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Abstract

Knowledge-based Visual Question Answering (KVQA) requires external knowledge

beyond the visible content to answer questions about an image. This ability is chal-

lenging but indispensable to achieve general VQA. One limitation of existing KVQA

solutions is that they jointly embed all kinds of information without fine-grained se-

lection, which introduces unexpected noises for reasoning the correct answer. How to

capture the question-oriented and information-complementary evidence remains a key

challenge to solve the problem. Inspired by the human cognition theory, in this pa-

per, we depict an image by multiple knowledge graphs from the visual, semantic and

factual views. Thereinto, the visual graph and semantic graph are regarded as image-

conditioned instantiation of the factual graph. On top of these new representations, we

re-formulate Knowledge-based Visual Question Answering as a recurrent reasoning

process for obtaining complementary evidence from multimodal information. To this

end, we decompose the model into a series of memory-based reasoning steps, each per-

formed by a Graph-based Read, Update, and Control (GRUC) module that conducts

parallel reasoning over both visual and semantic information.

By stacking the modules multiple times, our model performs transitive reasoning

and obtains question-oriented concept representations under the constrain of differ-

ent modalities. Finally, we perform graph neural networks to infer the global-optimal
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answer by jointly considering all the concepts. We achieve a new state-of-the-art per-

formance on three popular benchmark datasets, including FVQA, Visual7W-KB and

OK-VQA, and demonstrate the effectiveness and interpretability of our model with

extensive experiments.

Keywords: Cross-Modal Knowledge Reasoning, Multimodal Knowledge Graphs,

Compositional Reasoning Module, Knowledge-based Visual Question Answering,

Explainable Reasoning

1. Introduction

Visual question answering (VQA) [1] is an attractive research direction aiming to

jointly analyze multimodal content from images and natural language. Equipped with

the capacities of grounding, reasoning and translating, a VQA agent is expected to

answer a question in natural language based on an image. Recent works [3, 4] have

achieved great success in VQA tasks that are answerable by solely referring to the

visible content. However, such kinds of models are incapable of answering questions

which require external knowledge beyond the visible content. Considering the question

in Figure 1, the agent not only needs to visually localize ‘red cylinder’, but also to

semantically recognize it as ‘fire hydrant’ and connects the knowledge that ‘fire hydrant

is used for firefighting’. Therefore, how to collect question-oriented and information-

complementary evidence from visual, semantic and knowledge perspectives is essential

to achieve general VQA.

To advocate research in this direction, [5] introduces a Knowledge-based Visual

Question Answering (KVQA) task, named as ‘Fact-based’ VQA (FVQA), for answer-

ing questions by joint analysis of the image and the knowledge base of facts. The

typical solutions for FVQA build a fact graph with fact triplets filtered by the visual

concepts in the image and select one entity in the graph as the answer.

Existing works [5, 6] parse the question as keywords and retrieve the supporting-

entity only by keyword matching. This kind of approaches is vulnerable when the ques-

tion does not exactly mention the visual concepts (e.g. synonyms and homographs) or

the mentioned information is not captured in the fact graph (e.g. the visual attribute
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Figure 1: An illustration of our motivation. We represent an image by graphs to associate visual,

semantic and factual knowledge corresponding to the objects and relationships. Cross-modal

knowledge reasoning is conducted on the graphs to infer the optimal answer.

‘red’ in Figure 1 may be falsely omitted). To resolve these problems, [7] introduces

visual information into the fact graph and infers the answer by implicit graph rea-

soning under the guidance of the question. However, they provide the whole visual

information equally to each graph node by concatenation of the image, question and

entity embeddings. Actually, only part of the visual content are relevant to the question

and a certain entity. Moreover, the fact graph here is still homogeneous since each

node is represented by a fixed form of image-question-entity embedding, which limits

the model’s flexibility of adaptively capturing evidence from different modalities. A

model has to be selective by choosing relevant information and avoiding unexpected

noise.

The recent proposed natural language understanding systems based on the cogni-

tion theory [8] are consistent in that our brain is capable to adaptively combine mul-

timodal input for understanding and reasoning. As proposed in [8], the understanding

system contains two essential parts, where the neocortical sub-system (the blue box in

Figure 2) is responsible for selectively integrating linguistic and non-linguistic input

to understand the object and situation while the medial temporal lobe (MTL) sub-

system (the red box in Figure 2) aims to store and learn from the integrated embed-
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Figure 2: The understanding system emulated by our model. The gray box contains information

from multimodal sources. The blue box contains the neocortical sub-system, with each oval pre-

senting an representation of a modal information. The blue arrows indicate learned connections

that allow the representations to constrain each other. The red box contains the medial temporal

lobe (MLT) sub-system, which stores and processes all the representations from the neocortical

system. The red arrow represents self-connections that jointly consider all the representations

for use. Green arrows connecting the red and blue ovals provide constraint between the two

sub-systems.

dings of the neocortical sub-system states. This understanding system is universal to

tackle a wide range of natural language problems requiring external knowledge in mul-

timodal format. In this perspective, KVQA problems can also be solved by this system

by considering external knowledge in both linguistic (text and knowledge graph) and

non-linguistic (image) format, which is flexible to choose task-relevant and content-

complementary information for answer prediction.

Motivated by the proposed structure of understanding system in [8], we first in-

troduce a novel scheme to depict an image by unifying the graph representation of

different modalities, including the visual graph, semantic graph and fact graph. Specif-

ically, the object appearance and their relationships are kept in the visual graph, the

high-level abstraction is provided in the semantic graph and the corresponding factual

knowledge is supported in the fact graph, which imitates distinct areas in neocortical
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sub-system that processes each input modality (the three blue ovals at bottom of neo-

cortex). Graph representation is suitable for modeling the objects (entities) and their

relationships of input and beneficial for connecting different modalities to constrain

each other. Then we integrate cross-modal knowledge corresponding to the same con-

cept (the blue oval at top of neocortex) by a series of memory-based reasoning steps.

In order to select complementary knowledge from different modalities for integration,

we propose a constraint satisfaction process in which the information in one modality

influences the selection of information in another modality. To this end, we perform

each reasoning step by a Graph-based Read, Update, and Control (GRUC) module

that conducts parallel reasoning over both visual and semantic information: the control

unit updates the control signal for extracting a knowledge vector from the knowledge

graphs (visual and semantic); the read unit generates the knowledge vector from the

knowledge graphs upon the constrain of the control signal; the update unit integrates

the knowledge vector into the control signal as well as the knowledge graph for mem-

ory update. After multiple reasoning steps, we obtain complementary evidence from

different modalities and fuse them adaptively to reason about the global-optimal an-

swer via a graph neural network, which can be seen as the learning system in MLT.

The main contributions can be summarized as follows:

(1) We novelly depict multimodal knowledge sources by multiple knowledge graphs

from the visual, semantic and factual views, which unifies the representations of differ-

ent modalities in graph domain and thus benefits for structure preserving and relational

reasoning. Thereinto, introducing the semantic graph for high-level abstraction brings

remarkable improvement in KVQA, which has been less studied in previous work.

(2) We propose a recurrent reasoning model that has three obvious novelties: First,

it is a parallel reasoning model that applies modality-oriented controllers for reasoning

over different modalities in a parallel mode, which can be easily extended to involve

more modalities; Second, our model is designed for reasoning upon graph-structured

multimodal data, aiming to consider the essential structural information in the reason-

ing process; Third, the basic reasoning module GRUC is a modular architecture con-

sisting of Read, Update and Control units, which supports more explicit and structured

reasoning.
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(3) The proposed model remarkably outperforms state-of-the-art approaches on

three benchmark datasets, including FVQA, Visual7W-KB and OK-VQA, which demon-

strates the feasibility and effectiveness of the proposed model. Through ablative stud-

ies, we prove how each of the proposed components contributes to the improvement.

(4) The proposed model has good interpretability. It automatically tells which con-

cept (entity) and modality (visual, semantic or factual) have more contributions to an-

swer the question through visualization of attention weights in GRUC and gate values

in the fusion process. Meanwhile, the model can also reveal the knowledge selection

mode from different modalities according to the complexity of the questions.

2. Related Work

2.1. Visual Question Answering

The Visual Question Answering (VQA) task requires the agent to answer a ques-

tion in natural language according to the visual content in an image, which demands for

comprehending and reasoning about both visual and textual information. The typical

solutions for VQA are based on the CNN-RNN architecture [9] that coarsely fuses the

global visual and textual features as clues to predict the answer. For better combining

textual information with visual information, bilinear pooling approaches [10, 11] have

been proposed to fuse multimodal features in fine-grained mode. However, the above

approaches leverage all the information in the image and question, which may intro-

duce redundant or noisy information to the prediction stage. To alleviate this problem,

various attention mechanisms have been exploited in VQA tasks [12, 13] to highlight

visual objects that are relevant to the question. [14] introduced a bottom-up and top-

down attention mechanism to learn the attention on candidate objects rather than spatial

grids. However, they treat objects in an image independently and ignore their informa-

tive relationships.

Humans ability of combinatorial generalization highly depends on the mechanisms

of reasoning over relationships. Consistent with such idea, there is an emerging trend to

depict objects and visual relationships in an image by graph structure to support reason-

ing in VQA. One kind of approaches performs one-step relational reasoning to infer the

6



answer. [15] proposed a Relation Network (RN) to model all the implicit relationships

among objects in the image by multi-layer perceptrons (MLPs). Then, the relationships

are summed and fed into other MLPs to predict the answer. This approach brings high

computational cost and makes it hard to perform multi-step reasoning. [16] refined the

relationships by a ranking strategy and lowered the computational complexity. How-

ever, a large number of compound questions require multi-step reasoning. To this end,

[17] proposed multi-step attention to reason over both original objects and new com-

pound objects and infer the answer progressively. Additionally, [18] transformed both

the visual and textual moldalities into concept-based graph representations and per-

formed sequential reasoning over the graph by the neural state machine. Furthermore,

[19] exploited semantic captions to further enrich the graph-based representations for

multi-step reasoning. Reasoning approaches in the above work are always on visual

and textual features, which cannot be extended to involve external knowledge. To go

one step further, our model pays attention to not only original input features but also

external knowledge during progressive reasoning.

2.2. Incorporating External Knowledge in VQA

Human easily combine visual observation with external knowledge for answering

questions, which remains challenging for algorithms. To bridge this discrepancy, [5]

introduced a Fact-based VQA (FVQA) task, which additionally provides a knowledge

base of facts and associates each question with a supporting-fact. Recent works based

on FVQA generally select one entity from fact graph as the answer and falls into two

categories: query-mapping based methods and learning based methods. On the one

hand, [6] reduced the question to one of the available query templates and this limits

the types of questions that can be asked. [5] automatically classified and mapped the

question to a query which does not suffer this constraint. Among both methods, how-

ever, visual information is used to extract facts but not introduced during the reasoning

process. On the other hand, [20] learned a similarity score between the representa-

tions of fact and image-question pair. [7] applied graph convolutional networks on the

fact graph where each node is represented by the fixed form of image-question-entity

embedding. However, the visual information is wholly provided which may intro-
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duce redundant information for reasoning the answer. The same problem also exists

in [21], although they leveraged dynamic memory network instead of graph convolu-

tional netowrk to incorporate the external knowledge. Recent work [22] proposed a

new knowledge-based task OK-VQA and introduced a retrieval-based model to extract

the correct answer from Wikipedia. Different from previous work, in this paper, we de-

cipt an image by multimodal kwnoledge graphs and perform cross-modal reasoning via

a memory-based recurrent network to capture complementary evidence from different

modalities.

2.3. Graph Neural Networks

The core module GRUC in our proposed model is a novel graph-based neural net-

work. In this subsection, we briefly review related Graph Neural Networks (GNNs) and

highlight differences between previous work and ours. Approaches based on GNNs

[23] repeatedly perform a message passing process over the graph by aggregating and

updating information between nodes. Relying on spectral graph theory, [24] exploited

simplified Chebyshev polynomials to construct localized polynomial filters for graph

convolution in graph convolutional networks (GCN). Attention mechanisms have been

introduced in [25] to learn the weights over edges for convolution operations. Lanczos-

based method [26] has been explored for graph convolution for the purpose of accel-

eration. Our model is closely related to the Gated Graph Sequence Neural Networks

(GGS-NN) [27] which updates GNNs by adding gated recurrent unit. Different from

GGS-NN that both convolution operation and recurrent propagation are performed in

the same graph, our GRUC module aggregates information from external knowledge

graph for node updating and recurrent propagation in another fact graph. Our model

is also related to the heterogeneous graph neural networks since the model is reason-

ing over multimodal graphs. [28] generalized graph convolutional network to handle

different relationships between entities in a knowledge base, where edges with distinct

relationships are encoded independently. [29] proposed heterogeneous graph attention

networks with dual-level attention mechanism. All the above approaches model differ-

ent types of nodes and edges in an unified graph. In contrast, the heterogeneous graph

in this work contains multiple layers of subgraphs and each layer consists of nodes and
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Figure 3: An overview of our model. The model contains four parts: multimodal heterogeneous

graph construction, intra-Modal knowlegdge selection, cross-modal knowledge reasoning, and

global assessment and answer prediction.

edges coming from different modalities. For this specific constrain, we propose the

parallel reasoning model that applies modality-oriented controllers for reasoning over

different modalities in a parallel mode.

3. Methodology

Given an image I and a question Q, the task aims to predict an answer A by lever-

aging the external knowledge. In this work, we focus on external knowledge in the

form of knowledge graph, which consists of a set of triplet facts , i.e. < e1, r, e2 >,

where e1 is a visual concept in the image, e2 is an attribute or phrase and r represents

the relationship between e1 and e2. The key is to choose a correct concept, i.e. either

e1 or e2, from the supporting fact as the predicted answer.

The proposed model mainly contains four parts: (1) Firstly, multimodal Knowl-

edge Graph Construction (Section 3.1) represents knowledge from different modali-

ties by different knowledge graphs, including the visual graph, semantic graph and fact

graph, imitating distinct brain areas that represent each input modality; (2) Then, Intra-

Modal Knowledge Selection (Section 3.2) selects question-oriented knowledge from

each modality of knowledge graph by intra-modal graph convolution; (3) Afterwards,

Cross-Modal Knowledge Reasoning (Section 3.3) performed by the GRUC Network
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iteratively gathers complementary evidence from the visual and semantic knowledge

graphs under the guidance of the question and the facts. In the end of reasoning steps,

we fuse the evidence from three modalities to obtain the representation of each concept.

(4) Finally, Global Assessment and Answer Prediction (Section 3.4) aims to jointly an-

alyze all the concepts via graph convolutional networks and predict the optimal answer

by a binary classifier. Figure 3 gives detailed illustration of our model.

3.1. Multimodal Graph Construction

3.1.1. Visual Graph Construction

Since most of the questions in KVQA grounded in the visual objects and their

relationships, we construct a fully-connected visual graph to represent such evidence

at appearance level. Given an image I , we use Faster-RCNN [30] to identify a set

of objects O = {oi}Ki=1 (K = 36), where each object oi is associated with a visual

feature vector vi ∈ Rdv (dv = 2048), a bounding-box feature vector bi ∈ Rdb (db

= 4) and a corresponding label. Specifically, bi = [xi, yi, wi, hi], where (xi, yi), hi

and wi respectively denote the coordinate of the top-left corner, the height and width

of the bounding box. We construct a visual graph GV = (VV , EV ) over O, where

VV = {vVi }Ki=1 is the node set and each node vVi corresponds to a detected object

oi. The feature of node vVi is represented by vVi . Each edge eVij ∈ EV denotes the

relative spatial relationships between two objects. We encode the edge feature by a

5-dimensional vector, i.e. rVij = [
xj−xi

wi
,
yj−yi
hi

,
wj

wi
,
hj

hi
,
wjhj

wihi
].

3.1.2. Semantic Graph Construction

In addition to visual information, high-level abstraction of the objects and relation-

ships by natural language provides essential semantic information. Such abstraction is

indispensable to associate the visual objects in the image with the concepts mentioned

in both questions and facts. In our work, we leverage dense captions [31] to extract

a set of local-level semantics in an image, ranging from the properties of a single ob-

ject (color, shape, emotion, etc.) to the relationships between objects (action, spatial

positions, comparison, etc.). We decipt an image by D dense captions, denoted as

Z = {zi}Di=1, where zi is a natural language description about a local region in the
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image. Instead of using monolithic embeddings to represent the captions, we exploit

modelling them by a graph representation, denoted as GS = (VS , ES), which is con-

structed by a semantic graph parsing model [32]. The node vSi ∈ VS represents the

name or attribute of an object extracted from the captions while the edge eSij ∈ ES rep-

resents the relationship between vSi and vSj . We use the averaged GloVe embeddings

to represent vSi and eSij , denoted as vSi and rSij , respectively. The graph representa-

tion retains the relational information among concepts and unifies the representations

in graph domain, which is better for explicit reasoning across modalities.

3.1.3. Fact Graph Construction

To find the optimal supporting-fact, we first retrieve relevant candidate facts from

knowledge base of facts following a score-based approach [7]. We compute the cosine

similarity of the GloVe embeddings of every word in the fact with the words in the

question and the words of visual concepts detected in the image. Then we average

these values to assign a similarity score to the fact. The facts are sorted based on the

similarity and the 100 highest scoring facts are retained, denoted as f100. A relation

type classifier is trained additionally to further filter the retrieved facts. Specifically,

we feed the last hidden state of LSTM to an MLP layer to predict the relation type r̂i

of a question. We retain the facts among f100 only if their relationships agree with r̂i,

i.e. frel = f ∈ f100 : r(f) ∈ {r̂i} ({r̂i} contains top-3 predicted relationships in

experiments). Then a fact graph GF = (VF , EF ) is built upon frel as the candidate

facts can be naturally organized as graphical structure. Each node vFi ∈ VF denotes

an entity in frel and is represented by GloVe embedding of the entity, denoted as vFi .

Each edge eFij ∈ EF denotes the relationship between vFi and vFj and is represented

by GloVe embedding rij . The topological structure among facts can be effectively

exploited by jointly considering all the entities in the fact graph.

3.2. Intra-Modal Knowledge Selection

Since each layer of graphs contains modality-specific knowledge relevant to the

question, we first select valuable evidence independently from the visual graph, seman-

tic graph and fact graph by Visual-to-Visual Convolution, Semantic-to-Semantic Con-
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volution and Fact-to-Fact Convolution, respectively. These three convolutions share

the common operations but differ in their node and edge representations corresponding

to the graph layers. Thus we omit the superscript of node representation v and edge

representation r in the rest of this section. We first perform attention operations to

highlight the nodes and edges that are most relevant to the question q and consequently

update node representations via intra-modal graph convolution. This process mainly

consists of the following three steps:

Question-guided Node Attention. We first evaluate the relevance of each node

corresponding to the question by attention mechanism. The attention weight for vi is

computed as:

αi = softmax(wT
a tanh(W1vi + W2q)) (1)

where W1,W2 and wa (as well as W3,..., W12, wb, wc mentioned below) are learned

parameters. q is question embedding encoded by the last hidden state of LSTM.

Question-guided Edge Attention. Under the guidance of question, we then eval-

uate the importance of edge eji constrained by the neighbor node vj regarding to vi as

follows:

βji = softmax(wT
b tanh(W3v

′
j + W4q

′)) (2)

where v′
j = W5[vj , rji], q′ = W6[vi, q] and [·, ·] denotes concatenation operation.

Intra-Modal Graph Convolution. Given the node and edge attention weights

learned in Eq. 1 and Eq. 2, the node representations of each layer of graphs are

updated following the message-passing framework [33]. We gather the neighborhood

information and update the representation of vi as follows:

mi =
∑
j∈Ni

βjiv
′
j (3)

v̂i = ReLU(W7[mi, αivi]) (4)

whereNi is the neighborhood set of node vi. We conduct the above intra-modal knowl-

edge selection on GV , GS and GF independently and obtain the updated node repre-

sentations, denoted as {v̂Vi }N
V

i=1 , {v̂Si }N
S

i=1 and {v̂Fi }N
F

i=1 accordingly.
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Figure 4: The GRUC module architecture.

3.3. Cross-Modal Knowledge Reasoning

The key of cross-modal knowledge graph reasoning module is to reason on the fact

graph by jointly considering all candidate facts. However, the entities in the fact graph

provide insufficient knowledge to reason about the globally optimal answer which need

to be complemented with correlated knowledge from other modalities. The process is

performed by our proposed GRUC Network, a memory-based reasoning architecture

by sequencing a recurrent Graph-based Read, Update and Control (GRUC) module.

After multi-step reasoning, we fuse the multimodal knowledge for each entity and

achieve more comprehensive understanding of an entity, which we rename it as ‘con-

cept’ afterwards. The GRUC Network contains two components: a recurrent GRUC

module and a multimodal feature fusion module, as introduced below.

3.3.1. The Recurrent GRUC Module

The GRUC module aims to gather question-oriented knowledge from different

modalities corresponding to the same concept. However, it’s non-trivial to align the
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Figure 5: An illustration of the GRUC network.

knowledge from different modalities to the same concept since there rarely exists ex-

plicit one-to-one mappings across modalities. Therefore, we propose to gather concept-

relevant knowledge in an implicit way. Since the answer comes from one entity in the

fact graph in this task, we regard each entity in the fact graph as a concept and gather

complementary knowledge from the visual graph and the semantic graph to this con-

cept in the fact graph in the GRUC module. In this way, the recurrent GRUC modules

can be performed over all the concepts in the fact graph in parallel and obtaining the

relevant visual knowledge, semantic knowledge and fact knowledge for each concept

as the output.

Figure 5 shows the GRUC network operated on the concept (i.e. fact node) vFi ∈

VF . The recurrent GRUC modules (yellow boxes) iteratively gather knowledge from

the visual knowledge memory (red box) and the semantic memory (blue box) in a par-

allel way. For each step t (t = 1, 2, ..., T ) in the reasoning process, the tth GRUC

module maintains two hidden states: visual control state h
(t)
v and semantic control

state h(t)
s , initialized by the question q, vFi and its neighborhood nodes (gray and green

boxes) to learn h
(1)
v and h

(1)
s , respectively. Since the reasoning processes for the vi-

sual part and the semantic part share thee common operations but differ in the graph

representations, we omit the subscript of hidden state representation h(t) in the rest of

this section. Figure 4 shows the architecture of the GRUC module, which consists of
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the Control Unit, Read Unit and Update Unit.

The Control Unit. The control unit determines the control state h(t) that guides the

module to adaptively select complementary knowledge from the knowledge memory

for obtaining a more comprehensive concept representation. At the first reasoning

step, the control unit is initialized by fusing the question representation q, the entity

representation v̂Fi and its neighborhood information as:

h(1) = W8[q, v̂
F
i , c

F
i ] (5)

cFi =
∑
j∈Ni

v̂Fj (6)

where Ni represents a set of 1-hop neighboring nodes regarding the entity vFi . In the

tth reasoning step, the control state will be updated with the contextual vector c(t) (will

be introduced in the Read Unit) extracted from the knowledge memory and previous

hidden state h(t) via Gated Recurrent Unit (GRU) [34], the update operation is defined

as follows:

h(t+1) = GRU(h(t), c(t)) (7)

Then updated control state h(t+1) is used to control the reasoning process in the

next step.

The Read Unit. In the tth reasoning step, the read unit gathers the required knowl-

edge c(t) in the knowledge base (visual graph or semantic graph) under the guidance of

the control state h(t) and previous knowledge memory M (t)={m(t)
1 , m(t)

2 ,. . . , m(t)
N }

(N is the number of memory entries). Specifically, M (t) is a graph-structured mem-

ory, where each entry represents the node in the knowledge graph (GV or GS) and

the relationships between entries are the corresponding edges in the knowledge graph.

The initial representation of each entry m
(1)
j is the corresponding node representation

obtained after intra-modal knowledge selection, i.e. m(1)
j = v̂j .

We compute the required knowledge c(t) via an attention component. The attention

value γ(t)j for the memory entry m
(t)
j is calculated under the guidance of the control

state h(t) as:

a
(t)
j = tanh(W9h

(t) + W10m
(t)
j ) (8)

γ
(t)
j = softmax(wT

c a
(t)
j ) (9)
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Then we generate the required knowledge c(t) by weighting over all the memory

entries defined as:

c(t) =

N∑
j=1

γ
(t)
j m

(t)
j (10)

The function of c(t) is divided into two folds: On the one hand, it is used to up-

date the control unit and generate the control state h(t+1) for the next reasoning step;

On the other hand, c(t) records the required knowledge retrieved from the knowledge

graph during the transitive reasoning process and will be regarded as the knowledge

representation of corresponding modality for the final multimodal feature fusion.

The Update Unit. Unlike the static knowledge representations, our proposed

knowledge memory will be updated adaptively during each reasoning step via the

Update Unit. This mechanism aims to enable the knowledge memory to remember

what knowledge has been used and update the memory accordingly. Another differ-

ence compared with traditional knowledge representations lies in that our proposed

knowledge memory is graph-structured. Updating each memory entry will stimulate its

neighboring entries and transmit their information in the update operation. Formally, in

tth reasoning step, each memory entry is updated based on its previous memory state,

its neighborhood’s previous state and the current control state as:

m
(t+1)
j = W11[m

(t)
j , cneij ,h(t)] (11)

cneij =
∑
k∈Nj

W12[m
(t)
k , rjk] (12)

whereNi represents a set of 1-hop neighboring nodes regarding the memory entity mj

and cneij is the contextual memory representation. Then the updated memory is served

as the new knowledge memory used in the next reasoning step.

3.3.2. Multimodal Feature Fusion Module

After T reasoning steps, the model collects concept-relevant knowledge for con-

cept vFi from the visual graph and the semantic graph independently and generate the

corresponding knowledge representations denoted as h(T+1)
Vi

and h
(T+1)
Si

respectively.

Then we fuse the complementary knowledge from the three modalities to form the final
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concept representation vFi via gate mechanism as:

gatei = σ(W10[h
(T+1)
Vi

,h
(T+1)
Si

, v̂Fi ]) (13)

ṽFi = W11(gatei ◦ [h(T+1)
Vi

,h
(T+1)
Si

, v̂Fi ]) (14)

where σ is sigmoid function and ‘◦’ is element-wise product.

3.4. Global Assessment and Answer Prediction

All the concepts {ṽFi }N
F

i=1 are fed into a graph neural network [35] to globally

compare with each other, which imitates the MLT in our understanding system. The

output embedding of each concept in GNN is passed to a binary classifier to predict its

probability as the answer , i.e. ŷi = pθ([ṽ
F
i , q]). Since there is one entity annotated as

the ground-truth answer and the rest entities are all served as negative answers in each

training sample, it is necessary to use weighted binary cross-entropy loss to deal with

the imbalanced training data as:

ln = −
∑
i∈NF

[
a · yi ln ŷi + b · (1− yi) ln(1− ŷi)

]
(15)

where yi is the ground truth label for vFi and a, b represent loss function weights for

positive and negative samples respectively. The entity corresponding to the concept

with the largest probability is selected as the final answer.

4. Experiments

4.1. Datasets and Evaluation Metrics

FVQA: The FVQA dataset [5] consists of 2,190 images, 5,286 questions and a

knowledge base of 193,449 facts. The knowledge base is constructed by extracting

the top visual concepts from all the images in the dataset and querying those concepts

from three knowledge bases, including DBPedia [36], ConceptNet [37] and WebChild

[38]. For each image-question pair in the dataset, the task aims to choose an entity in a

supporting fact from the knowledge base as the answer by jointly considering the given

question and image.
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Visual7W+KB: The Visual7W dataset [39] is built based on a subset of images

from Visual Genome [40], which includes questions in terms of (what, where, when,

who, why, which and how) along with the corresponding answers in a multi-choice

format. However, most of questions of Visual7W solely base on the image content

which don’t require external knowledge. Furthermore, [21] generated a collection

of knowledge-based questions based on the test images in Visual7W by filling a set

of question-answer templates that need to reason on both visual content and external

knowledge. We denoted this dataset as Visual7W+KB in our paper. In general, Vi-

sual7W+KB consists of 16,850 open-domain question-answer pairs based on 8,425

images in Visual7W test split. Different from FVQA, Visual7W+KB uses ConceptNet

to guide the question generation but doesn’t provide a task-specific knowledge base. In

our work, we also leverage ConceptNet to retrieve the supporting knowledge and select

one entity as the predicted answer.

OK-VQA: [22] proposed the Outside Knowledge VQA (OK-VQA) dataset, which

is the largest KVQA dataset at present. Different from existing KVQA datasets, the

questions in OK-VQA are manually generated by MTurk workers, which are not de-

rived from specific knowledge bases. Therefore, it requires the model to retrieve sup-

porting knowledge from open-domain resources, which is much closer to the general

VQA but more challenging for existing models. OK-VQA contains 14,031 images

which are randomly collected from MSCOCO dataset [41], using the original 80k-40k

training and validation splits as train and test splits. OK-VQA contains 14,055 ques-

tions covering a variety of knowledge categories such as science & technology, history,

and sports. In our work, we leverage ConceptNet to retrieve the supporting knowledge

and select one entity as the predicted answer.

Evaluation Metrics: We follow the metrics in [5] to evaluate the question answer-

ing performance. The top-1 and top-3 accuracy is calculated for each model. The

averaged accuracy of 5 test splits is reported as the overall accuracy.

4.2. Implementation Details

For the question representation, each question is tokenized and each word is em-

bedded using 300-dimensional GloVe word embeddings [42]. The maximum sentence
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length of question is set to 20 and questions shorter than 20 words are padded with zero

vectors. The sequence of embedded words is then fed into LSTM and the dimension of

the hidden layer in LSTM is set to 512. For constructing the semantic graph, we first

generate dense captions with DenseCap [31]. Since some captions with low confidence

are likely to introduce unexpected noise and too many captions will decrease the com-

putation efficiency, we select top-12 dense captions with highest scores to eliminate

unexpected noise caused by low confidence captions. For the image representation,

we extract 2048-dimensional object detection features, 4-dimensional spatial features,

object labels with known bounding boxes from pre-trained Faster R-CNN [30] model

in conjunction with ResNet-101 [43]. The number of detected objects is fixed to 36.

The Faster R-CNN model is trained over 1,600 selected object classes and 400 attribute

classes, in a similar way as the bottom-up attention model [14].

We set a = 0.7 for positive samples and b = 0.3 for negative samples in the binary

cross-entropy loss function. Our model is trained by Adam optimizer with 10 epochs,

where the mini-batch size is 16 and the dropout ratio is 0.5. For the strategy of learning

rate, we first apply warm up strategy for 2 epoches with initial learning rate 1 × 10−3

and warm-up factor 0.2. Then we adopt cosine annealing learning strategy with initial

learning rate ηmax = 1 × 10−3 and termination learning rate ηmin = 3.6 × 10−4 for

the rest epoches.

4.3. Comparison with State-of-the-Art Methods

4.3.1. Experimental results on FVQA

We compare our GRUC model with state-of-the-art models on FVQA dataset.

The baseline models can be classified into three sets, including CNN-RNN based

approaches, semantic parsing based approaches and learning-based approaches. The

CNN-RNN based approaches [5] include LSTM-Q+Image+Pre-VQA and Hie-Q+Image+Pre-

VQA. The semantic parsing based approaches [5] include FVQA (top-3-QQmaping)

and FVQA (Ensemble). The learning based approaches include Straight to the Facts

(STTF) [20], Out of the Box (OB) [7], and Reading Comprehension based approach

[44].

Our model consistently outperforms all the approaches on all the metrics and achieves

19



Method
Overall Accuracy

top-1 top-3

LSTM-Q+Image+Pre-VQA [5] 24.98 40.40

Hie-Q+Image+Pre-VQA [5] 43.14 59.44

FVQA (top-3-QQmaping) [5] 56.91 64.65

FVQA (Ensemble) [5] 58.76 -

Straight to the Facts (STTF) [20] 62.20 75.60

Reading Comprehension [44] 62.96 70.08

Out of the Box (OB) [7] 69.35 80.25

Human [5] 77.99 -

GRUC (ours) 79.63 91.20

Table 1: State-of-the-art comparison on FVQA dataset.

remarkable 10.28% boost on top-1 accuracy and 10.95% boost on top-3 accuracy com-

pared with the state-of-the-art model OB [7]. The model OB is most relevant to GRUC

in that it leverages graph convolutional networks to jointly assess all the entities in the

fact graph. However, it introduces the global image features equally to all the entities

without selection. By collecting question-oriented visual and semantic information via

the memory-based recurrent reasoning network, our model gains remarkable improve-

ment. It’s worth to note that our model outperforms Human performance by 1.64%

on top-1 accuracy. To some extent, this results prove the effectiveness of the proposed

understanding system in [8] since our model is designed by emulating the structure of

the proposed system. In other words, the model contains distinct modules that repre-

sent each input modality and computes the representation of concepts through a mutual

constraint to combine linguistic and non-linguistic inputs. Emulating this architecture

in model design could contribute to achieving human-level understanding ability.

4.3.2. Experimental results on Visual7W-KB

The comparison of state-of-the-art models on Visual7W-KB dataset is shown in

Table 2. The compared baselines contains two sets, i.e. memory-based approaches

and a graph-based approach. The memory-based approaches [21] include KDMN-

NoKnowledge (w/o external knowledge), KDMN-NoMemory (attention-based knowl-

edge incorporation), KDMN (dynamic memory network based knowledge incorpora-
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Method
Overall Accuracy

top-1 top-3

KDMN-NoKnowledge [21] 45.1 -

KDMN-NoMemory[21] 51.9 -

KDMN[21] 57.9 -

KDMN-Ensemble[21] 60.9 -

Out of the Box (OB) [7] 57.32 71.61

GRUC (ours) 69.03 88.12

Table 2: State-of-the-art comparison on Visual7W+KB dataset.

tion) and KDMN-Ensemble (several KDMN models based ensemble model). We also

test the performance of Out of the Box (OB) [7] on Visual7W-KB and report the results

in Table 2.

As consistent with the results on FVQA, we achieve a significant improvement

(8.13% on top-1 accuracy and 16.51% on top-3 accuracy ) over state-of-the-art mod-

els. Note that our proposed GRUC network is an single-model, which outperforms

the existing ensembled model [21]. We believe that the performance can be further

improved if the technique of ensemble is involved in our model.

4.3.3. Experimental results on OK-VQA

We also report the quantitative performance on the challenging OK-VQA dataset

in Table 3. We compare our model with three kinds of existing models, including cur-

rent state-of-the-art VQA models, knowledge-based VQA models and ensemble mod-

els. The VQA models contain Q-Only [22], MLP [22], BAN [45], MUTAN[45]. The

knowledge-based VQA models [22] consist of ArticleNet (AN), BAN+AN and MU-

TAN+AN. The ensemble models [22], i.e. BAN/AN oracle and MUTAN/AN oracle,

simply take the raw ArticleNet and VQA model predictions, taking the best answer

(comparing to ground truth) from either. We report the overall performance (top-1 and

top-3 accuracy) as well as breakdowns for each of the knowledge categories (top-1

accuracy). We have the following two observations from the results:

First, our model consistently outperforms all the compared models on the overall
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Method
Overall Accuracy

top-1 top-3 VT BCP OMC SR CF GHLC PEL PA ST WC Other

Q-Only [22] 14.93 - 14.64 14.19 11.78 15.94 16.92 11.91 14.02 14.28 19.76 25.74 13.51

MLP [22] 20.67 - 21.33 15.81 17.76 24.69 21.81 11.91 17.15 21.33 19.29 29.92 19.81

BAN [45] 25.17 - 23.79 17.67 22.43 30.58 27.90 25.96 20.33 25.60 20.95 40.16 22.46

MUTAN [46] 26.41 - 25.36 18.95 24.02 33.23 27.73 17.59 20.09 30.44 20.48 39.38 22.46

ArticleNet (AN) [22] 5.28 - 4.48 0.93 5.09 5.11 5.69 6.24 3.13 6.95 5.00 9.92 5.33

BAN + AN [22] 25.61 - 24.45 19.88 21.59 30.79 29.12 20.57 21.54 26.42 27.14 38.29 22.16

MUTAN + AN[22] 27.84 - 25.56 23.95 26.87 33.44 29.94 20.71 25.05 29.70 24.76 39.84 23.62

BAN/AN oracle [22] 27.59 - 26.35 18.26 24.35 33.12 30.46 28.51 21.54 28.79 24.52 41.4 25.07

MUTAN/AN oracle [22] 28.47 - 27.28 19.53 25.28 35.13 30.53 21.56 21.68 32.16 24.76 41.4 24.85

GRUC (ours) 29.87 32.65 29.84 25.23 30.61 30.92 28.01 26.24 29.21 31.27 27.85 38.01 26.21

Table 3: State-of-the-art comparison on OK-VQA dataset. We show the results for the full

OK-VQA dataset and for each knowledge category (top-1 accuracy): Vehicles and Transporta-

tion (VT); Brands, Companies and Products (BCP); Objects, Material and Clothing (OMC);

Sports and Recreation (SR); Cooking and Food (CF); Geography, History, Language and Culture

(GHLC); People and Everyday Life (PEL); Plants and Animals (PA); Science and Technology

(ST); Weather and Climate (WC); and Other.

performance. Even the state-of-the-art models (BAN and MUTAN) specifically de-

signed for VQA tasks, they get inferior results compared with ours. This indicates

that general VQA task like OK-VQA cannot be simply solved by a well-designed

model, but requires the ability to incorporate external knowledge in an effective way.

Moreover, our model outperforms knowledge-based VQA models including both sin-

gle models (BAN+AN and MUTAN+AN) and ensemble models (BAN/AN oracle and

MUTAN/AN oracle), which further proves the advantages of our knowledge incorpo-

rating mechanism based on both multimodal knowledge graphs and memory-enhanced

recurrent reasoning network.

Second, the improvement of our model on OK-VQA is not that remarkable com-

pared to the performance on FVQA and Visual7W-KB. We believe that this phenomenon

is mostly due to the following two reasons: (1) Questions in the OK-VQA dataset are

more diverse and complex, which is more challenging for machines to understand accu-

rately. The questions in FVQA and Visual7W-KB are generated when given the images

and supporting facts upon the pre-defined templates or relations. This mechanism con-

strains the answers in a specific knowledge base and guides the model to operate in

a reverse way of the question generation process to predict the correct answers with

high probability. On the contrary, questions in OK-VQA are totally free-form ones that
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Method
FVQA Visual7W+KB OK-VQA

top-1 top-3 top-1 top-3 top-1 top-3

GRUC (full model) 79.63 91.20 69.03 88.12 29.87 32.65

1 w/o Semantic Graph 78.05 87.70 67.01 84.91 28.30 31.02

2 w/o Visual Graph 76.98 83.15 66.38 79.80 28.02 29.52

3 w/o Semantic Graph & Visual Graph 20.43 29.10 17.88 28.43 12.11 13.96

4 w/o Neighbor Aggregation (Control Unit) 78.53 89.34 68.34 85.67 28.20 30.89

5 w/o Neighbor Aggregation (Update Unit) 77.61 88.05 66.52 82.04 25.74 27.62

6 w/o GRUC Module 70.87 78.70 57.22 70.80 18.65 20.91

7 w/o Intra-Modal Knowledge Selection 74.85 80.63 67.28 85.41 26.49 27.56

8 w/o Global Assessment 79.10 90.54 68.43 87.69 29.80 32.11

Table 4: Ablation study of key components on FVQA, Visual7W-KB and OK-VQA.

generated by MTurk workers and thus containing more unique questions and words

with less bias compared with other datasets. This increases the difficulty to understand

the questions accurately. (2) OK-VQA requires a wide range of knowledge beyond

a specific knowledge base. Looking at the category breakdowns in Table 3, baseline

models achieve relatively high performance for SR, CF, GHLC, PA and WC categories

while our model performs better for the remaining categories. Since the baseline mod-

els refer to the Wikipedia while our model refers to ConceptNet, the performance in

the category breakdowns perhaps suggests that each knowledge base just provides a

portion of required knowledge. To improve the overall performance on OK-VQA, we

should better comprehensively consider knowledge bases that cover commonsense, vi-

sual knowledge, Wikipedia knowledge and even professional knowledge.

4.4. Ablation Study

Since our model contains multiple essential components, we test a series of varia-

tions on the three benchmark datasets to verify the influence of each component. The

experimental results are shown in Table 4.

4.4.1. Influence of Different Knowledge Modalities

As demonstrated in Section 1, we believe that different modalities can provide com-

plementary knowledge for answer inference. In this Section, we conduct ablation study

to prove the indispensable role of each modality by the following variations:
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- w/o Semantic Graph (model ‘1’): this model removes the semantic graph in

graph construction and the follow-up reasoning process.

- w/o Visual Graph (model ‘2’): this model removes the visual graph in graph

construction and the follow-up reasoning process.

- w/o Semantic Graph & Visual Graph (model ‘3’): this model simultaneously

removes the visual graph and the semantic graph in graph construction and the

follow-up reasoning process.

The experimental results are shown in the first block in Table 4. We observe that the

top-1 and top-3 accuracy of ‘1’ and ‘2’ all decrease compared with the full model on

the three datasets, which indicates that both semantic and visual graphs are beneficial

to provide valuable evidence for answer inference. Thereinto, the visual information

has greater impact than the semantic part, proving that the image content still plays

essential role in KVQA tasks. When removed both semantic and visual graphs, ‘3’

results in a significant decrease. It gives us insight that factual knowledge only is

entirely insufficient to answer the question. By incorporating three of the knowledge

modalities, we achieve the best performance.

4.4.2. Influence of the GRUC Module

As the key component in our model, the GRUC module has two advantages over the

existing reasoning models: first, it considers the structure information in the knowledge

base and involves the structures in the reasoning process; second, the multi-step reason-

ing process via recurrent GRUC modules achieves greater reasoning ability compared

with the state-of-the-art OB model [7] merely applying feature concatenation. We jus-

tify these two advantages by the following variations:

- w/o Neighbor Aggregation (Control Unit) (model ‘4’): this model removes

the neighborhood information, i.e. cFi in Equation 5, in initializing the control

unit.

- w/o Neighbor Aggregation (Update Unit) (model ‘5’): this model removes the

neighborhood information, i.e. cneij in Equation 11, in the update unit.
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- w/o GRUC network (model ‘6’): this model replaces the GRUC network and

multimodal feature fusion introduced in Section 3.3 by direct concatenation, i.e.

concatenating the mean pooling of all the semantic/visual node features with

each entity feature.

The experimental results are shown in the second block in Table 4. The perfor-

mance on three datasets decreases slightly when remove the neighborhood information

from either the control unit or the update unit. It indicates that preserving the struc-

tural information when incorporating the knowledge brings richer semantics for answer

prediction. The performance decreases more than 10% when replacing the GRUC net-

work by simple concatenation, which proves the advantages of the proposed recurrent

reasoning process in gathering complementary evidence from different modalities.

4.4.3. Influence of the Intra-Modal Knowledge Selection

The first stage in our model is to select knowledge from each modalities under

the guidance of the question independently. Since most questions are referring to a

small portion of knowledge, this stage aims to choose relevant knowledge and avoid

unexpected noise for improving the performance. We prove this motivation by the

variation below:

- w/o Intra-Modal Knowledge Selection (model ‘7’): this model removes the

intro-modal knowledge selection process introduced in Section 3.2.

The experimental results are shown in the third block in Table 4. We observe that

all the metrics decrease remarkably on all the three datasets. It indicates that ‘intuitive’

knowledge filtering before ‘clever’ knowledge reasoning is effective to bring extra im-

provement.

4.4.4. Influence of the Global Assessment

The last stage in our model is to globally assess all the concepts via GNN and

choose the optimal one as the answer. To prove the influence of this process, we further

conduct the following ablation study:
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- w/o Global Assessment (model ‘8’): this model removes the GNN operated

on all the concepts in Section 3.4 and feeds the embedding of each concept in

{ṽFi }N
F

i=1 directly to the binary classifier.

The experimental results are shown in the last block in Table 4. The performance

consistently decreases on all the datasets. However, the decrease is relatively smaller

compared with other models. We think that the GNN model used in this process is

relatively simple and more effective global assessment approach perhaps can bring

more improvement.

4.5. Interpretability

Our model is interpretable by visualizing the attention weights and gate values in

the cross-modal heterogeneous graph reasoning process. From case study in Figure 6

and Figure 7, we conclude with the following three insights:

GRUC is capable to reveal the knowledge selection mode from different modal-

ities. In Figure 6, the first four examples indicate that GRUC captures the most relevant

visual, semantic and factual evidence (according to intra-modal attention weights) as

well as complementary information across modalities (according to attention weights

in the Read Unit of the GRUC module). The ratio of total gate values reveals the

amount of information derived from each graph. We denote the sum of all the gate val-

ues for the visual dimensions, fact dimensions and semantic dimensions in Equation

13 as Gv , Gf and Gs, respectively. We denote the sum of all the gate values for all the

dimensions in Equation 13 asG. The ratio of total gate values for the visual graph, fact

graph and semantic graph is defined as Gv

G , Gf

G and Gs

G , respectively. In most cases,

factual knowledge provides predominant clues compared with other modalities from

the observation of the ratio of gate values. It is because that KVQA tasks rely on exter-

nal knowledge to a great extent. Furthermore, more evidence comes from the semantic

modality when the question involves complex relationships. For instance, the question

in the first case asking about single object ‘devise’ requires more visual information

while the question in the second case involving the relationship between ‘hand’ and

‘while round thing’ needs more semantic clues.
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Figure 6: Visualization for our model. Visual graph highlights the most relevant subject (red box)

according to attention weights of each object (αV in Eq. 1) and the objects (orange boxes) with

top-2 attended relationships (βV in Eq. 2). Fact graph shows the predicted entity (center node)

and its top-4 attended neighbors (αF in Eq. 1). Semantic graph shows the most relevant concept

(center node) and its up to top-4 attended neighbors (αS in Eq. 1). Each edge is marked with

attention value (βF/S in Eq. 2). Dash lines represent memory read attention weights at reasoning

step T (γ(T ) in Eq. 9). The thermogram on the top visualizes the gate values (gatei in Eq. 13)

of visual embedding (left), entity embedding (middle) and semantic embedding (right).
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Question: Where can you find the
right object on the table shown in
the image?
Dataset: FVQA
GTAnswer: wedding
Pred. Answer: party (✘)

Question: Where in the world is this
picture taken?
Dataset: OK-VQA
GTAnswer: France
Pred. Answer: road (✘)

Question: Who invented the yellow
and black item?
Dataset: OK-VQA
GTAnswer: samuel fox
Pred. Answer: woman (✘)

Question: what in this image is a part
of ocean?
Dataset: Visual7W+KB
GTAnswer: wave
Pred. Answer: water (✘)

Figure 7: Visualization of four failure cases.

#top-k dense captions 5 10 20

top-1 accuracy 70.20 73.06 65.40

top-3 accuracy 82.65 85.94 75.98

Table 5: Overall accuracy with different number of dense captions.

GRUC has advantages over the state-of-the-art model. In Figure 6, the fifth

example compares the predicted answer of Out of the Box (OB) [7] with GRUC.

GRUC collects relevant visual and semantic evidence to make each entity discrimi-

native enough for predicting the correct answer while OB failing to distinguish repre-

sentations of ‘laptop’ and ‘keyboard’ without feature selection.

GRUC fails mostly in three conditions: highly relevant answers, inadequate

visual evidence and limited external knowledge. Figure 6 shows four failure cases.

(1) Some cases fail when the predicted answer is quite relevant to the ground truth

answer. In the first case, it’s reasonable that both ‘wedding’ and ‘party’ may have cakes.

There is no further evidence from the image to decide which situation is more accurate.

We can explain the second case by the similar reason. (2) Some cases fail when there

is no enough evidence to infer the correct answer, such as the third sample in Figure 6.

(3) Some other failure cases are due to the lack of required knowledge in the provided

knowledge base. In the last case in Figure 6, there is no fact about ‘samuel fox’ in

ConceptNet. Therefore, comprehensively considering multiple knowledge bases to

cover a wider range of knowledge is important to improve the KVQA ability.

4.6. Parameter Analysis

We evaluate the influence of different number of dense captions in Table 5. The

results show that 10 captions achieves the best performance on both top-1 and top-
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Figure 8: Overall accuracy with different number of reasoning steps in the GRUC network. The

blue solid and dotted lines respectively denote the top-1 and top-3 accuracy on FVQA. The red

solid and dotted lines respectively denote the top-1 and top-3 accuracy on Visual7W+KB. The

green solid and dotted lines respectively denote the top-1 and top-3 accuracy on Ok-VQA.

3 accuracy. We further evaluate the influence of different number of reasoning steps

T in the GRUC network. Figure 8 shows the top-1 and top-3 accuracy on FVQA,

Visual7W+KB and OK-VQA when setting the number of reasoning steps in the range

of 1 to 5. We find that 3 reasoning steps achieve the best performance on the all

datasets. If the number of reasoning steps less than 3, the GRUC network cannot

extract adequate knowledge from each memory to support the global assessment. In

contrast, too many reasoning steps may lead to over-smoothing, leading to the features

of nodes converging to the similar values. Therefore, we use this setting in our full

model and the ablation models.

5. Conclusion

In this paper, we propose a graph-based recurrent reasoning network GRUC for vi-

sual question answering requiring external knowledge, which focuses on cross-modal

knowledge reasoning upon graph-structured multimodal knowledge representations.

We novelly depict multimodal knowledge sources by multiple knowledge graphs from
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the visual, semantic and factual views. The representations of different modalities

are unified in graph domain, thus benefiting for relational reasoning across modalities.

Meanwhile, introducing the semantic graph for high-level abstraction brings remark-

able improvement in KVQA, which has been less studied in previous work. On top of

these representations, we propose a new recurrent reasoning model and each reason-

ing step is performed by a Graph-based Read, Update, and Control (GRUC) module

that conducts parallel reasoning over both visual and semantic information. GRUC

is a parallel reasoning module that applies modality-oriented controllers for reasoning

over different modalities in a parallel mode, which can be easily extended to involve

more modalities. Our model consistently outperforms the state-of-the-art approaches

remarkably on FVQA, Visual7W-KB and OK-VQA datasets. Furthermore, the model

has good interpretability of revealing the knowledge selection mode from different

modalities by comprehensive visualization. However, our model has inferior perfor-

mance when open-domain knowledge is required. How to adaptively incorporate di-

verse knowledge bases that covering commonsense, Wikipedia knowledge and even

professional knowledge for KVQA tasks will be our future work.
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