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Abstract

Recent advances in machine learning and prevalence of digital medical images have

opened up an opportunity to address the challenging brain tumor segmentation (BTS)

task by using deep convolutional neural networks. However, different from the RGB

image data that are very widespread, the medical image data used in brain tumor seg-

mentation are relatively scarce in terms of the data scale but contain the richer informa-

tion in terms of the modality property. To this end, this paper proposes a novel cross-

modality deep feature learning framework to segment brain tumors from the multi-

modality MRI data. The core idea is to mine rich patterns across the multi-modality

data to make up for the insufficient data scale. The proposed cross-modality deep

feature learning framework consists of two learning processes: the cross-modality fea-

ture transition (CMFT) process and the cross-modality feature fusion (CMFF) process,

which aims at learning rich feature representations by transiting knowledge across dif-

ferent modality data and fusing knowledge from different modality data, respectively.

Comprehensive experiments are conducted on the BraTS benchmarks, which show that

the proposed cross-modality deep feature learning framework can effectively improve

the brain tumor segmentation performance when compared with the baseline methods
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and state-of-the-art methods.

Keywords: Brain tumor segmentation, Cross-modality feature transition,

Cross-modality feature fusion, Feature learning.

1. Introduction

As the prevailing disease with the highest mortality, the research on brain tumors

has received more and more attention. In this paper, we study a deep learning-based

automatic way to segment the glioma, which is called brain tumor segmentation (BTS)

[1]. In this task, the medical images contain four MRI modalities, which are the T1-

weighted (T1) modality, contrast enhanced T1-weighted (T1c) modality, T2-weighted

(T2) modality, and Fluid Attenuation Inversion Recovery (FLAIR) modality, respec-

tively. The goal is to segment three different target areas, which are the whole tumor

area, the tumor core area, and the enhancing tumor core area, respectively. An example

of the multi-modality data and the corresponding tumor area labels are shown in Fig.

1.

With the rapid development of the deep learning technique, deep convolutional

neural networks (DCNNs) have been introduced into the medical image analysis com-

munity and widely used in BTS. Given the established DCNN models, existing brain

tumor segmentation methods usually consider this task as a multi-class pixel-level clas-

sification problem just as the semantic segmentation task on common RGB image data.

However, by omitting the great disparity between the medical image data and the com-

mon RGB image data, such approaches would not obtain the optimal solutions. Specif-

ically, there are two-fold distinct properties between these two kinds of data: 1) Very

large-scale RGB image data can be acquired from our daily life by the smart phones

or cameras. However, the medical image data are very scarce, especially for the cor-

responding manual annotation that requires expertise and tends to be very time con-

suming. 2) As a departure from the common RGB image data, the medical image data

(for the investigated brain tumor segmentation task and other tasks) usually consist of

multiple MRI modalities that capture different pathological properties.

Due to the above-mentioned characteristics, BTS still has challenging issues needed
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Figure 1: An illustration of the brain tumor segmentation task. The top four volume data are the multi-

modality MR image data. The segmentation labels for the Whole Tumor area (WT), Tumor Core area (TC),

Enhancing Tumor Core area (WT), and all types of tumor areas are shown in the bottom row. The regions

without colored masks are normal areas.

to be addressed. Specifically, due to the insufficient data scale, training a DCNN model

might surfer from the over-fitting issue as DCNN models usually contain numerous

network parameters. This increases the difficulty of training a desired DCNN model

for brain tumor segmentation. Secondly, due to the complex data structure, directly

concatenating multi-modality data to form the network input like in the previous works

[2, 3] is neither the best choice to fully take advantage of the knowledge underlying

each modality data, nor the effective strategy to fuse the knowledge from the multi-

modality data.

To address these issues, this paper proposes a novel cross-modality deep feature

learning framework to learn to segment brain tumors from the multi-modality MRI

data. Considering the fact that the medical image data are relatively scarce in terms

of the data scale but contain rich information in terms of the modality property, we

propose to explore rich patterns among the multi-modality data to make up for the in-

sufficient data scale. Specifically, the proposed cross-modality feature learning frame-

work consists of two learning processes: the cross-modality feature transition (CMFT)

process and the cross-modality feature fusion (CMFF) process.

In the cross-modality feature transition process, we adopt the generative adversar-
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Figure 2: An illustration of the proposed cross-modality deep feature learning framework for brain tumor

segmentation. To be brief and to the point, we only show the learning framework by using two-modality

data.

ial network learning scheme to learn useful features that can facilitate the knowledge

transition across different modality data. This enables the network to mine intrinsic

patterns that are helpful to the brain tumor segmentation task from each modality data.

The intuition behind this process is that if the DCNN model can transit (or convert) a

sample from one modality to another modality, it may capture the modality patterns of

the two MRI modalities as well as the content patterns (such as the organ type and lo-

cation) of this sample, while these patterns are helpful for brain tumor segmentation. In

the cross-modality feature fusion process, we build a novel deep neural network archi-

tecture to take advantage of the deep features obtained from the cross-modality feature

transition process and implement the deep fusion of the features captured from differ-

ent modality data to predict the brain tumor areas. This is distinct from the existing

brain tumor segmentation methods or the naive strategies which either 1) implement

the fusion process simply at the input level, i.e., concatenating multi-modality image

data as the network input, or 2) implement the fusion process at the output level, i.e.,

integrating the segmentation results from different modality data.

Fig. 2 illustrates the proposed learning framework briefly, from which we can

observe that in the cross-modality feature transition process, we build two generators

and two discriminators to transit the knowledge across the two modality data. Here

the generators are used to generate one modality data from the other modality data and
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the discriminators aim to distinguish the generated data and the real data. While in

the cross-modality feature fusion process, we adopt the generators to predict the brain

tumor regions from each modality data and fuse the deep features learned from them to

obtain the final segmentation results. In the fusion branch, we design a novel scheme by

using the single-modality prediction results to guide the feature fusion process, which

can obtain stronger feature representations during the fusion process to aid segment the

desired brain tumor areas.

To sum up, this work mainly has four-fold contributions as follows:

• By revealing the intrinsic difference between the segmentation tasks on the med-

ical image data and the common RGB image data, we establish a novel cross-

modality deep feature learning framework for brain tumor segmentation, which

consists of the cross-modality feature transition process and the cross-modality

feature fusion process.

• We present a novel idea to learn useful feature representations from the knowl-

edge transition across different modality data. To achieve this goal, we build a

generative adversarial network-based learning scheme which can implement the

cross-modality feature transition process without any human annotation.

• For implementing the cross-modality feature fusion process, a new cross-modality

feature fusion network is built for brain tumor segmentation, which transfers the

features learned from the feature transition process and is empowered with the

novel fusion branch to use the single-modality prediction results to guide the

feature fusion process.

• Comprehensive experiments are conducted on the BraTS benchmarks, which

show that the proposed approach can effectively improve the brain tumor seg-

mentation performance when compared with the baseline methods and the state-

of-the-art methods.
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2. Related Works

2.1. Brain Tumor Segmentation

Brain tumor segmentation is a hot topic in the medical image analysis and machine

learning community. It has received great attention in the past few years. Early efforts

in this filed designed hand-crafted features and adopted the classic machine learning

models to predict the brain tumor areas. Due to the rapid development of the deep

learning technique, the recent brain tumor segmentation approaches mainly apply the

deep features and classifiers from the DCNN models. Based on the type of the convo-

lutional operation used in the DCNN models, we briefly divide the existing methods

into two groups, i.e., the 2D CNN-based methods and 3D CNN-based methods. The

2D CNN-based methods [4, 5, 6] apply the 2D convolutional operations and split the

3D volume samples into 2D slices or 2D patches. While the 3D CNN-based methods

[7, 8, 9] apply the 3D convolutional operations, which can take the whole 3D volume

samples or the extracted sub 3D patches as the network input.

Although these deep learning-based methods can already obtain much powerful

feature representation when compared to the early classical methods that are based on

the hand-crafted features, they did not make full use of the multi-modality data in the

feature learning process, which limits the effectiveness of the learned feature repre-

sentations and the final segmentation results. Realizing this issue, Fidon et al. [10]

proposed a multi-modal convolutional network for brain tumor segmentation, where

nested network structure was designed to explicitly leverage deep features within or

across modalities. Different from our approach, they did not formulate the across

modality transition process and did not employ the mask guidance scheme in the fea-

ture fusion process.

2.2. Multi-modality Feature Learning

Multi-modality feature learning is gaining more and more attention in the recent

years as the multi-modality data can provide richer information for sensing the physical

world. Existing works have applied multi-modality feature learning in many computer

vision-based tasks such as 3D shape recognition and retrieval [11], survival prediction

6



[12], RGB-D object recognition [13] and person re-identification [14]. Among these

methods, Bu et al. [11] built a multi-modality fusion head to fuse the deep features

learnt by a CNN network branch and a Deep Belief Network (DBN) branch. To inte-

grate multiple modalities and eliminate view variations, Yao et al. [12] designed a deep

correlational learning module for learning informative features on the pathological data

and the molecular data. In [15], Wang et al. proposed a large-margin multi-modal deep

learning framework to discover the most discriminative features for each modality and

harness the complementary relationship between different modalities.

Although the multi-modality feature learning technique has been applied in many

computer vision tasks, it is still a under-studied issue in the research field of medical

image understanding, especially for the task of brain tumor segmentation. To this end,

this paper makes an early effort to build a cross-modality deep feature learning frame-

work for brain tumor segmentation. The cross-modality feature transition (CMFT)

process and the cross-modality feature fusion (CMFF) process designed in this work

are also novel to the existing multi-modality feature learning methods.

3. The Proposed Approach

3.1. Cross-Modality Feature Transition

As shown in the left part of Fig. 2, given modality A and modality B, we adopt

the generative adversarial learning strategy to facilitate the knowledge transition across

the different modality data, which in turn captures the informative patterns from each

modality data. To be specific, for each modality data, we build a generative network,

i.e., the generator G, and a discriminative network, i.e., the discriminator D, to formu-

late the feature transition process. For achieving this goal, we apply the CycleGAN

learning scheme [16] to learn the transition GA
B : A→ B and GB

A : B → A so that

GB
A(G

A
B(A)) = A,

GA
B(G

B
A(B)) = B,

(1)

where A and B indicates the “real” input sample from the modality A and modality

B, respectively. Compared with other generative adversarial learning schemes, the
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cycle consistency-based learning scheme adopted by the CycleGAN model has the

following advantages for learning representative features: Firstly, it learns the transition

GA
B : A → B and GB

A : B → A simultaneously, thus facilitating a better exploration

of the relationship between the two modality data and maintaining the content of each

modality data. Secondly, during the training process, it does not necessarily require

matched modality data which might be hard to obtain in practical applications.

Besides the generators, there are also two discriminators DA and DB , where DA

distinguish the “fake”A-modality data generated byGB
A(B) from the “real”A-modality

data while DB distinguish the “fake” B-modality data generated by GA
B(A) from the

“real” B-modality data. During the generative adversarial learning process, we adopt

the adversarial loss to match the distribution of the generated fake data to the distribu-

tion of the “real” data. To this end, the adversarial loss is defined as:

Ladv(G
A
B , DB) = EB [(DB(B)− 1)2]

+ EA[DB(G
A
B(A))2],

(2)

Ladv(G
B
A , DA) = EA[(DA(A)− 1)2]

+ EB [DA(G
B
A(B))

2],
(3)

where EM [τ ] indicates the expectation of τ for all the samples from modality M.

In addition, we also follow [16] to apply the cycle consistency loss to constrain the

modality transition functionGA
B andGB

A from random permution in the target modality

domain. To enforce the modality transition functionGA
B andGB

A to be cycle consistent,

we encourage GA
B to transit the generated “fake” A-modality data GB

A(B) back to the

“real” B-modality data, and similarly encourage GB
A to transit the generated “fake”

B-modality data GA
B(A) back to the “real” A-modality data. To this end, the cycle

consistency loss is defined as:

Lcyc = EA[||GB
A(G

A
B(A))− A||1]

+ EB [||GA
B(G

B
A(B))− B||1].

(4)

By considering both the adversarial loss and the cycle consistency loss, the full

learning object function of the cross-modality feature transition process becomes:

arg min
GA

B ,GB
A

max
DA,DB

L(GA
B , G

B
A , DA, DB), (5)
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Figure 3: Illustration of the detailed architecture of the generator, where IN is short for instance normal-

ization. Notice that this is also the architecture of the single-modality feature learning branch. The only

difference between these two network branches is the last output layer, where the output of the generator is

drawn in the solid line while the output of the single-modality feature learning branch is drawn in the dashed

line. The deep features in the last two convolutional layers, as well as the output of the single-modality

feature learning branch, are connected to the cross-modality feature fusion branch, which is annotated in red.

For ease of understanding, we show the network in 2D convolution-like architecture. While we actually use

the 3D convolution in network layers.

where

L(GA
B , G

B
A , DA, DB) = Ladv(G

A
B , DB)

+ Ladv(G
B
A , DA)

+ λLcyc(G
A
B , G

B
A),

(6)

λ is a hyper-parameter to weigh the adversarial loss and the cycle consistency loss.

Network Architecture: When designing the generator, we adopt a U-net architecture

due to its effectiveness in both image-to-image translation [17] and brain tumor seg-

mentation [6, 4, 9]. Considering the training samples are in form of 3D volumes, we

adopt 3D convolutions in the network layers, thus obtaining the 3D U-net architecture.

The concrete network architecture is shown in Fig. 3. For the discriminator, we follow

the existing work [16] to construct it by using several convolutional layers to obtain the

classification results. The concrete network architecture of the discriminator is shown

in Table 1.
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Table 1

The architecture of the discriminator network branch. In the “Input” block, the first dimension is the

number of channels and the next three dimensions are the size of the feature maps. Conv. is short for the 3D

convolution, and # filters indicates the number of filters. Notice that when learning on modality quaternions

mentioned in Sec. 3.3, the number of the input channel of L1 becomes 2.

Type Filter size stride # filters Input

L1 Conv. 4× 4× 4 2 16 1, 128, 128, 128

L2 LReLU - - - 16, 64, 64, 64

L3 Conv. 4× 4× 4 2 32 16, 64, 64, 64

L4 INor. - - - 32, 32, 32, 32

L5 LReLU - - - 32, 32, 32, 32

L6 Conv. 4× 4× 4 2 64 32, 32, 32, 32

L7 INor. - - - 64, 16, 16, 16

L8 LReLU - - - 64, 16, 16, 16

L9 Conv. 4× 4× 4 2 128 64, 16, 16, 16

L10 INor. - - - 128, 8, 8, 8

L11 LReLU - - - 128, 8, 8, 8

L12 Conv. 4× 4× 4 1 1 128, 8, 8, 8
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3.2. Cross-Modality Feature Fusion

To implement the cross-modality feature fusion process, we establish a novel cross-

modality feature fusion network for brain tumor segmentation. Equipped with the

newly designed fusion branch which uses the single-modality prediction results to

guide the feature fusion process, the proposed network can not only transfer the fea-

tures learned from the feature transition process conveniently but also learn powerful

fusion features for segmenting the desired brain tumor areas.

Given the input data from modality A and B, the cross-modality feature fusion

network contains two single-modality feature learning branches SA and SB and a

cross-modality feature fusion branch SF for segmenting the desired brain tumor ar-

eas. Specifically, the single-modality feature learning branch SA takes the A-modality

data as the input and learns representative features to predict the segmentation masks

of the brain tumor areas SA(A) as the output. Similarly, the single-modality feature

learning branch SB takes the B-modality data as the input and learns representative

features to predict the segmentation masks of the brain tumor areas SB(B) as the out-

put. The cross-modality fusion branch takes the deep features as well as the predicted

segmentation masks of the two single-modality feature learning branches as input to

learn more powerful fusion features to generate the final segmentation masks of the

bairn tumor areas SF (A,B). To learn the cross-modality feature fusion network, we

introduce the following object function:

arg min
SA,SB ,SF

Lseg(SA) + Lseg(SB) + Lseg(SF ). (7)

To prevent the model from being heavily affected by the unbalance among different

types of tumor areas, we follow [18] to calculate Lseg(SA), Lseg(SB), and Lseg(SF )

by the Dice Similarity Coefficient (DSC). Thus, for Lseg(SA), we have

Lseg(SA) = 1− 2× |Y ∩ SA(A)|
|Y|+ |SA(A)|

, (8)

where Y is the ground-truth annotation for the desired brain tumor areas. It goes the

same for Lseg(SB) and Lseg(SF ).

Network Architecture: Although the single-modality feature learning branch does
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Figure 4: Illustration of the cross-modality feature fusion branch with the mask-guided feature learning

scheme, where IN is short for instance normalization. For ease of understanding, we show the network in

2D convolution-like architecture. While we actually use the 3D convolution in network layers.

not necessarily be the same with the generator used in cross-modality feature transi-

tion, the more network layers shared by these two networks, the richer features can

be conveniently transferred from the feature transition process to the feature fusion

process. To this end, we adopt a quite similar network architecture to the generator

GA
B (or GB

A) to build the single-modality feature learning network branches SA and

SB (see the right part of Fig. 2). Compared to the generator, the only difference is

the number of kernels set to the last convolutional layer. As shwon in Fig. 3, the last

convolutional layer of the single-modality feature learning network branch uses four

convolutional kernels, while the generator only uses one convolutional kernel in the

last convolutional layer. As can be seen, designing the single-modality feature learning

network branch in this way could share the most network layers with the generator and

thus can take full advantage of the features learned from the cross-modality feature

transition process.

For fusing the knowledge from each modality data, we propose a novel cross-

modality feature fusion branch. As shown in Fig. 4, the proposed cross-modality

feature fusion branch contains several convolutional layers to fuse deep features from

different layers of the two single-modality feature learning network branches. The
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Figure 5: Examples of the modality pairs, where we use the T1 modality and T1c modality to form the

modality pair A while using the T2 modality and FLAIR modality to form the modality pair B. From the

examples we can observe that the information contained within each modality pair is relatively consistent

while the information contained across the different modality pairs is relatively distinct and complementary.

This enables the cross-modality feature transition process to learn rich patterns.

convolutional layers are then followed by a mask-guided attention block to learn more

powerful fusion features for brain tumor segmentation. Different from the conven-

tional attention modules, such as [19, 20], the attention masks in our mask-guided

attention block are the segmentation masks predicted by the single-modality feature

learning branches rather than those inferred from the deep feature maps from previ-

ous network layers. In other words, the attention masks in the conventional attention

network blocks/modules are used to guide the network learning on its own network

branch. They are learned in a bottom-up manner. In contrast, the attention masks in

this work are used to guide the network learning on a different network branch and they

are learned in a top-down manner.

13



Figure 6: Illustration of the proposed strategy to extend the proposed cross-modality deep feature learning

framework to work on modality quaternions. In the cross-modality feature transition process, we convert the

input and output from one modality data to the concatenation of an modality pair. While in the cross-modality

feature fusion process, we convert the single-modality feature learning branch to the single-modality-pair

feature learning branch, which predicts the segmentation masks of each single-modality-pair.

3.3. Learn on Modality Quaternions

As the data used in the investigated brain tumor segmentation task usually have

four modalities, i.e., the T1, T1-c, T2, and FLAIR modality (see Fig. 1), we also ex-

plore effective extension strategies to enable the aforementioned cross-modality deep

feature learning framework to work on the modality quaternions. An naive extension

is to adopt six cycGAN models, i.e, {GA
B , G

B
A}, {GA

C , G
C
A}, {GA

D, G
D
A}, {GB

C , G
C
B},

{GB
D, G

D
B}, {GC

D, G
D
C }, to learn the transition functions between each modality data

and fuse the four single-modality feature learning branches in the cross-modality fea-

ture fusion network. Although this strategy can also learn rich feature representations

from both the cross-modality feature transition and cross-modality feature fusion pro-

cesses, it requires too large computational cost to implement in practice.

To this end, we propose a simple yet effective way to implement the learning frame-

work on modality quaternions. Instead of transiting knowledge between each modality

data, we implement the transition process between each modality pair. That is to say,

the transition process is extended to transit knowledge from a modality pair to another

modality pair. In this work, we use the T1 and T1-c modalities to form a modality

pair while T2 and FLAIR modalities to form another modality pair. In this way, the in-

formation within each modality pair tends to be consistent while the information from

different modality pairs tends to be distinct and complementary (see Fig. 5), which

enables the cross-modality feature transition process to learn rich patterns. Based on

this strategy, we implement the proposed approach on modality quaternions by simply
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converting the input data of the generators and discriminators in the CMFT process

and the input data of the feature learning branch in the CMFF process to be the con-

catenation of two modality data, while other parts of the learning framework remain

unchanged (see Fig. 6).

3.4. Discussion of the Learning Framework

As described in previous sections, the proposed learning framework contains two

processes, i.e., the CMFT process and the CMFF process. In fact, these two processes

can also be considered as two learning phases of a unified DCNN model. Specifically,

imaging that we have a DCNN model contains two generators, two discriminators and

a fusion network branch, our approach trains the two generators and the two discrim-

inators in the first learning phase and then trains the two generators (with a modified

prediction layer and loss function) together with the fusion network branch in the sec-

ond learning phase. From this point of view, our proposed deep learning framework

can be seen as a unified end-to-end learning model with two-phase training strategy.

Besides the two-phase training strategy, we can actually learn CMFT and CMFF

simultaneously, where both Eq. 5 and Eq. 7 would be introduced to form the new

objective function of each training sample. However, by simultaneously learning the

two generators, the two discriminators and the fusion network branch, this strategy has

too much memory costs especially when exploring the 3D volume data like in this task.

Thus, we choose to adopt the two-phase training strategy to implement our approach.

4. Experiments

4.1. Experimental Settings

In the BraTS 2017 and BraTS 2018 benchmark datasets, there are four modalities,

i.e., T1, T1-c, T2, and FLAIR, for each patient. The BraTS 2017 benchmark has two

sub-sets: a training set, which contains 285 subjects, and a validation set containing

46 subjects with hidden ground truth. The BraTS 2018 benchmark contains the same

number of subjects in its training set but has 66 subjects in the validation set with hidden

ground truth. When implementing the experiments on each of the benchmarks, we use
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the training set to train the brain tumor segmentation models while use the validation

set to test the segmentation performance. We adopted the official metrics that are used

by the online evaluation system of BraTS for quantitative evaluation. They are the

Dice score, Sensitivity, Specificity, and the 95th percentile of the Hausdorff Distance

(HD95).

Before training, each of the input modality data was normalized to have zero mean

and unit variance. We randomly sampled patches of size 128 × 128 × 128 within

the brain tumor area as the inputs of both the cross-modality feature transition model

and the cross-modality feature fusion model. As a trade-off between performance and

memory consumption, the base number of filters in the U-Net was designed to be 16,

which was increased to twice after each down-sampling layer. The Adam optimizer

with an initial learning rate of 10−4 was applied to optimize the objective function,

where λ was set to be 10. When training the cross-modality feature fusion network, the

pre-trained parameters of the transition mappings GA
B and GB

A were transferred to the

SA and SB for further fine-tuning. The SA and SB took the same input modality data

as the GA
B and GB

A . The parameters of the cross-modality fusion branch are randomly

initialized. We used the Adam optimizer with an initial learning rate of 10−4 and a

batch size of 1 to train this network branch. All of the network branches were imple-

mented in Pytorch on a NVIDIA GTX 1080TI GPU. It totally takes 18 hours and 57

minutes to complete the training process and the test speed is 3.2 seconds per subject.

4.2. Experiments on the BraTS 2017 Benchmark

In this subsection, we evaluate the proposed approach on the BraTS 2017 bench-

mark. We first analyze the effect of the main network branches of the proposed learn-

ing model by conducting the experiments on the following baseline models. The first

two baseline models train the single-modality-pair feature learning branches SA and

SB with the input modality data {T1,T1c} and {T2,FLAIR}, respectively. The third

baseline model “SA + SB” fuses the prediction of SA and SB by directly comput-

ing the average of the obtained segmentation maps. Then, we compare our approach

with the baseline models “Ours w/o MG” and “Ours w CA” which adopt the proposed

cross-modality feature fusion branch but without using the mask-guided attention block
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or directly using the conventional attention block [21]. All the aforementioned base-

line models are fine-tuned based on the network parameters obtained from the cross-

modality feature transition process. The experimental results are reported in top rows

of Table 2.

By comparing SA, SB and our approach, we can observe that simply using a single-

modality-pair feature learning branch only obtains poor performance due to the inade-

quate modality information. The performance of SA + SB is better than SB but worse

than SA, which might be caused by the large performance gap between SB and SA.

By comparing “Ours w/o MG”, SA + SB , and “Ours” we can observe that using the

proposed feature fusion branch can significantly improve the feature learning capacity

of our approach and using the mask-guided attention block can further improve the

segmentation accuracy. Notice that when using the conventional attention block, the

network works better for the ET area but worse for the TC and WT areas, making the

average performance of “Ours w CA” less effective than “Ours w/o MG” and “Ours”.

In addition, we also conducted the ablation study by implementing three baseline

models which directly train the CMFF network to obtain the segmentation results with-

out the CMFT process. The first baseline “Ours random” used the random values

to initialize the CMFF network, while the second baseline “Ours voc” used the pa-

rameters pre-trained on the PASCAL VOC segmentation dataset [33]5 to initialize the

CMFF network. To facilitate the parameter transferring between the 2D image data

and 3D volume data, we first trained a 2D-Unet on the PASCAL VOC segmentation

dataset and then extended its convolution kernels to 3D convolution kernels as in [34].

For the third baseline “Ours self”, we replaced the proposed CMFT process by a self

reconstruction-based feature learning process that learns patterns by reconstructing the

input data.

The experimental results are reported in bottom rows of Table 2. From the com-

parison results, we can observe that 1) due to the inadequate of medical imaging data,

directly training the DCNN models with random parameter initialization is not able

5PASCAL VOC segmentation dataset is a large-scale image set that consists of RGB images and the

corresponding segmentation annotation.
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to achieve satisfying learning performance; 2) while using the large-scale RGB image

data (together with the segmentation annotation) still cannot solve this problem be-

cause of the large domain gap; and 3) the proposed cross-modality feature transition

process can learn informative features from the medical imaging data without using any

human annotation, which also works better than the self reconstruction-based learning

strategy.

Next, we compare the proposed approach with several state-of-the-art methods,

which include six ensemble methods and five single prediction methods. The ensemble

methods integrate multiple deep brain tumor segmentation models that are trained from

different views or different training sub-sets to obtain the predicted segmentation masks

for each test data, while the single prediction methods only apply one deep model to

fulfill the brain tumor segmentation task. Thus, the ensemble methods can usually ob-

tain better performance but with higher complexity both in computational cost and time

consumption. The quantitative results are reported in Table 3. From Table 3, we can

observe that as a single prediction method6, our proposed approach outperforms all the

state-of-the-art single prediction methods both in terms of Dice score and Hausdorff95.

More encouragingly, our approach can also obtain better performance than most (nine

out of ten) ensemble methods. Thus, the comparison results in Table 3 demonstrate the

effectiveness of the proposed approach.

4.3. Experiments on the BraTS 2018 Benchmark

On the larger-scale BraTS 2018 benchmark, we first compare the proposed ap-

proach with five baseline models, including “SA”, “SB”, “SA+SB”, “Ours w/o MG”,

and “Ours w CA” to analyze the effect of the main network branches designed in our

learning framework. The experimental results are reported in top rows of Table 4. Be-

ing consistent with the results on the BraTS 2017 benchmark, there is obvious perfor-

6Although our model has a cross-modality feature transition process and a cross-modality feature fusion

process, the cross-modality feature transition process only learns features and does not predict segmentation

results. In other words, our segmentation results are predicted by the cross-modality feature fusion process

only rather than the combination of the segmentation results obtained by both processes. Thus, our approach

is considered as a single prediction method rather than an ensemble method.
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mance gap between “SA” and “SB” and the straightforward fusion strategy “SA+SB”

can only obtain performance better than “SB” but worse than “SA”. Compared to

“SA + SB”, our approach obtains 4.6% performance gain (in terms of the Dice score),

which demonstrates that the feature fusion branch proposed by our approach plays an

important role in fusing informative features and predicting accurate tumor areas. No-

tice that “Ours w CA” obtains better performance than “Ours w/o MG” on this dataset.

But its performance is still worse than “Ours”. Some examples of the comparison re-

sults on the BraTS 2018 validation set are shown in Fig.7. For better understanding

the segmentation results, we also shown examples of our approach on the BraTS 2018

training set with the corresponding ground-truth annotations (see Fig.8). Besides, we

also study the failure cases in Fig. 9, from which we can observe that the main chal-

lenges to our approach are the LGG cases when the ground-truth tumor areas are with

absent ET area, discontinuous tumor regions, or ragged tumor contours.

To evaluate the effectiveness of the proposed CMFT process, we also compare

our approach with the “Ours random”, “Ours voc”, and “Ours self” baselines. The

experimental results are reported in bottom rows of Table 4, from which we can observe

obvious performance gain when compare our approach to the aforementioned baseline

methods. Some examples of the comparison results are shown in Fig. 7, which can

better illustrate the advantage of our approach. In addition, to verify the effectiveness of

our strategy to build the modality pairs as described in Sec. 3.3, we further implement

a baseline model which constructs the modality pair A by using the T1 modality and

FLAIR modality and modality pair B by using the T2 modality and T1-c modality.

Based on our experiment, this baseline obtains 0.822 Dice score, 0.844 sensitivity, and

5.789 Hausdorff Distance on the BraTS 2018 dataset. The comparison between this

baseline and the proposed approach demonstrates the effectiveness of our approach in

making the information contained within each modality pair relatively consistent and

the information contained across the different modality pairs relatively distinct and

complementary.

Finally, we compare the proposed approach with other state-of-the-art methods on

the BraTS 2018 benchmark, which include three ensemble models [35, 36, 37] and

three single prediction models [38, 39, 40]. It is worth mentioning that as different
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Figure 8: Comparison of the segmentation results and the ground-truth annotation on the BraTS 2018 train-

ing set. Notice that the average Dice score on the BraTS 2018 training set is 0.886, which is moderately

higher than the Dice score on the BraTS 2018 validation set. The WT, TC, and ET areas are masked in

green, blue, and purple, respectively.

works adopt various ways to obtain their ensemble models and the concrete processes

for obtaining the ensemble model are not clear to us, it is hard to implement an ensem-

ble model that could compare with the existing ensemble models fairly. However, from

the experimental results reported in Table 5, we can observe that our single-prediction

model has already achieved better performance when compared to the ensemble mod-

els of [37, 41]. When compared to the state-of-the-art single prediction models, our

approach also obtains the outperforming performance both in terms of Dice score and

Hausdorff95. Thus, we believe the above experiments have already demonstrated the

effectiveness of the proposed approach.

5. Conclusion

In this work, we have proposed a novel cross-modality deep feature learning frame-

work for segmenting brain tumor areas from the multi-modality MR scans. Consider-

ing that the medical image data for brain tumor segmentation are relatively scarce in

terms of the data scale but containing the richer information in terms of the modal-

ity property, we propose to mine rich patterns across the multi-modality data to make

up for the insufficiency in data scale. The proposed learning framework consists of

a cross-modality feature transition (CMFT) process and a cross-modality feature fu-

24
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sion (CMFF) process. By building a generative adversarial network-based learning

scheme to implement the cross-modality feature transition process, our approach is

able to to learn useful feature representations from the knowledge transition across dif-

ferent modality data without any human annotation. While the cross-modality feature

fusion process transfers the features learned from the feature transition process and is

empowered with the novel fusion branch to guide a strong feature fusion process. Com-

prehensive experiments are conducted on two BraTS benchmarks, which demonstrate

the effectiveness of our approach when compared to baseline models and state-of-the-

art methods. To our knowledge, one limitation of this work is the current learning

framework requires that the network architectures of the modal generator and the seg-

mentation predictor be almost the same. To address this inconvenience, one potential

future direction is to introduce the knowledge distillation mechanism [42, 43, 44] to

replace the simple parameter transfer process.
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