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Abstract

Due to a variety of motions across different frames, it is highly challenging

to learn an effective spatiotemporal representation for accurate video saliency

prediction (VSP). To address this issue, we develop an effective spatiotempo-

ral feature alignment network tailored to VSP, mainly including two key sub-

networks: a multi-scale deformable convolutional alignment network (MDAN)

and a bidirectional convolutional Long Short-Term Memory (Bi-ConvLSTM)

network. The MDAN learns to align the features of the neighboring frames

to the reference one in a coarse-to-fine manner, which can well handle various

motions. Specifically, the MDAN owns a pyramidal feature hierarchy struc-

ture that first leverages deformable convolution (Dconv) to align the lower-

resolution features across frames, and then aggregates the aligned features to

align the higher-resolution features, progressively enhancing the features from

top to bottom. The output of MDAN is then fed into the Bi-ConvLSTM

for further enhancement, which captures the useful long-time temporal infor-

mation along forward and backward timing directions to effectively guide at-

tention orientation shift prediction under complex scene transformation. Fi-

nally, the enhanced features are decoded to generate the predicted saliency

map. The proposed model is trained end-to-end without any intricate post

processing. Extensive evaluations on four VSP benchmark datasets demon-
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strate that the proposed method achieves favorable performance against state-

of-the-art methods. The source codes and all the results will be released at

https://github.com/cj4L/ESAN-VSP.

Keywords: Video saliency prediction, feature alignment, deformable

convolution, bidirectional ConvLSTM

1. Introduction

The objective of VSP is to faithfully model the human’s gaze eye-fixation

when watching a dynamic scene. As a branch of object saliency detection, VSP

contributes to the cognitive research of human vision attention through under-

standing and analyzing dynamic video frames. VSP has been widely used to

assist various computer vision applications, such as autonomous driving [1], ob-

ject detection and recognition [2, 3], video segmentation [4, 5], visual tracking [6],

video captioning [7], human-robot interaction [8] and video summarization [9],

to name a few.

In recent years, benefiting from the breakthrough of deep learning (DL), a

variety of DL-based VSP methods [10, 11, 12, 13, 14] have been proposed to

predict eye-fixation allocation in each frame. Those DL-based techniques take

advantage of a large amount of labeled eye-tracking data to learn an effective

semantic feature representation in an end-to-end manner that can accurately

predict the salient object locations, greatly outperforming the traditional meth-

ods [15, 16, 17, 18] with hand-crafted features. Different from the static image

saliency detection that only needs to consider spatial cues in one image, VSP

should also take into account the temporal cues to handle challenging motion

scenarios across frames. The human eye’s fixation mechanism is affected by sub-

jective consciousness, which shifts the target of attention as the scene changes

caused by camera motion, light change, scene scaling and fast target movement,

etc. Complex motions from background and inconsistent foreground patterns

together result in the difficulty of VSP. Hence, how to learn an effective spa-

tiotemporal feature representation that can well guide attention orientation shift
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prediction under various scene transitions plays a key role in VSP.

Existing approaches for VSP [19, 20, 21, 21] often explicitly estimate optical-

flow field between the reference frame and its adjacent frames to capture short-

term temporal information and then simply fuse the temporal and spatial infor-

mation to complement their characteristics. STSConvNet [19] extracts temporal

information using optical flow between consecutive video frames and investigates

different ways to integrate spatial and temporal cues within a deep two-stream

spatiotemporal network architecture for VSP. OM-CNN [20] leverages a CNN-

based optical-flow estimation method to measure the motion intensity in all

frames to solve dynamic consistence restriction. STRA-Net [21] makes use of

two parallel DNN streams to extract the spatial and temporal cues with optical

flows as input. Besides, the aforementioned methods further leverage LSTM

or Gated Recurrent Unit (GRU) to capature the long-term temporal informa-

tion across frames to learn effective spatiotemporal feature representations for

VSP. OM-CNN [20] designs a 2C-LSTM architecture to learn temporal corre-

lation of high-dimensional features for VSP. ACLNet [22] presents an attentive

CNN-LSTM mechanism to predict human gaze, and encodes static attention to

learn a dynamic salient representation by using frame-wise image saliency maps.

SalEMA [23] extends an image saliency structure to VSP by integrating a Con-

vLSTM module and wrapping a convolutional layer with a temporal exponential

moving average. STRA-Net [21] develops a spatiotemporal residual attentive

network that leverages convolutional GRUs to model the attention transitions

across video frames. Despite demonstrated success of widely applying LSTM or

GRU to VSP, all the aforementioned methods only leverage forward sequence

modeling that only captures the forward-frame information, while omitting the

useful backward-frame cues that are also helpful to enhance the spatiotemporal

feature representations. To address this issue, we design the Bi-ConvLSTM that

makes full use of the forward and backward frame cues to learn a robust feature

representation.

However, directly using LSTM or GRU to learn spatiotemporal representa-

tions from the simply fused short-term spatiotemporal cues cannot work well
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when the attention target appearances across frames suffer from severe distor-

tions due to large and complex motions. An effective approach to address this

issue is to employ multi-frame alignment technique to enhance feature repre-

sentation, which has been widely applied in video super-resolution [24, 25, 26]

for motion compensation. However, we have not found any work that applies

feature alignment technique to VSP. To this end, we design a novel spatiotem-

poral alignment network to implement feature alignment between the reference

frame and its adjacent frame via Dconv [27]. The aligned features are then fed

into the Bi-ConvLSTM to learn a robust spatiotemporal feature representation

for VSP.

In summary, our main contributions are summarized into threefold:

• A Muti-scale Deformable convolutional Alignment Network (MDAN) is

designed to align the features across frames with the help of Dconv [27].

To the best of our knowledge, this is the first work to apply Dconv to VSP.

• A novel Bi-ConvLSTM is introduced to effectively model the long-term

attention shift across video frames, which makes full use of the long-term

temporal context information in the forward and backward time directions.

• Extensive evaluations on four VSP benchmarks including DHF1K [22],

HollyWood2 [28], UCF-sports [28] and DIEM [29] demonstrate the pro-

posed method achieves competing performance against state-of-the-art

methods.

2. Related Work

2.1. Computational Models for VSP

Existing VSP methods could be roughly grouped into two categories includ-

ing static models [30, 13, 12, 10, 31, 14] and dynamic ones [32, 22, 33, 21]. With

the help of large-scale eye-tracking labeled datasets for training, numerous DL-

based static saliency models for VSP [30, 13, 12, 10, 31, 14] have been proposed
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and achieved remarkable performance boosting compared to the traditional ap-

proaches. eDN [30] follows an entirely automatic data-driven approach to per-

form a large-scale search for an optimal ensemble of deep CNN features, and

then trains an SVM classifier to predict the saliency maps. DeepFix [13], Deep-

Net [12] and SALICON [10] leverage large-scale eye-tracking data to fine-tune

the classical image classification networks to generate the corresponding eye-

fixation maps. Mr-CNN [31] employs a multi-resolution CNN guided by both

bottom-up visual saliency and top-down visual cues to predict visual saliency.

DVA [14] is based on a skip-layer network structure, which estimates eye-fixation

from multiple convolutional layers with various reception fields.

Another research branch of VSP focuses on simulating eye fixation behavior

in dynamic scenes [32, 22, 33, 21]. The traditional dynamic approaches [15,

16, 17] leverage hand-crafted spatiotemporal features to model visual saliency,

which cannot capture rich semantic information from the attention targets that

is essential for accurate VSP. To address this issue, numerous DL-based dy-

namic saliency models [32, 22, 33, 21] have been developed with promising per-

formance. SalGan [32] proposes a data-driven metric based VSP method that

is trained with an adversarial loss function, yielding saliency maps that resem-

ble the ground-truth. ACLNet [22] releases a benchmark dataset for predicting

human eye movements during dynamic scene free viewing and proposes a CNN-

LSTM network with an attention mechanism for VSP. SalEMA [23] introduces

a conceptually simple exponential moving average of an internal convolutional

state to modify existing network architectures for VSP. TASED-Net [33] designs

a 3D fully-convolutional network structure and decodes the encoded features

spatially while aggregating all the temporal information for VSP. STRA-Net [21]

develops a residual attentive learning network architecture, which enhances the

spatiotemporal features by a composite attention mechanism for VSP.

2.2. Deformable Convolutional Networks

The deformable convolutional network (DCN) proposed by [34] aims to en-

hance the capability of regular convolutions by learning additional offsets from
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its local neighborhood, and allows the network to adaptively capture more con-

textual information in a larger receptive field. DCNv2 [27] reformulates Dconv

and introduces a modulation mechanism that expands the scope of deformation

modeling through a more comprehensive integration of deformable convolution

within the network. The superior performance of Dconv has been demonstrated

in some other computer vision tasks including video super-resolution [25, 26],

object detection [35], image classification [36] and crowd understanding [37].

TDAN and EDVR [25, 26] use Dconv to align features between the reference

frame and its corresponding supporting frames for motion compensation in video

restoration task. RepPoints [35] leverages Dconv to develop a flexible object

representation for accurate geometric localization as well as semantic feature

extraction. DHCNet [36] achieves better classification performance for hyper-

spectral image classification by applying the regular convolutions on the Dconv

feature maps. ADCrowdNet [37] designs an attention-injective Dconv to ad-

dress the accuracy degradation issue in highly-congested noisy scenes for crowd

understanding task.

3. Proposed Approach

3.1. Architecture Overview

Figure 1 shows an overview of the proposed model for VSP. Given N consec-

utive frames I = {It}Nt=1 in a video sequence, our aim is to learn a deep CNN

fCNN that outputs a set of corresponding visual saliency mapsM = {Mt}Nt=1:

M = fCNN(I;θCNN), (1)

where θCNN denotes the whole network parameters to be optimized. fCNN con-

sists of three sub-networks: the MDAN falign, the Bi-ConvLSTM fBi−ConvLSTM

and the decoder fdecoder. Specifically, the design of falign is inspired by the

renowned DCN [34, 27]. We align each neighboring frame to the reference one

at feature level by progressively aligning and aggregating the multi-level fea-

tures from top to down. By fusing the spatiotemporal cues across frames at
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Figure 1: Overview of the proposed VSP framework. Firstly, a sequence of video frames are fed

into the MDAN to align the reference and its neighboring frames, yielding the aligned features

that can well capture short-term spatiotemporal information. Then, the aligned features are

sent to the Bi-ConvLSTM, generating the features that encodes long-term spatiotemporal

information. Finally, the output features are decoded to generate the predicted saliency map.

different semantic levels, falign enables to well handle diverse motions across

frames that can severely affect accurately predicting attention shifts in VSP.

Given a sequential of 2T + 1 frames with the reference frame t at the center,

falign aligns the left-and the right-side T neighboring frames to the reference

frame t, respectively and then fuses them to generate the enhanced reference

frame features At:

At = falign({In}t+T
n=t−T ;θalign), (2)

where θalign denotes the corresponding network parameters of MDAN to be

optimized.

Although the features At in (2) are strengthen by the features of the neigh-
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Figure 2: Architecture of MDAN.

bouring frames, their representative capability will be severely affected when the

attention targets suffer from severe distortions caused by long-term occlusions

or large motions. To address this issue, we further design the Bi-ConvLSTM

fBi−ConvLSTM to maintain long-term visual attention stability, generating the

enhanced spatiotemporal representation as:

{Hf
t ,H

b
t } = fBi−ConvLSTM({At,H

f
t−1,H

b
t+1};θBi−ConvLSTM), (3)

where Hf
t and Hb

t denotes the forwardly and backwardly estimated hidden

states for frame t, respectively.

Finally, the spatiotemporal representations {Hf
t ,H

b
t } in (3) are fused to

Yt using (11) and fed into the decoder network fdecoder that is composed of

a few convolutional layers and a bilinear upsamping layer, yielding the finally
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Figure 3: Architecture of DAM.

predicted saliency map of frame t:

Mt = fdecoder(Yt;θdecoder), (4)

where θdecoder is the parameters of the decoder sub-network to be learned.

3.2. Multi-scale Deformable Convolutional Alignment Network (MDAN)

Figure 2 illustrates the architecture of MDAN, which progressively makes

feature alignment in a coarse-to-fine manner through a set of deformable convo-

lutional alignment modules (DAMs). MDAN can well capture large and com-

plex motion information by adaptively sampling at multiple feature levels in a

coarse-to-fine fashion, and does not need to explicitly estimate the motion fields

as optical flow [19, 20, 21, 21], thereby greatly reducing computational cost.

Figure 3 shows the architecture of DAM that is based on Dconv [27]. In [27],

the Dconv that maps the input feature A to the output features maps Ã is

defined as

Ã(p) =

K∑
k=1

wk ·A(p + pk + ∆pk) ·∆mk, (5)

where K denotes the number of sampling locations in a convolutional kernel.

For instance, if K = 9, pk ∈ {(−1,−1), (−1, 0), . . . , (1, 1)} defines a 3 × 3 con-

volutional kernel of dilation 1. ∆pk and ∆mk denote the learnable offset and
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modulation scalar at the k-th location, respectively. wk and pk denote the

weight and pre-specified offset of the k-th position, respectively

We employ the Dconv (5) for feature alignment. Given the feature maps

Atr and Atc at the reference frame tr and the current frame tc, respectively, we

concatenate the features [Atr ,Atc ] as input, and learn the offset and modulation

scalar by ∆Ptc = foffset([Atr ,Atc ];θoffset),

∆Mtc = fmodulation([Atr ,Atc ];θmodulation),

(6)

where ∆P = {∆p} and ∆M = {∆m}. foffset and fmodulation are two networks

consisting a few convolution layers with parameters θoffset and θmodulation, re-

spectively. Afterwards, we replace A in (5) by Atc , generating the corresponding

aligned feature maps Ãtc :

Ãtc(p) =

K∑
k=1

wk ·Atc(p + pk + ∆ptck) ·∆mtck, (7)

where ∆ptc ∈ ∆Ptc and ∆mtc ∈ ∆Mtc in (6).

After introducing the DAM, we give the details of how to design the MDAN.

As shown in Figure 2, given the reference frame tr and the current frame tc as

input, we utilize a Siamese network architecture with the VGG16 [38] backbone

network to extract their features. Specifically, we first select three different-

level feature maps {Ap3
tr ,A

p4
tr ,A

p5
tr } and {Ap3

tc ,A
p4
tc ,A

p5
tc } of frames tr and tc,

respectively, which correspond to their pool3, pool4 and pool5 layers in VGG16,

respectively. Then, we progressively align the features of frame tc to those

of frame tr in a coarse-to-fine manner. First, we feed the pairs {Api
tr ,A

pi
tc},

i = 3, 4, 5 into the formula of DAM (7), outputting the corresponding multi-level

aligned features Ãpi
tc , i = 3, 4, 5. Then, we fuse the multi-level aligned features

progressively from top to bottom, yielding the enhanced aligned features as

Atc = [[Ãp5
tc ↑, Ã

p4
tc ] ↑, Ãp3

tc ]. (8)

Afterwards, we put Atc (8) and Atr ← Ap3
tr into (7), yielding the output

of MDAN Ãtc for frame tc. Finally, we concatenate all the aligned features
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{Ãtc}t+T
tc=t−T and fuse them through a 1 × 1 convolution layer to yield the en-

hanced spatiotemporal features for frame t

At = ffusion([Ãtc=t−T , . . . , Ãtc=t+T ];θfusion), (9)

where θfusion denotes the weight parameters of the 1× 1 convolutional layer.

3.3. Bidirectional ConvLSTM (Bi-ConvLSTM)

The aforementioned MDAN aligns the features between the reference frame

and its left-and right-side neighbouring frames that can be viewed as a short-

time bidirectional spatial alignment process. However, video sequence may have

large scene transformation and attention shift due to long-term occlusions or

large motions, resulting in difficulty by only using short-term information from

adjacent frames. We further strengthen the fused features At (9) generated

by MDAN through encoding long-term information across more frames, and

leverage Bi-ConvLSTM to fully capture long-term spatiotemporal context in-

formation in bi-directions. In [39], the ConvLSTM is formulated as:

It = σ(WA
I ∗At +WH

I ∗Ht−1),

Ft = σ(WA
F ∗At +WH

F ∗Ht−1),

Ot = σ(WA
O ∗At +WH

O ∗Ht−1),

Ct = Ft ◦Ct−1 + It ◦ tanh(WA
C ∗At +WH

C ∗Ht−1),

Ht = Ot ◦ tanh(Ct),

(10)

where ∗ is the convolution operator, ◦ is the Hadamard product, σ denotes

the Sigmoid function, and tanh denotes the hyperbolic tangent function. For

different learnable parameters W , we do convolutions with input feature maps

At and hidden state Ht−1, respectively, and then sum them and feed into the

Sigmoid function to obtain an input gate It, an output gate Ot and a forget gate

Ft. The memory cellCt plays the role of an accumulator of the state information

by updating the ratio of memory and forgetting between the current and the

previous moments, respectively. Finally, the hidden state Ht is generated by
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pixel-wise multiplying the output gate Ot by the memory cell Ct rescaled by a

tanh activation function.

The ConvLSTM can capture long-term information from the past frames

well, but does not consider the rich information from the future frames that

is helpful to further boost the performance of VSP. To this end, we design

Bi-ConvLSTM that captures both forward and backward long-range context

information, yielding the final spatiotemporal feature representation for VSP:

Yt = Hf
t +Hb

t , (11)

where Hf
t and Hb

t denote the hidden states from forward and backward ConvL-

STM units. Afterwards, the output features Yt are sent to the decoder network

fdecoder (4) to generate the predicted saliency map Mt.

3.4. Loss Function

We leverage the loss function similar to that proposed by [10, 21], which

combines four loss terms related to saliency evaluation metrics. The loss function

is formulated as:

L(P ,Q,G) = LNSS(P ,Q) + LSIM(P ,G) + LCC(P ,G) + LKL(P ,G), (12)

where P denotes the predicted attention map, Q is the ground-truth binary

fixation map, and G indicates the continuous ground-truth attention map.

LNSS originates from normalized scanpath saliency (NSS), which is intro-

duced to the visual saliency field as a simple correspondence measure between

saliency maps and ground-truth [40]. LNSS computes the average normalized

saliency at fixated locations:

LNSS(P ,Q) = − 1

N

∑
i

P − µ(P )

σ(P )
·Qi, (13)

where µ(·) and σ(·) denote the mean and the standard deviation, respectively,

N is the number of positive pixels belonging to Q.

LSIM is derived from the similarity (SIM) metric, which measures the simi-

larity between two distributions and computes the sum of the minimum values
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at each pixel:

LSIM(P ,G) = −
∑
i

min(Pi,Gi), (14)

where P and Q are normalized to
∑
i

Pi =
∑
i

Gi = 1.

LCC measures the correlation or dependence of two variables by linear cor-

relation coefficient (CC):

LCC(P ,G) = − cov(P ,G)

σ(P )× σ(G)
, (15)

where cov() means the covariance and σ(·) is the standard deviation.

LKL is from Kullback-Leibler (KL) divergence metric, which measures the

difference between two probability distributions:

LKL(P ,G) =
∑
i

Gi log(
Gi

Pi
). (16)

4. Experiments

4.1. Implementation Details

We adopt the frequently-used VGG16 [38] pre-trained on ImageNet [42] as

the backbone network to extract three feature maps with different resolutions.

All the other parameters are trained from scratch except for the backbone net-

work. The neighbor size of the reference frame is set to 2T + 1 = 5. Each video

training batch contains 15 consecutive frames from the same video with batch

size 4. We randomly select the video and its starting frame for each training

sample. All the training frames are scaled to 256 × 320 pixels, and the sur-

rounding pixels of the image are padded with 0 if its size does not match to

256 × 320 pixels. The ground-truth binary fixation mask and its continuous

attention map are scaled to 128× 160 pixels. We use the Adam optimizer [43]

to learn the whole network parameters θCNN in an end-to-end manner without

any post processing. The learning rate is set to 1e− 7 and the model converges

at about 20, 000 steps. The proposed model is implemented in PyTorch and one

Nvidia RTX 2080Ti GPU is used for acceleration. The whole training process

takes about 15 hours.
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Figure 4: Qualitative comparisons with other methods including ITTI [41], SALICON [10],

ACLNet [22], SalEMA [23], STRA-Net [21] on (a) DHF1K, (b) HollyWood-2, (c) UCF sports,

(d) DIEM. We show one example video with three frames for demonstration purpose on each

dataset.

4.2. Evaluation Datasets

We conduct extensive evaluations on four widely-used eye-tracking bench-

mark datasets.

DHF1K [53]: It consists of 1, 000 high-quality elaborately-selected video

sequences that are annotated by 17 observers using an eye tracker device. The

videos therein have diverse contents, varied motion patterns, various objects,

large scale and high quality. The videos are divided into a training set of 600

videos and a validation set of 100 videos that are publicly available, but the

fixation labels of the remaining 300 videos are not released, which are used to
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Table 1: Quantitative results on DHF1K, HollyWood-2 and UCF sports dataset. The best-

performing scores are marked in bold, and the second-best performing scores are underlined.

∗ represents the DL-based model.

Methods

Dataset DHF1K HollyWood-2 UCF sports

AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑ AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑ AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑

S
ta

ti
c

M
o
d

el
s

ITTI [41] 0.774 0.162 0.553 0.233 1.207 0.788 0.221 0.607 0.257 1.076 0.847 0.251 0.725 0.356 1.640

GBVS [44] 0.828 0.186 0.554 0.283 1.474 0.837 0.257 0.633 0.308 1.336 0.859 0.274 0.697 0.396 1.818

∗SALICON [10] 0.857 0.232 0.590 0.327 1.901 0.856 0.321 0.711 0.425 2.013 0.848 0.304 0.738 0.375 1.838

∗Shallow-Net [12] 0.833 0.182 0.529 0.295 1.509 0.851 0.276 0.694 0.423 1.680 0.846 0.276 0.691 0.382 1.789

∗Deep-Net [12] 0.855 0.201 0.592 0.331 1.775 0.884 0.300 0.736 0.451 2.066 0.861 0.282 0.719 0.414 1.903

∗DVA [14] 0.860 0.262 0.595 0.358 2.013 0.886 0.372 0.727 0.482 2.459 0.872 0.339 0.725 0.439 2.311

D
y
n

am
ic

M
o
d

el
s

PQFT [45] 0.699 0.139 0.562 0.137 0.749 0.723 0.201 0.621 0.153 0.755 0.825 0.250 0.722 0.338 1.780

Seo et al. [46] 0.635 0.142 0.499 0.070 0.334 0.652 0.155 0.530 0.076 0.346 0.831 0.308 0.666 0.336 1.690

Rudoy et al. [47] 0.769 0.214 0.501 0.285 1.498 0.783 0.315 0.536 0.302 1.570 0.763 0.271 0.637 0.344 1.619

Hou et al. [48] 0.726 0.167 0.545 0.150 0.847 0.731 0.202 0.580 0.146 0.684 0.819 0.276 0.674 0.292 1.399

Fang et al. [49] 0.819 0.198 0.537 0.273 1.539 0.859 0.272 0.659 0.358 1.667 0.845 0.307 0.674 0.395 1.787

OBDL [50] 0.638 0.171 0.500 0.117 0.495 0.640 0.170 0.541 0.106 0.462 0.759 0.193 0.634 0.234 1.382

AWS-D [51] 0.703 0.157 0.513 0.174 0.940 0.694 0.175 0.637 0.146 0.742 0.823 0.228 0.750 0.306 1.631

∗OM-CNN [52] 0.856 0.256 0.583 0.344 1.911 0.887 0.356 0.693 0.446 2.313 0.870 0.321 0.691 0.405 2.089

∗Two-stream [19] 0.834 0.197 0.581 0.325 1.632 0.863 0.276 0.710 0.382 1.748 0.832 0.264 0.685 0.343 1.753

∗ACLNet [22] 0.890 0.315 0.601 0.434 2.354 0.913 0.542 0.757 0.623 3.086 0.905 0.496 0.767 0.603 3.200

∗SalEMA [23] 0.890 0.465 0.667 0.449 2.573 0.919 0.487 0.708 0.613 3.186 0.906 0.431 0.740 0.544 2.638

∗TASED-Net [33] 0.895 0.361 0.712 0.470 2.667 0.918 0.507 0.768 0.646 3.302 0.899 0.469 0.752 0.582 2.920

∗STRA-Net [21] 0.895 0.355 0.663 0.458 2.558 0.923 0.536 0.774 0.662 3.478 0.914 0.535 0.790 0.645 3.472

O
u

rs

Training setting (i) 0.896 0.390 0.679 0.479 2.758 0.915 0.504 0.786 0.613 3.461 0.896 0.455 0.760 0.558 2.985

Training setting (ii) 0.888 0.309 0.670 0.438 2.479 0.934 0.529 0.806 0.672 3.936 0.913 0.418 0.753 0.566 3.039

Training setting (iii) 0.851 0.260 0.664 0.327 1.876 0.893 0.402 0.752 0.481 2.627 0.921 0.497 0.799 0.612 3.676

Training setting (iv) 0.900 0.353 0.680 0.476 2.685 0.928 0.537 0.800 0.661 3.804 0.917 0.494 0.785 0.599 3.406

validate the generalization capability of the model fairly.

HollyWood-2 [28]: It contains 1, 707 videos selected from the HollyWood-

2 action recognition dataset [54] that is collected from a set of 69 HollyWood

movies. 12 action classes are included such as hugging, kissing, running, etc.

The whole data consists of a training set of 823 sequences and a test set of 884

sequences. It is one of the largest and most challenging available dataset for

VSP.

UCF Sports [28]: It includes 150 videos from the UCF sports action

datasets [55], which covers 9 sports action classes such as swinging, lifting, skate-

boarding, etc. The dataset consists of 103 videos for training and 47 videos for

testing.

DIEM [29]: It has 84 videos that are collected from 50 participants which

are widely used for studying human-eye fixation attention. Following [50, 21],

we select the same 20 videos as the testing set.

For fair comparison, we leverage the standard training strategy in [22],
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Table 2: Quantitative results on DIEM dataset (without training). The best-performing

scores are marked in bold. The second best-performing scores are underlined. ∗ represents

the DL-based model.

Methods AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑

S
ta

ti
c

M
o
d

el
s ITTI [41] 0.791 0.132 0.653 0.196 1.103

GBVS [44] 0.813 0.156 0.633 0.214 1.198
∗SALICON [10] 0.793 0.171 0.674 0.270 1.650

∗Shallow-Net [12] 0.838 0.188 0.620 0.297 1.646
∗Deep-Net [12] 0.849 0.164 0.697 0.291 1.650

∗DVA [14] 0.868 0.237 0.721 0.386 2.347

D
y
n

am
ic

M
o
d

el
s

PQFT [45] 0.724 0.126 0.649 0.144 0.856

Seo et al. [46] 0.723 0.130 0.568 0.116 0.665

Rudoy et al. [47] 0.775 0.150 0.618 0.260 1.390

Hou et al. [48] 0.735 0.142 0.589 0.128 0.735

Fang et al. [49] 0.823 0.167 0.636 0.251 1.423

OBDL [50] 0.762 0.165 0.694 0.221 1.289

AWS-D [51] 0.774 0.150 0.695 0.216 1.252
∗OM-CNN [52] 0.857 0.238 0.693 0.371 2.235

∗Two-stream [19] 0.859 0.256 0.682 0.366 2.171
∗ACLNet [22] 0.881 0.277 0.693 0.396 2.368

∗STRA-Net [21] 0.870 0.306 0.678 0.408 2.452

O
u

rs

Training setting (i) 0.880 0.391 0.718 0.472 2.346

Training setting (ii) 0.870 0.355 0.698 0.468 2.359

Training setting (iii) 0.831 0.296 0.676 0.351 1.828

Training setting (iv) 0.889 0.396 0.711 0.490 2.346

which consists of 4 training settings with the training sets of (i) DHF1K, (ii)

HollyWood-2, (iii) UCF sports, (iv) DHF1K + HollyWood-2 + UCF sports.

Meanwhile, we use the testing sets of DHF1K, HollyWood-2 and UCF sports

to evaluate the performance. Furthermore, to further assess the generalization

capability of our model, we evaluate it on the testing set of DIEM which has no

training set available.

4.3. Comparison Results

As [22, 23, 33, 21], we use the widely-used evaluation metrics [56] to evaluate

the comparative methods, including Normalized Scanpath Saliency (NSS), Sim-

ilarity (SIM), shuffled AUC (s-AUC), linear Correlation Coefficient (CC) and
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AUC-J.

We compare the proposed approach with 19 saliency models, including 6

static models (ITTI [41], GBVS [44], SALICON [10], Shallow-Net [12], Deep-

Net [12], DVA [14]) and 13 dynamic models (PQFT [45], Seo et al. [46], Rudoy et

al. [47], Hou et al. [48], Fang et al. [49], OBDL [50], AWS-D [51], OM-CNN [52],

Two-stream [19], ACLNet [22], SalEMA [23], TASED-Net [33], STRA-Net [21]).

Among them, SALICON [10], Shallow-Net [12], Deep-Net [12], DVA [14], OM-

CNN [52], Two-stream [19], ACLNet [22] and STRA-Net [21] are the DL-based

models while the others are the traditional models.

Results on DHF1K. We test our model on the testing set of DHF1K, which

contains 300 videos without publicly released ground-truth annotations of hu-

man eye-tracking maps available. A public server is used to report the results

on the test set. It is a fair and large test set for verifying the generalization ca-

pability of our model. Table 1 lists the results of our model in terms of AUC-J,

SIM, s-AUC, CC and NSS. Among them, our model achieves the best CC and

NSS scores and the second-best SIM and AUC-J scores with training setting

(i). Meanwhile, for training setting (iv), our model achieves the best AUC-J

score and the second-best s-AUC, CC and NSS scores. Besides, the results of

our model with all the settings are much better than the statistic models. For

the settings (ii) and (iii), our model achieves competing performance among

the dynamic models, following the top-performing methods including ACLNet,

SalEMA, TASED-Net and STRA-Net.

Figure 4 (a) shows the qualitative comparison results, where the visual at-

tention maps generated by our model well approach to the ground-truth, which

more focus on the saliency targets and are not disturbed by the transitions of

the backgrounds.

Results on HollyWood-2. As listed by Table 1, the performance of our approach

is superior to the other methods, especially in training setting (ii), our model

achieves the best scores in terms of s-AUC, CC and NSS. The dataset mainly
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focuses on task-driven viewing mode whose contents are limited to human ac-

tions and movie scenes. Therefore, training with the same distribution of the

training setting yields much better results. Figure 4 (b) shows a man opening

the door from the car and going out, where our predicted saliency maps can

more accurately track the salient objects than the saliency maps generated by

the other methods.

Results on UCF sports. Compared to all the other models, the proposed method

achieves the best or second-best performance in terms of all metrics under train-

ing setting (iii). For the other training settings, our method achieves compara-

tive results compared to the top-performing methods such as ACLNet, SalEMA,

TASED-Net and STRA-Net. Figure 4 (c) shows the scene where a man rides

a horse in the desert. The salient targets we focus on at different times will

change, and our predicted visual maps enable to precisely move the attention

shift from horse to man compared to the other methods.

Results on DIEM. For evaluating the generalization capability of our model, we

do not use any data of DIEM to train our model. Following [50, 21], we evaluate

our model on the testing set of DIEM, containing the first 300 frames of each

video. Table 1 lists the quantitative results, which achieves competitive results

compared to the other methods, especially under training settings (i) and (iv)

where the proposed method achieves the best or second-best performance in

terms of almost all metrics.

4.4. Ablative Study

To further show our main contributions, we compare different variants of

our model including those without Bi-ConvLSTM and replacing all Dconv in

MDAN to regular convolution. Table 3 lists the results of ablative experiments

on the UCF sports testing set under training setting (iii). We can observe that

without Bi-ConvLSTM, the scores of all the metrics decline to some degree such

as the AUC-J score drops from 0.921 to 0.9034 and the CC score reduces by
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Table 3: Results of ablative experiments of the proposed model on the UCF sports testing set.

The best scores are marked in bold. The symbol ’w/o.’ denotes removing a specific module.

UCF sports Dataset AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑
Ours 0.921 0.497 0.799 0.612 3.676

w/o. Bi-ConvLSTM 0.903 0.470 0.788 0.571 3.467

w/o. forward ConvLSTM 0.907 0.467 0.778 0.590 3.293

w/o. backward ConvLSTM 0.894 0.457 0.789 0.536 3.393

replace DConv to Conv in MDAN 0.905 0.452 0.775 0.549 3.265

w/o. p5 in MDAN 0.894 0.442 0.781 0.565 3.483

w/o. p4 and p5 in MDAN 0.895 0.425 0.776 0.548 3.168

w/o. p3 in MDAN 0.900 0.451 0.783 0.543 3.236

w/o. p3 and p4 in MDAN 0.874 0.423 0.780 0.516 3.357

0.04 from 0.612 to 0.571, verifying the effectiveness of Bi-ConvLSTM. More-

over, replacing Dconv to regular convolution in MDAN causes the performance

degradation. For example, the SIM score drops from 0.497 to 0.452 and the

NSS score decreases from 3.676 to 3.265, demonstrating the effectiveness of us-

ing DConv for feature alignment across frames. Finally, to make further efforts

to verify the effectiveness of other modules, we conduct some ablative experi-

ments including: removing forward ConvLSTM, backward ConvLSTM, p3, p4,

p5 in MDAN, respectively. The extra results are also listed in the bottom row of

Table 3, which confidently validate that each component in Bi-ConvLSTM and

MDAN has a positive effect to boost the performance of the proposed approach.

5. Conclusions

In this paper, we have presented an effective enhanced spatiotemporal align-

ment network for VSP, mainly including two novel module designs: the MDAN

and the Bi-ConvLSTM. The MDAN makes multi-resolution feature alignment

between the reference and its neighboring frames in a coarse-to-fine manner,

which is good at handling various motions. Afterwards, the output features

of MDAN are further enhanced by the Bi-ConvLSTM that fully captures the

long-time temporal information in both forward and backward timing direc-

tions. Extensive experiments on four VSP benchmark datasets have clearly
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demonstrated superiority of the proposed method to state-of-the-art methods

in terms of five metrics.
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