D poses and 2D poses. Table 8 pro-
vides 3DPCKa results on the MuPoTS dataset. Our simple baseline can
be improved by more sophisticated methods that take into account image
features, joints occlusions, ground plane information and temporal contexts.
These improvements will be studied in a future work.
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(a) Stacked Hourglass architecture

K

K

2D Pose

3D Pose

3xKInput 
Image

Hourglass 
Network

Heatmaps

Associative 
Embeddings

ORPM

(b) Hourglass Network predictions

(c) Predicted Maps

Figure 1: The proposed model estimates full 3D skeletons for an arbitrary number of
people. The stacked hourglass architecture, depicted in a), is used. Figure b) illustrates
the prediction of each hourglass network that predicts, for each joint, a 2D localisation map
(heatmap), an associative embedding map and Occlusion Robust Pose Maps (ORPM).
These maps are successively refined by the following hourglass module. The last hourglass
produces the final result. Figure c) illustrates in more detail the maps predicted by an
hourglass network. The associative embedding maps contain different embedding values
for joints belonging to different subjects and close embedding for joints belonging to the
same subject. The ORPM store 3D joints coordinates at different 2D locations. All
joints’ coordinates are stored at the position of two root joints (neck and pelvis) at the
corresponding OPRM maps. These coordinates are also stored at the 2D positions of the
joint’s limb. For instance, the shoulder 3D coordinates are stored in the ORPM at the
shoulder 2D position but also at the elbow and wrist positions. This redundancy allows
3D full pose readout even in case of strong occlusions and cropping. Two examples are
presented for the head (left) and the right shoudler (right). Best viewed in color.
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Figure 2: Overview of the Multi-Scale Inference(MSI). MSI combines the predic-
tions made by the network at different image scales allowing the 3D poses prediction of
people with different resolution. For each scale si, heatmaps HMsi , ORPM Osi and As-
sociative Embedding maps Asi are predicted. These maps are then resized to the highest
scale (s3 here) and then combined following the procedure described in subsection 3.5 to
obtain the final Multi-Scale Heatmaps (MSH), Multi-Scale Associative embedings (MSA)
and Multi-Scale ORPM (MSO). Best viewed in color.
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Figure 3: Multi-person poses predicted by our approach on the CMU-Panoptic Dataset.
Ground truth translation and scale are used for visualisation. The first column corresponds
to the input image with the predicted 2D pose. The second column corresponds to the
ground truth 3D poses and the last column to the predicted 3D poses. These examples
show that our approach works with a variable number of people in the image and can
predict the 3D coordinates of joints that are not visible in the image thanks to the ORPM
redundancy. Best viewed in color.
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5. Conclusion

We have presented a single shot trainable model for multi-person 3D
pose estimation in real or virtual complex environments 2D and 3D human
joints are predicted using heatmaps and ORPM which have proven their
ability to manage occlusions. The difficult problem of associating joints to
people skeletons is managed using the recent associative embeddings method.
Additionally, the same stacked network jointly learns and estimates, in an
end-to-end manner, 2D human poses and 3D human poses exploiting the
complementarity of these tasks.

The experiments provided in this work have proven the importance of
the stacking scheme and the ORMP formulation, validating the proposed
network architecture. Furthermore, large- scale experiments, on the CMU
Panoptic dataset, demonstrate that the proposed approach results surpass
those of the state of the art. Experimental results on the MuPoTS-3D dataset
show the high accuracy of our model on both outdoor and indoor multi-
person scenes.

Experiments on the JTA Dataset are accurate for people close to the
camera, even in crowed situation. Nevertheless, more complex urban scenar-
ios involving many people at different image resolution remain challenging.
These experiments show also that the tree structure induces more error on
the extremity joints. One way to solve this problem is to express the joints’
coordinates relatively to more stable joints than their parent joints. The
choice of these stable joints and their use will be the subject of future work.
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Single image 3d human pose estimation from noisy observations, CVPR
(2012).

[24] C. Wang, Y. Wang, Z. Lin, A. L. Yuille, W. Gao, Robust estimation of
3d human poses from a single image, CVPR (2014).

[25] V. Ramakrishna, T. Kanade, Y. Sheikh, Reconstructing 3d human pose
from 2d image landmarks, ECCV (2012).

[26] C.-H. Chen, D. Ramanan, 3d human pose estimation= 2d pose estima-
tion+ matching, CVPR (2017).

[27] F. Moreno-Noguer, 3d human pose estimation from a single image via
distance matrix regression, CVPR (2017).

29



[28] B. X. Nie, P. Wei, S.-C. Zhu, Monocular 3d human pose estimation by
predicting depth on joints, ICCV (2017).

[29] D. F. Atrevi, D. Vivet, F. Duculty, B. Emile, A very simple framework
for 3d human poses estimation using a single 2d image: Comparison of
geometric moments descriptors, Pattern Recognition 71 (2017) 389–401.

[30] A. Agarwal, B. Triggs, 3d human pose from silhouettes by relevance
vector regression, CVPR (2004).

[31] G. Rogez, J. Rihan, S. Ramalingam, C. Orrite, P. H. Torr, Randomized
trees for human pose detection, CVPR (2008).

[32] C. Sminchisescu, A. Jepson, Generative modeling for continuous non-
linearly embedded visual inference, ICML (2004).

[33] L. Bo, C. Sminchisescu, A. Kanaujia, D. Metaxas, Fast algorithms for
large scale conditional 3d prediction, CVPR (2008).

[34] G. Shakhnarovich, P. Viola, T. Darrell, Fast pose estimation with pa-
rameter sensitive hashing, ICCV (2003).

[35] G. Pavlakos, X. Zhou, K. G. Derpanis, K. Daniilidis, Coarse-to-fine
volumetric prediction for single-image 3d human pose, CVPR (2017).

[36] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M. Shafiei, H.-P.
Seidel, W. Xu, D. Casas, C. Theobalt, Vnect: Real-time 3d human pose
estimation with a single rgb camera, ACM Transactions on Graphics
(TOG) (2017).

[37] A.-I. Popa, M. Zanfir, C. Sminchisescu, Deep multitask architecture for
integrated 2d and 3d human sensing, CVPR (2017).

[38] W. Chen, H. Wang, Y. Li, H. Su, Z. Wang, C. Tu, D. Lischinski,
D. Cohen-Or, B. Chen, Synthesizing training images for boosting human
3d pose estimation, 3DV (2016).

[39] G. Rogez, C. Schmid, Mocap-guided data augmentation for 3d pose
estimation in the wild, NIPS (2016).

[40] S. Li, A. B. Chan, 3d human pose estimation from monocular images
with deep convolutional neural network, ACCV (2014).

30



[41] M. Madadi, H. Bertiche, S. Escalera, Smplr: Deep learning based smpl
reverse for 3d human pose and shape recovery, Pattern Recognition
(2020) 107472.

[42] B. Tekin, A. Rozantsev, V. Lepetit, P. Fua, Direct prediction of 3d body
poses from motion compensated sequences, CVPR (2016).

[43] X. Zhou, M. Zhu, S. Leonardos, K. G. Derpanis, K. Daniilidis, Sparse-
ness meets deepness: 3d human pose estimation from monocular video,
CVPR (2016).

[44] G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black, I. Laptev,
C. Schmid, Learning from synthetic humans, CVPR (2017).

[45] D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko, W. Xu,
C. Theobalt, Monocular 3d human pose estimation in the wild using
improved cnn supervision, 3DV (2017).

[46] X. Sun, J. Shang, S. Liang, Y. Wei, Compositional human pose regres-
sion, ICCV (2017).

[47] E. Simo-Serra, A. Quattoni, C. Torras, F. Moreno-Noguer, A joint model
for 2d and 3d pose estimation from a single image, CVPR (2013).

[48] F. Zhou, F. De la Torre, Spatio-temporal matching for human detection
in video, ECCV (2014).

[49] B. Tekin, P. Márquez-Neila, M. Salzmann, P. Fua, Learning to fuse 2d
and 3d image cues for monocular body pose estimation, ICCV (2017).

[50] X. Zhou, Q. Huang, X. Sun, X. Xue, Y. Wei, Towards 3d human pose
estimation in the wild: a weakly-supervised approach, ICCV (2017).

[51] G. Pavlakos, X. Zhou, K. Daniilidis, Ordinal depth supervision for 3d
human pose estimation, CVPR (2018).

[52] W. Yang, W. Ouyang, X. Wang, J. Ren, H. Li, X. Wang, 3d human
pose estimation in the wild by adversarial learning, CVPR (2018).

[53] G. Rogez, P. Weinzaepfel, C. Schmid, Lcr-net++: Multi-person 2d
and 3d pose detection in natural images, IEEE transactions on pattern
analysis and machine intelligence (2019).

31



[54] G. Moon, J. Y. Chang, K. M. Lee, Camera distance-aware top-down
approach for 3d multi-person pose estimation from a single rgb image,
arXiv preprint arXiv:1907.11346 (2019).

[55] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition, in: CVPR.

[56] C. Ionescu, D. Papava, V. Olaru, C. Sminchisescu, Human3. 6m: Large
scale datasets and predictive methods for 3d human sensing in natural
environments, IEEE Transactions on Pattern Analysis and Machine
Intelligence (2014).

[57] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,
arXiv preprint arXiv:1412.6980 (2014).

[58] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, C. L. Zitnick, Microsoft coco: Common objects in context,
in: ECCV.

[59] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time
object detection with region proposal networks, NIPS (2015).

[60] X. Sun, B. Xiao, F. Wei, S. Liang, Y. Wei, Integral human pose regres-
sion, in: ECCV.

32


	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Description
	3.2 Occlusions Robust Pose Maps
	3.3 Associative embedding
	3.4 Network loss
	3.5 Multi-Scale Inference
	3.6 Final prediction

	4 Experiments
	4.1 Single-person 3D pose estimation on Human 3.6M
	4.2 Multi-person 3D pose estimation on CMU-Panoptic
	4.3 Multi-person 3D pose estimation on JTA dataset
	4.4 Multi-person 3D pose estimation on MuPoTS-3D dataset

	5 Conclusion

