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Highlights

e We study the stochastic supervision problem where only probabilistic

assessments are provided for classification.
e We propose four novel generalisations of stochastic supervision models.

e We also develop four new EM algorithms for the generalisations.
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Abstract

When the labelling information is not deterministic, traditional supervised
learning algorithms cannot be applied. In this case, stochastic supervision
models provide a valuable alternative to classification. However, these mod-
els are restricted in several aspects, which critically limits their applicabil-
ity. In this paper, we provide four generalisations of stochastic supervision
models, extending them to asymmetric assessments, multiple classes, feature-
dependent assessments and multi-modal classes, respectively. Corresponding
to these generalisations, we derive four new EM algorithms. We show the
effectiveness of our generalisations through illustrative examples of simulated

datasets, as well as real-world examples of three famous datasets, the MNIST

*Corresponding author. Tel.: +44 (0)20 7040 4707
Email addresses: xiaoou.lu.13@ucl.ac.uk (Xiaoou Lu),
yangqi.qiao.15@alumni.ucl.ac.uk (Yangqi Qiao), rui.zhu@city.ac.uk (Rui Zhu ),
wangguijin@mail.tsinghua.edu.cn (Guijin Wang), mazhanyu@bupt.edu.cn (Zhanyu
Ma), jinghao.xue@ucl.ac.uk (Jing-Hao Xue)

Preprint submitted to Pattern Recognition August 5, 2020



Journal Pre-proof

dataset, the CIFAR-10 dataset and the EMNIST dataset.
Keywords: EM algorithms, imperfect supervision, finite mixture model,

stochastic supervision

1 1. Introduction

2 Generally speaking, the aim of various statistical learning methods is to
s infer the real label y of an input instance x. Classification and clustering are
+ two extreme ends in the sense of amount of labelling information provided
s for the inference of y. In classification, the deterministic labels {y,}\_, of
s N training instances {x,}_,, represented by a binary or multilevel cate-
7 gorical random variable y, are usually provided in advance to train a clas-
s sifier f(y|z) on the information from both the input and output spaces via
o ({x, )M, {ya}2_,). The trained (supervised) classifier is then used to infer
0 the real label y of a test instance x. In contrast, in clustering, no labelling
u information is provided at all, hence a clustering method f(y|x) is built on
1> the information frotn only the input space via {z,}Y_,.

13 In between classification and clustering, there exists partially-supervised
1 classification [1-5] with various types of information provided to help in-
15 ference.  One example is called semi-supervised classification [6, 7], where
16 only part of the deterministic labels {y, }_, are provided for classifier train-
17 ing. Another example is called imperfect supervision [8-12], where there
15 are some wrong deterministic labels provided in {y,}"_,. Multiple instance
10 learning [13] also deals with partially-supervised setting, where determinis-
2 tic labels are provided for bags of multiple instances rather than for each

a1 specific instance.  In this paper, we discuss another partially-supervised



Journal Pre-proof

» classification scheme called stochastic supervision, which, in contrast to all
s the cases aforementioned, provides no deterministic labels {y,}_; but only
2 probabilistic assessments {z,}_, for inference of y. In other words, only
s some side information about the output is provided.

2 A motivation of stochastic supervision is that, in practice, data are often
o7 labelled by certain experts or say supervisors with subjective labelling to
s some extent, and in many situations an expert cannot provide deterministic
2 labels. For example, in medical diagnostic, an expert may not be perfectly
3 sure whether a patient has a certain disease, and they can only provide a
a1 subjective assessment, which is often expressed in a probabilistic manner.
» These probabilistic assessments can be represented by continuous random
13 variables, from a space different from the discrete space of output label y.
3 On the basis of these assessnients (or say probabilistic labels), the statistical
55 classification problem, of fitting a model to the training data and inferring the
s real labels of the test data, was studied under the nomenclature of stochastic
» supervision [14-19].

38 The research of stochastic supervision models for discriminant analysis
% was pioneered by Aitchison and Begg [14] and Krishnan and Nandy [15]. As
w0 with [15] we assume two classes, namely class 1 and class 2, with proportions
a m and m, = 1 — 7y, respectively. In each class, the data available, including
«2 both the d-dimensional feature vector x of an instance and its supervisor’s
»3 assessment z that the instance belongs to class j, follow a class-dependent
s distribution f;(z, 2), for j = 1,2. The task is to infer the real label y of the
s instance (z, z).

4 In [15], the class-dependent joint data-generating distribution f;(x, z) was
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w further factorised as f;(z,z) = f;(z)g;(2), by assuming that the features
s x and the assessment z are independent of each other in each class. By
w0 supposing the features x are continuous random variables in the range of
50 (—00,00), it was assumed that x|y = 1 ~ N(u1, X) and x|y = 2 ~ N (2, X),
51 two class-dependent d-variate Gaussian distributions. We denote the pdfs
2 of zly = 1 and z|y = 2 as fi(z) and fo(z), respectively. In the meantime,
53 as the probabilistic assessment z is a continuous random variable in the
s« range of [0,1], it was assumed that z|y = 1 ~ Beta(a,b) and zly = 2 ~
s Beta(b,a), two Beta distributions symmetric between the two classes. We
ss denote the pdfs of z|y = 1 and z|y = 2 as ¢, (z) and go(2), respectively.
sv That is to say, the model in [15] assumes that the data-generating process
s in class j follows a Gaussian distribution f;(z) for features z and a Beta
so distribution ¢;(z) for assessnient z. Although the assessment z is given for
o each training instance x, the real label (denoted by y) is unknown, which
o1 leads the likelihood of the training instance, or say the joint distribution of
o2 x and z, as p(x, z) = m fi(z, 2) + mafo(x, 2) . Hence this is a latent variable
63 (finite mixture) problem, and the model was fitted by an EM algorithm
6 in [15].

65 However, there are two technical issues with Krishnan and Nandy’s stochas-
s tic supervision model. Firstly, it cannot accept any assessment that z > 1
e or z < (0, while in some real problems the assessment can be a random vari-
s able in the range of (—o0, 00). Secondly, the EM algorithm for this model is
so complicated, because there is no exact solution in the M-step for the estima-
70 tion of certain parameters due to the adoption of the Beta distributions for

71 assessment z.
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72 In order to overcome the two issues above, Titterington [16] introduced
73 a new supervisor’s assessment w = log ;% to replace the original z. This
7 transformation is called additive logistic transformation [20], which extends
75 the range of the assessment from [0, 1] to the real line and thus the assess-
7 ment can be modelled by Gaussian distributions. In Titterington’s model,
7 supervisor assessments ¢; (w) and g (w) are assumed to follow two univariate
7z Gaussian distributions N(—A,;Q) and N(A,Q), respectively, where A > 0
7 and € > 0. In this model, the constraints of equal variances and symme-
so try in the assessment distributions between the two classes are preserved.
si Then Titterington [16] provided an EM algorithm to estimate parameters
e {1, p1, po, 2, 2, A}

83 In this paper, we aim to generalise Titterington’s model in four aspects,
sa  to make it more flexible and generic to deal with more complicated real-
ss world classification tasks. We note that the first three aspects have been
s suggested and discussed by Titterington in section 5.2 of [16], though no
s7 detailed derivation was provided as we shall present in this paper. Our four

s generalisations are briefly described as follows.

89 1. Asymmetric assessments. In both Krishnan and Nandy’s and Titter-

% ington’s models, the two class-dependent distributions of assessments

a1 q;(2) (or gj(w)) were symmetric and with equal variances. Our first

o generalisation aims to relax this restriction on the parameter setting of

03 supervisor’s assessments.

0 2. Multiple classes. The past models were for two-class discrimination.

% Our second generalisation is designed for classification of multiple classes.

% 3. Feature-dependent assessments. In Krishhan and Nandy’s [15] and Tit-
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o7 terington’s [16] work, the assessment and the features were modelled
% independent of each other. Our third generalisation aims to model their
99 dependence.

100 4. Multi-modal classes. In the past research on stochastic supervision,
101 each class was modelled by a Gaussian distribution, implying that there
102 was only a single population for each class, which we call it a uni-modal
103 class. In our fourth generalisation, we model the cases that each class
104 contains multiple subclasses, making the class a multi-modal class.

105 We shall detail the four generalisations in four subsections of section 2

ws along with four EM algorithms and some numierical illustrations. In sec-
w7 tion 3, we present real-data examples to demonstrate the effectiveness of the

108 generalisations.

1ws 2. Generalised models and their EM algorithms

w  2.1. Generalisation-1: asymmetric stochastic supervision

1m Let us first make the parameter setting of stochastic supervision models
2 more flexible. In Titterington’s model [16], the distributions of assessments
us in two classes are wly = 1 ~ N(=A,Q) and w|y = 2 ~ N(A,Q). They are
s syminetric in the sense that their variances are the same and their means are
us  the additive inverses of each other. Here as suggested by Titterington [16],
s we generalise them to w|y =1 ~ N(A1,Q) and w|y = 2 ~ N(Ay, Q). We
u7  denote the pdfs of w|y =1 and w|y = 2 as ¢;(w) and go(w), respectively.

us  2.1.1. Formulation of generalisation-1
119 Our notation is established as follows. The observable dataset is denoted

120 by X = {X, W}, the latent variable set by Y = {Y'}, and the parameter set

7
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w1 by 0 = {my, mo, p, 2, 2, 1, A, Qo, Ao}, where X = {x,}, W = {w,} and
22 Y = {y,}, for n = 1,... N, are N instances, assessments and real labels
13 of the instances, respectively. For each instance, vy, = (yn1,Yn2) is a latent
e variable vector (representing its real label) such that for class j we have
s Yn; € {0,1} and for two classes together we have 23:1 ynj = 1. That is, y,
16 1S a latent indicator vector with only one element being true.

127 Hence, for complete data (Y, X) = {(yn,Tn,wn);n = 1,..., N}, the
128 complete-data likelihood is

N

PV, ) = [ [ {lm fi(@n)q (wn)] + [ma fo(n)ga(wn)]2}
n=1
129 Since this model contains latent variables ¢,, we can estimate the model

10 parameters by deriving an EM algorithm. In general, an EM algorithm [21]

11 is an iterative algorithm providing a maximum likelihood solution for in-

12 complete data. We can also use the EM algorithm for models with latent

133 variables. In each of its iterations, the EM algorithm has two alternating

1 steps, the expectation (E-)step and the maximisation (M-)step.

135 In the E-step, we fix current parameters and compute expectation of the

s complete-data log-likelihood function with respect to the conditional distri-

157 butions of latent variables given observed data X: Q(0,0°%) = Ey|x gota(log p(¥, X|0)).
138 In the M-step, we find new parameters by maximising the expectation

159 obtained in the E-step: 0" = arg max, Q(, 6°'?) .

w  2.1.2. EM algorithm of generalisation-1
E-step. For the generalisation-1, in the E-step, we compute the posterior

probabilities of latent variables v(y,;) = p(yn; = 1|X, 6). By the Bayes rule,
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we have

j (2, wn|6) 25:1 TN (@115, B5) N (w,|Aj, Q)

11 which are called responsibilities that class j takes for explaining z,, [22].

w2 M-step. In the M-step, we take partial differential of [(§) = Q(6, 0°') with
s respect to 0 = {my, ma, p1, o, 2, 21, A1, Qo, A} and set it equal to zero to

s obtain updated parameters 0™, It follows that

N N
o n_17<yn1)$n . n_l’y(ym)xn
P == , T =
nZ_)l’ﬂynl) nZ_ZlWynz)

us indicating that the updated mean p7“" of the features in class j becomes

us a weighted average of all data peints from the two classes, weighted by the

17 responsibilities; and similarly

Anew — ZnNzl ’Y(ynl)wn Alew — 22;1 ’Y(ynQ)wn
1 - N ) 2 - N ’
D V(Yn1) 2 n—17(Un2)

us i.e., the updated.mean A® of assessments in class j becomes a weighted
o average of all assessments over the two classes.
150 Also, the updated covariance matrix of the features is

N 2

22 22 Y (Wng) (@ — ) (@0 — p15)"

n=1j=1

Enew —

% i Y(Ynj)

n=1j=1
151 a weighted pooled covariance matrix; and similarly the updated variances of

12 class-specific assessments are

erzew _ ZnNzl ’Y(ynl)(wn - A1)2 Qnew ij:l 7<yn2><w" B AZ)Q ]

Zfzvzl Y(Yn1) L 22’:1 Y (Yn2)
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153 Since the two mixing weights have to satisfy my + 7 = 1, we can set

isa 0l(0)/0mj + X = 0, where X is a Lagrange multiplier. It then follows that
N

s T = 53 YY) T

n=1
156 Mmixing weights is an average of the responsibilities.

= 1 — ¢, indicating that each of the updated

w57 2.1.3. Illustrative example for generalisation-1

(a) (b)

Figure 1: (a) Supervisor assessments with equal variances and symmetrical means between
the two classes. Red curve: assessments density estimated by Titterington’s model. Blue
curve: assessments density estimated by the generalisation-1. (b) Supervisor assessments
with unequal variances and asymmetrical means between the two classes. The rest caption

is as for Figure 1(a).

158 As shown in Figure 1(a) and Figure 1(b), compared with Titterington’s
19 original model, the generalisation-1 is more flexible in accommodating the
1o distributions of supervisor’s assessments of various shapes. Let us appreciate
11 it from two aspects.

162 Firstly, we simulate the supervisor’s assessments from two Gaussian dis-
163 tributions with equal variances and symmetrical means; this setting satisfies
s the assumption underlying Titterington’s model. In this case, as shown in

165 Figure 1(a), the generalisation-1 performs similarly to Titterington’s model.

10
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Figure 2: Three extreme cases of supervisor assessments. (a) Supervisor assessments
with large unequal variances and symmetrical means between the two classes. Red curve:
assessments density estimated by Titterington’s model. Blue curve: assessments density
estimated by the generalisation-1. (b) Supervisor assessments with large equal variances
and asymmetrical means between the two classes. The rest caption is as for Figure 2(a).
(c) Supervisor assessments with large unequal variances and asymmetrical means between

the two classes. The rest caption is as for Figure 2(a).

11
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166 Secondly, we simulate the supervisor’s assessments from two Gaussian
167 distributions with unequal variances and asymmetrical means; this setting
s does not satisfy the assumption underlying Titterington’s model. In this
160 case, as shown in Figure 1(b), the generalisation-1 has much better fitting
o performance than Titterington’s model.

171 Besides the moderate unequal variances and asymmetrical case shown
w2 in Figure 1(b), we also present the superior fitting performances of the
173 generalisation-1 in three extreme cases in Figure 2: supervisor’s assessments
s simulated from two Gaussian distributions with large wunequal variances and
s symmetrical means in Figure 2(a), large equal variances and asymmetrical
s means in Figure 2(b) and large unequal variances and asymmetrical means in
7 Figure 2(c). Obviously, the generalisation-1 can provide better fittings than
17s Titterington’s model under these extreme unequal variances and asymmet-

179 rical cases.

o 2.2. Generalisation-2: multi-class stochastic supervision

181 Original stochastic supervision models were only for two-class discrim-
12 ination. In practice multi-class classification problems are also prevailing.
183 Hence here we extend Titterington’s model to multi-class cases, as suggested

1w by Titterington [16].

185 2.2.1. Formulation of generalisation-2

186 Suppose there are J classes. As with [16], the supervisor’s assessment of
7 an instance x is now a J-variate vector of ‘probabilities’; z = (z1,...,2s),
1 and we can define a new assessment vector w; = log % forj=1,...,J—1,

19 which extends the supervisor’s assessments from (0, 1) to (—oo, c0). Then we

12
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wo can assume that, for each class j, the assessments w = (wy, ..., wy_1) follow
w1 (J — 1)-variate Gaussian distributions: g;(w) ~ N(Aj,§2;), where g;(w) is
102 the pdf of wly = j.

193 Then, given the real label v, = (yn1,-..,Yns) is unknown, the joint dis-
104 tribution of the observed features z,, and assessment w,, of the nth instance
s becomes p(z,,w,) = Z;.le 7 fj(@n, wy), where f;(z,,w,) = fij(x,)q;(wy)
we and m; = p(y,; = 1) is the mixing weight of class j.

197 Before going further, we recall some notation to be used for the generalisation-

199 e set of the latent labels Y = {y,}; for n = 1,..., N, where y, is a

200 J-variate latent vector of real labels, and we have y,; € {0,1} and
201 Z;le Ynj = 1;

202 e set of the class mixing weights I = {;}, for j = 1,...,J, where 7; is
203 a scalar;

204 e set of the class means U = {yu;}, for j = 1,...,.J, where y; is a d-variate
205 vector;

206 e set of the class covariances ¥ = {¥;}, for j = 1,...,J, where ¥, is a
207 d x d matrix;

208 e set of the assessment means A = {A;}, for j =1,...,J, where A, is a
209 (J — 1)-variate vector; and

210 e set of the assessment covariances Q = {Q;}, for j =1,...,J, where Q;
211 is a (J — 1) X (J — 1) matrix.

13
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212 In this notation, the parameter set for the generalisation-2 is § = {II, U, ¥, A, Q};
23 the complete-data likelihood of observed data X" and latent data ) is p(Y, X'|6) =

ze TIny S [N (@l g, 55) N (w| A, Q)% and the marginal likelihood of

a5 observed data X is p(X|0) =[], ijl TN (x|, 25) N (w,|Aj, Q).

as 2.2.2. EM algorithm of generalisation-2

a7 E-step. In the E-step we can update posterior distribution of latent variables

zs by setting ¢"V(Y) = p(V|X, 6°). Since

p(V|X,0°) = ﬁ 3 g (@l 55N (wn | A, )]

n=1 j=1

i

210 we have the class responsibilities as

N TN (@, 35) N (wa Ay, )
V(Ynj) = =3 :
> iy TN (@l g, ) N (wn| Aj, ;)

220

21 M-step. In the M-step, we update 6 by 6" = argmax, ) _, ¢"*(Y) log p(Y, X|0).
22 Since the mixing weights 7; satisfy the sum-to-one constraint, as in section 2.1

23 we introduce a Lagrange multiplier A and set 0l(0)/07; +)\(ij1 m,—1)=0,

N
24 which results in the updated mixing weights as 7;" = * X_:l Y¥(Yn;), which is

»s again an average of the responsibilities over all the data points. Similarly to

26 the M-step in section 2.1, we can obtain the updated means and covariance

27 matrices as

N N
Zl’Y(ynj)mn » V(Wng) (@0 — pir) (@0 — paj)"
1™ = —x , B = N ,
Z_)l Y (Ynj) Z_Il Y (Ynj)
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228

S (g S ) (100 — Ay — AT

Anew — n Qrew — n=1
J ) J

=1

N

Z Y (ynj)
n=1 n=1
229

20 2.2.3. lllustrative example for generalisation-2

231 In Figure 3(a), we depict a simple example of three classes with a one-
2»  dimensional feature x (in the horizontal axis) and one dimension of the as-
23 sessment w (in the vertical axis). The joint distribution of the feature and
21 the assessment is thus a three-component mixture of Gaussian distributions.
25 Figure 3(a) shows that the generalisation-2 works in this case. From Fig-
26 ure 3(b), we can observe that the feature’s distributions of the three classes
237 seriously overlap. However, with the assessments information added, we can

2 see that the three classes are niuch more separable, as shown in Figure 3(a).

29 2.8. Generalisation-3: feature-dependent stochastic supervision

240 Titterington [16] suggested to generalise the stochastic supervision model
21 to the scenarios that the supervisor’s assessment w is dependent on the fea-
a2 tures z. Inthe generalisation-3, we assume that there is a linear relationship
23 between the assessment and the features. To check the validity of this as-
24 sumption, we can calculate the Pearson correlation coefficient between x and
x5 w if there is one feature or the adjusted R? [23] when regressing w against x

us for multiple features.

aur 2.83.1. Formulation of generalisation-3
248 The formulation of this generalisation is quite similar to that of the origi-

a9 nal stochastic supervision model, except that the distribution of assessment is

15
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Figure 3: (a) Joint distribution of feature and (one dimension of) assessment for three
classes in red, blue and green, respectively. The contour plots were estimated by the
generalisation-2. Each contour is labelled by its corresponding density. (b) Distributions

of the feature for three classes in red, blue and green, respectively.

16
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250 now conditional on the features by replacing ¢;(w) with g;(w|z). This makes
251 the joint distribution of (z,,w,) as p(x,,w,) = Z;’:l 7 fi(xn)qj (wn|xy).

252 As suggested in [16], a simple way to model g;(wy|z,) is to use the Gaus-
s sian distribution N(ay + (] 2,,€2;), and in this case the joint distribution

2 fj(xn, wy) is simply another Gaussian distribution N (v;, ¥;), where

o 1 v | ™ % B;
vi= T P e T
a; + ﬁj iy ,8]- E]' Qj + ﬁj Zjﬁj

5« is a (J — 1)-variate vector, and f; is a d x (J — 1) niatrix.

w6 2.3.2. EM algorithm of generalisation-3

7 F-step. In the E-step, we can compute the responsibilities as

N ﬂ-jfj(xn’wn)
V(Ynj) = Z;']:1 ijj@mwn)‘

28 M-step. In the M-step, we can update v; by setting

N

D AT ()

0 Wwhere a, is a concatenated vector of x, and w,. Similarly, the updated

9

260 covariance matrix is

U - S Y (Yng) (@ — V) (an — Vj)T.

! SN A ()

w1 2.3.3. lllustrative example for generalisation-3

262 A simple example of dependent assessment and feature is illustrated in
%3 Figure 4. The joint distribution of assessment and feature follows a bivariate
4 Gaussian distribution with positive non-diagonal elements in the covariance

s matrix. The y-axis in Figure 4 shows the assessment while the x-axis shows

17
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Figure 4: Joint distributions of feature and assessment. Dashed contour plots were esti-
mated by Titterington’s original stochastic supervision models. Solid contour plots were

estimated by the generalisation-3. Each contour is labelled by its corresponding density.

18
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6 the feature. The Pearson correlation coefficient between the feature and
7 assessment of the blue class is 0.8378 while that of the red class is 0.2994.
x%s 1t is clear that, compared with Titterington’s original model, which assumes
%0 the independence between features and assessments, the generalisation-3 fits
o0 the joint distribution of the feature and the assessment much better, when

on they are indeed dependent.

o 2.4. Generalisation-4: Multi-modal classes

213 In the original work of Krishnan and Nandy’s model [15] and Tittering-
2 ton’s model [16] and the three generalisations we have presented, each class
s is modelled by a Gaussian distribution, implying that there was only a sin-
o gle population for each class, which we call a uni-modal class. In practice,
a7 however, the distribution of each class can be much complicated, often hav-
s ing multiple modes, which cannot be described by a standard probabilistic
oo distribution. In this context, we propose our generalisation-4 to model the
20 cases that each class contains multiple subclasses, which makes the class a
21 multi-modal class.

282 In fact, almost all continuous densities can be approximated with arbi-
23 trary accuracy by a mixture of Gaussian distributions [22]. For supervised
2 discriminant analysis, the mixture of Gaussians have been studied well in [24-
25 27]. I the scenario of the stochastic supervision model, which is not deter-
286 ministically supervised and is itself a mixture of Gaussians, we extend the

27 model to a mizture of miztures of Gaussian distributions [28, 29].

19
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8 2.4.1. Formulation of generalisation-4

289 Suppose there are J classes and, for each class j, there are K; subclasses.
20 The total number of subclasses is K = ijl K;.

201 We assume for each subclass the features z follow a Gaussian distribution
22 N(pjk, Xjk), such that each class can be modelled by a mixture of Gaussian
23 distributions f;(z): fi(z,) = EkKi1 kN (1, Lji), where ¢ = p(tpjp =
20a 1]y,; = 1) is the mixing weight of subclass k within class j, and t,; =
205 (tnj1,. .., tnjx;) is a latent vector, such that t,;. € {0,1} indicating the
26 membership of a subclass belonging to a class, and Z,I:il toji = 1.

207 Given that the real label is also unknown and the instances were generated
2s  from J different classes, we have the distribution of features = as a mixture of
20 J different mixtures f;(z) of Gaussian distributions: p(z,) = ijl 7 fi(xn)
30 where 7m; = p(y,; = 1) is the mixing weight of class j in the whole dataset,
50 and Y, = (Yn1, - - -, Yns) is a latent variable vector of real class label such that
2 Y € {0,1} and ijl Ynj = 1.

303 Moreover, as before, for each class 7, the supervisor’s assessment w follows
;4 & univariate Gaussian distribution N (4, ;).

305 The notation for the generalisation-4 can be summarised as

306 o set of features X = {z,}, forn=1,..., N;

307 e set of the supervisor’s assessments W = {w,}, forn=1,... N;
308 e set of the latent class labels Y = {y,}, forn=1,...  N;

300 e set of the latent subclass labels T = {t,;x}, for n = 1,...,N, j =
310 1,...,J,k’:1,...,Kj};

20
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311 e set of the class mixing weights IT = {m;}, for j =1,...,J;

312 e set of the subclass mixing weights ® = {¢;c}, for j = 1,....J, k =
313 1,..., Kj;

314 e set of the subclass means U = {p;;.}, for j=1,...,J, k=1,..., Kj;

315 e set of the subclass covariances ¥ = {3}, for j = 1,...,J, k =
316 ]., ey KJ,

317 e set of the assessment means A = {A;}, for j = 1,...,J; and

318 e set of the assessment covariances 2 = {Q,}, for j =1,...,J.

319 We also define X = {X, W}, T = {Y,T}, and 6 = {I[,®,U, X, A, Q}.

20 The complete-data likelihood becomes

8]

N J K;j

(X, T10) = [T TET 1m0V alities Soa) N (wn| A, Q)]0

n=1j=1 k=1

s21  and the marginal likelihood of the features becomes

N J K;
p(@) =]] N (wa A5,95) D 65N (] ik, k)
n=1 j=1 k=1

322

3 2.4.2. EM algorithm of generalisation-4
324 The EM algorithm to fit the model can be derived as follows.

s F-step. In the E-step we can update distribution of latent variables by set-
s ting ¢"“(T) = p(T|X,0°?). We can update the class responsibilities by

3

8]
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3

[§]
;N

setting v(yn;) = p(yn; = 1|X,0°%), and the subclass responsibilities by set-
s ting r(tnn) = p(tajr = 1|X, 0°9), which lead to

3

IS

K;
>kt T DN (@ |, Bje) N (wn] A, ;)
K;
S Sk 0N (@l e, i) N (wn| A, Q)

V(Yng) =

329 and
70N (Tn |tk Xje) N (wn|Aj, €5)
K .
S Sk bk N (e, i) N (| A5, ;)

7(tnjk) =

330

s M-step. Inthe M-step, we can update by 0™ = argmax, > ¢"*(T) log p(T, X|0).
s It follows that

N N N
Z_:l Y (¥ny) Z_:l 7 () Z_:l 7 (tnjk)Tn
m = %k =N Mk =y )
2—:1 Y(Ynj) 2_:1 7 (tnj)
333
N N .
> Y (Yng)wn Z_:l 7 (tnjn) (Tn — k) (Tn — fj1)
A;Lew — 1 Egb;w — N ,

532 (y) S ()

n=1 n=1

5 () (100 — Ag) (0 — AT

334

nﬁ:l Y (Ynj)

s 2.4.3. lllustrative example for generalisation-/

3 Figure 5(a) and Figure 5(b) illustrate an example of generalisation-4 for

@
=Y

s two classes, Class-A with a mixture of two Gaussian subclasses while Class-
18 B with a mixture of three Gaussian subclasses. In this case Class-A and

s Class-B are difficult to be modelled well by a single Gaussian distribution, if
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Figure 5: (a) Joint distributions of feature and assessment for two classes with subclasses:
Class-A with two subclasses (red); Class-B with three subclasses (blue). Dashed con-
tour plots were estimated by Titterington’s original stochastic supervision models. Solid
contour plots were estimated by the generalisation-4. Each contour is labelled by its cor-
responding density. (b) Distributions of feature for two classes with subclasses: Class-A

2
with two subclasses (red); Class-B with three3 subclasses (blue).
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s the original Titterington’s model is adopted. Our generalisation-4, however,
s can handle such a complicated dataset, as shown in Figure 5(a). Moreover,
s comparing Figure 5(a) and Figure 5(b), we can also observe that the data
3  became more separable when the assessment information is added to the
s model: in Figure 5(b) there is a large overlap between the two classes when
15 only the feature is used while in Figure 5(a) the two groups of points became

us separable when the feature and assessment are jointly modelled.

u 3. Real-data experiments

348 In stochastic supervision, as no deterministic labels were available to
uo  training, we cannot compare its classification performance to supervised
0 learning methods such as linear diseriminant analysis and support vector
;51 machines; on the other hand, it would also be unfairly to favour stochastic
32 supervision if we evaluate it with unsupervised clustering methods such as
13 k-means, given the latter does not even provide any assessment information.
s Hence we only compare our generalisations with other stochastic supervisors
15 like Titterington’s model, the comparison with which has been demonstrated
36 in the previous sections with simulated data, and in the following experiments
7 with real-world data.

358 In our experiments, the generalisation-1 and the generalisation-2 are not
9 evaluated in the real-data experiments because their asymmetric and multi-
w0 class settings are also covered by the generalisation-3 and the generalisation-

361 4
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2 J.1. Real-world datasets

363 We use three famous real-world datasets in our experiments: the MNIST
;e dataset [30] is used to evaluate the effectiveness of the generalisation-3, the
35 CIFAR-10 dataset [31] is used to evaluate that of the generalisation-4 and
36 the EMNIST dataset [32] is used to evaluate both generalisations.

367 In MNIST, we aim to classify handwritten digits 3 and 5, which are hard
w8 to distinguish. The assessment and features show strong linear relationship
w9 in these two classes, as shown in Table 1. In CIFAR-10, we divide the whole
w0 dataset into two large classes: the animal class (which includes bird, cat, deer,
s dog, frog and horse) and the transportation class (which includes airplane,
w2 automobile, ship and truck). This setting is reasonable for the generalisation-
sz 4, because the two large classes contain several subclasses. In EMNIST, we
s aim to classify three large classes: the digits class, the capital letters class
a5 and the lower cases class. These three classes have 47 subclasses, including 10
s digits subclasses, 26 capital letters subclasses and 11 lowercases subclasses.
s The linear relationship between the assessment and features are shown in
srs Table 1. Thus the EMNIST data is a mixture of feature-dependent assess-
sre - ments and multi-modal classes and is suitable to test both generalisations 3

0 and 4.
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381
Table 1: Adjusted R? when regressing the assessment against the features for the

MNIST and EMNIST datasets.

MNIST EMNIST
Dataset
Digit 5 Digit 3 Capital Letters Digits Lowercases
Adjusted B? 0.9801 0.9585 0.5585 0.6021 0.6050

2 3.2. Erperiment settings

w3 3.2.1. Assessments generation

384 Considering that stochastic supervision has assessments only and thus is
s not a supervised learning model, during the model training we need to ignore
ss  the labelling information and before the training we need to ‘generate’ the
37 SUpErvisor’s assessments.

388 For the MNIST data, to generate such assessments we use logistic regres-
;0 sion to generate the probabilities that an instance belongs to two classes as
30 appropriate assessments. Note that the dependency between features and
s assessments in the generalisation-3 is satisfied when such an approach is
;2 adopted to generate assessments, because the posterior probabilities gener-
33 ated are dependent on the features. For the EMNIST data with more than
s two classes, we use Naive Bayes to generate the posterior probabilities as
305 assessments.

396 Based on the assessments only, a simple intuitive approach to inferring y
s07 18 to directly compare different elements of assessments. For example, for a

38 two-class problem, let y = 1 if w > 0 and y = 0 otherwise; and for a J-class
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x0 problem, set y = argmax;c(; 5 2 (Or y = argmax;cqy 5 gy wj if at least

w0 one w; >0, and y = J otherwise).

w1 3.2.2. Parameters initialisation

402 Note that in the following initialisation settings, the samples that belong
w03 to class j are determined by assessments rather than true labels, because we
w4 cannot use true-label information for stochastic supervision methods.

405 In Titterington’s model, the EM algorithm needs initial values of param-
ws eters m;, 115, X, A and 2. Here we use the sample estimates to initialise these
a7 parameters: m; is the fraction of the estimated number of samples in class j
ws over the total number of samples N, p; is the sample mean of the samples,
wo A is the sample mean of the assessments of class 1 and —A for class 2, and X
a0 and €2 are the pooled covariance matriees of the features and the assessments
a1 over all J classes, respectively.

a2 In the generalisation-3, o; and f3; are obtained from the linear regression
a3 of the samples in the jth class against their associated w. The EM algorithm
a4 of this model needs initial values of 7;, 11, 2; and ;. We use the same ini-
«s  tialisation settings of m; and pu; as those for Titterington’s model. Similarly,
se > and () are initialised as the sample covariances of the features and the
a7 assessinents of class j, respectively.

a1 In the generalisation-4, for CIFAR-10 there are 6 subclasses for animal
a0 and 4 for transportation and for EMNIST there are 10 subclasses for digits,
w20 26 for capital letters and 11 for lowercases. The EM algorithm of this model
a1 needs initial values of the following parameters: 7;, @i ik, 2jk, A; and £2;.
a2 The initialisation of 7; and €); is the same as that for the generalisation-3;

w23 A\; is initialised as the sample mean of the assessments of samples in class j.
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224 To initialise the subclass mean fi, covariance matrix X;;, and mixing weight
w5 @ji, we apply k-means to class j: p;, and X, are set to the subclass means
6 and covariance matrices estimated by k-means on class j, respectively, and
w7 @i, is set to the fraction of the number of samples in subclass £ of class j

w28 over the total number of samples in class j.

2o 3.2.5. Validation settings

430 In the MNIST dataset, we perform 20 training/test splits; for each split,
= 70% samples are randomly selected from each class to form the training set
s and the rest are for the test set. We record the classification accuracies on
a3 the test sets for all splits.

a3 In the CIFAR-10 dataset, we use the training/test split provided by
w5 Krizhevsky and Hinton [31], where the training set contains 50000 images
a6 with 30000 for the animal class and 20000 for the transportation class and
a7 the test set contains 10000 images with 6000 for the animal class and 4000
s for the transportation class. For each experiment, we use all the training
130 samples to train the model and randomly select 1000 images from the rest
wmo  to test. We repeat the procedure 20 times and record the 20 classification
w1 accuracies on the test sets. All images are transformed to greyscale in the
42 experiments.

43 Inthe EMNIST dataset, the number of training samples is large and using
aa all the samples is time consuming. For illustrative purposes, we randomly
ws  sample 1200 images for each subclass, which makes the whole training set
ws contain 1200 x 47 images. For each experiment, we use all training samples
w7 to train the model and randomly select 1000 images from the rest to test.

as We repeat the procedure 20 times and record the 20 classification accuracies
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wo on the test sets. The pixel values of the margin part of images in EMNIST
w0 are zeros, which leads to singular covariance matrices. Thus we add small
»s1 - white noises to these images to make the covariance matrices invertible. Since
sz Titterington’s model is used for binary classification and we have three classes

53 here, the one-versus-all strategy [33] is applied here for Titterington’s model.

sa 3.3, Results

455 Classification accuracies on the 20 test sets of MNIST, CIFAR-10 and EM-
s NIST are boxplotted in Figure 6(a), Figure 6(b) and Figure 6(c), respectively.
w7 It is clear that the generalisation-3 and the generalisation-4 have higher boxes
s than Titterington’s model in Figure 6(a) and Figure 6(b). This indicates
w0 the effectiveness of our generalisations when the data satisfy the associated
wo conditions: in our experiments, the MNIST dataset satisfies the feature-
w1 assessment dependency condition in the generalisation-3 and the CIFAR-10
w2 dataset satisfies the multi-modality condition in the generalisation-4.

463 For the EMNIST data, the generalisation-3 and generalisation-4 produce
ss higher boxes than Titterington’s model and the generalisation-4 has the best
w5 classification performance. This also shows the effectiveness of our models.
ws  Note that here the generalisation-4 has much better classification perfor-
w7 mance than the generalisation-3. One possible reason is that the multi-modal
ws classes have more effect on the final results than the feature-dependent as-
w0 sessment, since the subclasses in each large class are clearly defined while
a0 the linear relationship between the assessment and features is not strong, as
an shown in Table 1. We also note that there is a large space for improvement
a2 in classification accuracy of EMNIST. By developing a new method that can

a3 deal with feature-dependent assessments and multi-modal classes together,
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s we may further improve the classification performance on complex data such

a5 as EMNIST. We list this as our future work in the conclusions section.

0.85

0.96 4 -
_ 1
0.955 !
by | by
g osst : g
3o —_ L 3 o8y
< ! <
o 0941 1 c
2 ! k=
20935 I =
o o
= T =
@ 093 ' @ 0751
£ 0.925 —_ 4 < —
O 1 O
—
0915 1 .
0.91 . . 07 =l .
Original Generalisation-3 Original Generalisation-4

(a) MNIST (b) CIFAR-10

054 F

0.52 !

14
B
@

14
b
>

Classification accuracy

028+ -
i +

1

Original

(¢) EMNIST

Figure 6: (a) Classification accuracies of Titterington’s model and the generalisation-3
on 20 test sets of MNIST. (b) Classification accuracies of Titterington’s model and the
generalisation-4 on 20 test sets of CIFAR-10. (c¢) Classification accuracies of Titterington’s

model, generalisation-3 and generalisation-4 on 20 test sets of EMNIST.
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a6 4. Conclusions

ar? In this paper, we extended stochastic supervision models in four as-
as  pects, generalising them to asymmetric assessments, multiple classes, feature-
a9 dependent assessments and multi-modal classes, respectively, to enhance
w0 their applicability. The experiments on both simulated data and real-world
1 data demonstrate the effectiveness of our generalisations. In the future, to
sz enhance further our models’ flexibility and generality, we shall explore non-
w3 linear modelling for the relationship between assessments and features, as
s well as more sophisticated techniques for multi-modality modelling. More-
w5 over, instead of using a fixed threshold of w to infer y, we propose to learn
a6 this threshold from data. Since we use the transformation w; = log z;/z;
w7 to transform a softmax vector to'a (J — 1) dimensional normal distributed
ss random variable, learning the threshold of w is equivalent to giving different
w0 weights to different classes. By utilising the learned threshold, our model
w0 can adapt to more real-world scenarios where different classes have different
a1 importance. In addition, we propose to develop new algorithms that can
w2 provide superior classification performances under more complex situations,

w03 e.g. with both feature-dependent assessment and multi-modal classes.
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