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Abstract

A vital aspect of the classification based model construction process is the
calibration of the scoring function. One of the weaknesses of the calibration
process is that it does not take into account the information about the relative
positions of the recognized objects in the feature space. To alleviate this limita-
tion, in this paper, we propose a novel concept of calculating a scoring function
based on the distance of the object from the decision boundary and its distance
to the class centroid. An important property is that the proposed score function
has the same nature for all linear base classifiers, which means that outputs of
these classifiers are equally represented and have the same meaning. The pro-
posed approach is compared with other ensemble algorithms and experiments
on multiple Keel datasets demonstrate the effectiveness of our method. To dis-
cuss the results of our experiments, we use multiple classification performance
measures and statistical analysis.

Keywords: Linear Classifier, Potential Function, Ensemble of Classifiers,
Score Function

1. Introduction

Ensemble methods are a popular approach to improving the possibilities of
individual supervised classification algorithms (base learners, base classifiers) by
building more stable and accurate classifiers [1]. Methods that use multiple base
classifiers to make one decision are known as Multiple Classifier System (MCS)
or Ensemble of Classifiers (EoC) [2] and are one of the major development
directions in machine learning. MCS were also used in many practical aspects [3,
4, 5] where EoC proved to have a significant impact on the performance of
recognition systems. In general, the procedure for creating an EoC can be
divided into three major steps [6]:
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• Generation – a phase where individual classifiers are trained [7].

• Selection – a phase where only several (or one) individual models from the
previous step are selected to EoC [8].

• Combining – a process of combining outputs of base classifiers to obtain
an integrated model of classification [9].

The combining phase can be achieved using different types of the classifier’s
output: a class label [6], a subset of labels ordered by plausibility [10], a vector of
all possible labels with corresponding scoring functions [11]. The scoring func-
tion may have a different nature depending on the type of individual learners.
The generative classification models are probabilistic in nature, and therefore
return joint probability distribution over the examples and the class labels di-
rectly. The discriminative base learners, on the other hand, focus only on the
conditional relation of a class label to the given example. In this case of indi-
vidual learners, non-probabilistic scores are used as classifier output. Because
the various outputs have to be made comparable beforehand to represent the
scoring functions in a common space, the calibration method is applied [12, 13].
The approaches of classifier output calibration focus on: continuousness, non-
decreasingness, universal flexibility, and computational tractability [14].

The score function proposed in [15] provides information about the relative
position of the recognized object in the feature space. This method uses the
nearest neighborhood of the recognized object to calculate the score function
value.

In this work, we propose a novel approach for calculating a scoring func-
tion based on the distance of the recognized object from the decision boundary
of a given base classifier and the distance to the class centroid. Accordingly,
we proposed that the new method for determining the scoring function takes
into consideration not only the classifier’s geometrical properties of the decision
boundary created by the base learner but also the geometrical properties of
the input space (training subset). Therefore, our approach provides informa-
tion about the relative position of the recognized object in the feature space,
which depends on class centroids and not on the nearest neighborhood of the
recognized object.

Given the above, the main objectives of this work can be summarized as
follows:

• A proposal of a new scoring function that uses the location of the class
label centroid and the distance to the decision boundary determined by
the linear classifier.

• The proposed score function has the same nature for all linear base classi-
fiers, which means that outputs of these classifiers are equally represented
and have the same meaning.

• An experimental setup to compare the proposed method with an approach
that uses only the distance to the decision boundary of the base classifier
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to calculate the value of a score function, as well as with other existing
combining base classifiers methods using different performance measures.

The outline of the paper is as follows: In the next section (Section 2), related
works are presented. The proposed algorithm is presented in Section 3. In
Section 4, the experiments that were carried out are presented, while results
and discussion are present in Section 5. Finally, we conclude the paper and
propose some future works in Section 6.

2. Related Work

In general, a classifier is a function that maps the feature space X into a set
of class labels M [16]. Usually, if we talk about a classifier, we implicitly assume
that the classifier is built using some kind of supervised learning procedure.
That is a procedure that incorporates information extracted from the training
set [16]. The training set consists of training samples (taken from the feature
space) and information about the class points to which these samples belong to.
There are many types of classifiers such as statistical classifiers [17], classification
trees [18], SVM-based classifiers [19] and neural networks [20] to name only a
few.

The choice of feature space is also important. A proper choice of the feature
space may significantly improve the classification results and the wrong choice
may made the classification problem harder [16, 21]. The process of choosing or
creating a proper set of features is called feature extraction [21]. The literature
presents many techniques for attribute extraction such as: PCA [22], kernel
PCA [23], isomap [24], or deep neural networks [20, 25, 26].

In this paper, it is assumed that the input space X is a d − dimensional
Euclidean space X = R

d. Each object from the input space x ∈ X belongs to
one of two available classes, so the output space is: M = {−1; 1}. It is assumed
that there exists an unknown mapping f : X 7→ M that assigns all input space
coordinates into a proper class. A classifier ψ : X 7→ M is a function that is
designed to provide an approximation of the unknown mapping f .

2.1. Linear Binary Classifier

A linear classifier separates the classes using a hyperplane π defined by the
following equation:

π : 〈n;x〉 + b = 0, (1)

where n is a unit normal vector of the decision hyperplane (‖n‖ = 1), b is the
distance from the hyperplane to the origin and 〈·; ·〉 is a dot product defined as
follows [27]:

〈a; b〉 =

d∑

i=1

aibi, ∀a, b ∈ X. (2)
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If not stated otherwise, a norm of the vector x is defined using the dot product:

‖x‖ =
√
〈x;x〉. (3)

The linear classifier makes its decision according to the following rule:

ψ(x) = sign (ω(x)) , (4)

where ω(x) = 〈n;x〉 + b is the so called discriminant function of the classifier
ψ [6]. When the normal vector of the plane is a unit vector, the absolute value
of the discriminant function equals the perpendicular distance from the decision
hyperplane to the point x (the shortest distance from the plane to x). The sign
of the discriminant function depends on the site of the plane where the instance
x lies.

The decision-plane coefficients are obtained in a supervised learning pro-
cedure (training procedures used during the experimental evaluation are men-
tioned in Section 4) using the training set T containing |T | pairs of feature
vectors x and corresponding labels m:

T =
{

(x(1),m(1)), (x(2),m(2)), . . . , (x(|T |),m(|T |))
}
, (5)

where x(k) ∈ X and m(k) ∈ M.

2.2. Ensemble of classifiers

Now, let us determine an ensemble of classifiers:

Ψ =
{
ψ(1), ψ(2), · · · , ψ(N)

}
(6)

that is a set of N classifiers that work together in order to produce a more robust
result [6]. There are multiple strategies to combine the classifiers constituting
the ensemble of linear classifiers. The simplest strategy to combine the outcomes
of multiple classifiers is to apply the majority voting scheme:

ω(x) =

N∑

i=1

sign(ω(i)(x)), (7)

where ω(i)(x) is the value of the discriminant function provided by the classifier
ψ(i) for point x. However, this simple yet effective strategy completely ignores
the distances of the instance x from the decision planes.

Another strategy is model averaging [28]. The output of the averaged model
may be calculated by simply averaging the values of the discriminant functions:

ω(x) =
1

N

N∑

i=1

ω(i)(x) (8)
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An alternative strategy is to normalize the discriminant function within the
interval [0, 1]. The normalization may be done using a sigmoid function – the
softmax function for example [6]:

ω̃(i)(x) =
(

1 + exp(−ω(i)(x))
)−1

. (9)

The value of the discriminant function may also be used to estimate the con-
ditional probability of a class given the instance x [29, 30]. The normalized
outputs are then simply averaged:

ω(x) =
1

N

N∑

i=1

ω̃(i)(x). (10)

After combining the base classifiers, the final prediction of the ensemble is
obtained according to the rule (4).

2.3. Distance-based approaches to supervised classification

The distance-based approaches are often used to determine the scoring func-
tions or other functions in supervised classification. In linear Support Vector
Machines algorithms, the distance to the separating decision boundary is used to
compute the scoring function. Afterwards, the calibration converts scores func-
tions into a probability measure, or more precisely transforms classifier outputs
into values that can be interpreted as probabilities. The calibration methods can
be generally divided into two groups: parametric and non-parametric methods.
The sigmoidal transformation maps the score function to a calibrated probabil-
ity output as was proposed by Platt [29]. This type of calibration assumes that
the distances on either side of the decision boundary are normally distributed.
The non-parametric methods are based on binning [31] or isotonic regression
[30].

The nearest neighbor methods also use a distance-based approach, which
is closely related to the nature of the nearest distance [32]. In general, these
methods classify the recognized object to the class label for which the sum of
the distances from its reference group of objects is the smallest. The decision
boundary is determined by these discriminatory methods. The points in the
feature space defining the decision boundary are characterized by the same
distance from the reference group of objects for each class label. Thus, the
nearest neighbor methods do not take into account the distance from the decision
boundary.

In this paper, the distance-based approaches are used to determine the trust
(scoring functions) of the base of the classifier [15]. The proposed algorithm
calculates the ratio between the distance from the recognized object to the
nearest class different from the predicted class label and the distance to the
predicted class label. This approach also does not take into account the distance
from the decision boundary, but only the distance from objects located near the
recognized object.
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The impact of distance from the decision boundary is also associated with
a classification error in boosting algorithms. In particular, hybrid weighting
methods that modulate the emphasis on objects according to their distance to
the decision boundary have been proposed. The work [33] proposes an empha-
sis function in which the first term takes large values for patterns with large
quadratic error, and the second term increases for objects that lie close to the
decision boundary. There has also been a proposal [34] that the emphasis func-
tion balances also the contribution of the error and the distance to the decision
boundary.

3. Proposed Method

First of all, it must be understood that the model-averaging approach has
a major drawback. That is, the discriminant function of a linear classifier is
unbounded. Consequently, a decision plane placed far from the real decision
boundary will produce a high value of the discriminant function that may neg-
atively affect the ensemble. For the same reason, the outliers may acquire an
abnormally high value of the discriminant function which may also affect the
decision of the ensemble. We can get rid of this disadvantage by applying the
majority-voting scheme. However, this combination scheme loses some informa-
tion by ignoring the distance to the decision plane. A compromise between the
above-mentioned methods is to transform the discriminant function by applying
a kind of sigmoid (the soft-max function, for example [6]) function to it. The
sigmoid function is a monotonic function that has finite upper and lower bounds.
As a consequence, the distance-specific information is not lost, and the impact
of the misplaced decision boundaries is reduced. What is more, this approach
is more flexible since the steepness of the sigmoid function may be controlled.

The other issue with combining linear classifiers is that the discriminant
function of the linear classifier grows monotonically with the distance to the
decision plane. It means that the linear classifier ignores the data spread along
the normal vector of the decision plane and it implicitly assumes that the distri-
bution is uniform. However, in many real-world datasets objects are distributed
in various areas, and there are no objects outside these areas. An example
of this situation is visualised in Figure 1. The figure presents a binary, two-
dimensional, banana-shaped dataset and the decision boundary created using
the Nearest Centroid classifier. As we can see, the objects are placed in one
cluster located in the intersection of intervals x1 ∈ [−1.5; 2.5], x2 ∈ [−1.5; 2].
Outside this area, there are no class-specific objects. Consequently, the dis-
criminant function generated by the classifier should be low outside this area.
Unfortunately, a linear classifier ignores this fact and its support will grow (along
the normal vector n of the decision boundary) outside this area. Transforming
the discriminant function using a monotonic function, such as sigmoid func-
tion, does not change the situation at all. This is because far from the decision
boundary the discriminant function approaches its upper (lower) limit. Being
close to the limit still indicates high support for a particular class in the area
where there are no class-specific instances.
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Ignoring the class-spread-related information does not change the outcome
of the single classifier since the sign of the discriminant function remains the
same. However, our previous research has shown that employing this informa-
tion may improve the classification quality for heterogeneous ensembles of linear
classifiers [35]. In the previously-proposed approach, the discriminant function
is transformed using a non-monotonic function derived below:

g(z) = z exp(−ζz2 + 0.5)
√

2ζ, (11)

where ζ is a coefficient that determines the position and steepness of peaks
(positive and negative peaks) (see Figure 2). This coefficient should be tuned
during the training procedure. The translation constants 0.5 and the scaling
factor

√
2ζ guarantee that the maximum and minimum values (peaks) of the

discriminant functions are 1 and −1 respectively. The above-mentioned non-
monotonic function is visualised in Figure 2. The figure shows the shape of the
function for different values of ζ. As we can see in the figure:

• The sign of the function value is the same as the sign of its argument.
As a consequence, the transformation does not change the prediction of a
single classifier.

• The function is an odd function, meaning g(−z) = −g(z).

• For arguments close to zero, the function also achieves values near zero.

• When the function argument increases, the function value also increases
until it reaches a peak. Then the function value decreases and it ap-
proaches zero.

Using this transformation, the prediction of the ensemble is calculated as
follows:

ω(x) =

N∑

i=1

g(ω(i)(x)). (12)

Harnessing the above-mentioned transformation allows the ensemble to improve
the classification quality. This is due to the function being tuned so that the
potential is near zero in the areas where there are no training points. However,
when the data distribution is imbalanced, the performance may degrade [35].
The other drawback of this method is that the ζ coefficient controls the position
and the steepness of the peaks simultaneously. This can be seen in Figure 2.
The higher the value of ζ is, the peak is closer to the decision boundary, and
it is narrower. The solution may be to use an asymmetric, data-driven trans-
formation. This transformation should place peaks of the function over class
centroids.

The linear classifiers also ignore the information about data distribution
along the vectors of the plane basis since they use only information about the
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Figure 1: Linear decision boundary created by the Nearest Centroid classifier for binary,
two-dimensional, banana-shaped data. Objects belonging to the first class have been marked
using red circles, whereas points belonging to the other class have been marked using green
triangles. The plot also shows the normal vector of the decision plane n and a base vector of
the plane b1.

distance between an object and the plane. The basis is a set of linearly inde-
pendent vectors that span the plane [27]:

B = {b1, b2, · · · , bd−1} . (13)

Figure 1 shows a base vector for the decision boundary for two-dimensional
data. As we can see in the figure, the data distribution along the base vector
is not uniform in the entire feature space. Unfortunately, a linear classifier is
unable to use this information.

In this work, we propose a combination method that uses information about
the data spread along the normal vector of the decision plane and the spread
along the plane basis as well. To do so, we use information about the data
spread around the class-specific centroid:

Cm =
1

|Tm|
∑

x∈Tm

x, (14)
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Figure 2: Visualisation of the potential function g(z) (see (11)) for different values of ζ. The
values along z-axis represent values of the discriminative function of a linear classifier. The
values along the g(z)− axis represent the transformed values.

where Tm is a set of points belonging to class m:

Tm =
{
x(k)|x(k) ∈ T ∧m(k) = m

}
(15)

The distance from the class centroid Cm to the instance x is derived as the
class-specific Mahalanobis [36] distance:

dcm(x) =

√
(x− Cm)TS−1

m (x− Cm), (16)

where Sm is the covariance matrix of the cloud of points belonging to Tm.
The Mahalanobis distance is used because it is reported to be more efficient in
finding the well-separated clusters of points in the feature space [36]. This is an
important property, because such a measure allow us to find a better description
of a class-related cluster of points.

Additionally, the distance that uses information about the data spread along
the normal vector is also used:

dnm(x) =

√
proj ((x− Cm), n)T Sn−1

m proj ((x− Cm), n), (17)

where Snm is the covariance matrix of the cloud of class-specific points projected
onto a normal vector n. The projection onto the normal vector is defined as
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Figure 3: Visualization of distances from an instance x to the class centroid Cm used to
construct the proposed classifier. π is the decision plane generated by a linear classifier. The
normal vector of the plane is denoted as n. dcm(x) is the Mahalanobis distance between x

and Cm. dnm(x) is the length (in terms of the Mahalanobis distance) of the vector x− Cm

projected onto n

follows:

proj (x, n) =
〈x;n〉
‖n‖ x. (18)

The above-mentioned distances are visualized in the Figure 3.
The class-specific potential is then calculated using the following formula:

ωm(x) = β exp(−γdcm(x)2) + (1 − β) exp(−γdnm(x)2), (19)

where β ∈ [0, 1] is the proportion in which potentials arise from dcm(x) and
dnm(x) are mixed. The other coefficient γ ∈ R is responsible for the steepness
of the peak and ridge (see Figure 4). Those coefficients must be tuned for
each dataset. An example of the class-specific potential function generated for
the linear classifier in the two-dimensional space is shown in Figure 4. Then,
the potential value (the value of the discriminant function) for the point x is
calculated:

ω(x) =
∑

m∈M

mωm(x). (20)

The single-classifier prediction is made using the formula (4). If the classifier
works in an ensemble, the ensemble-specific value of the discriminant function
is obtained using the model-averaging approach (8).
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Figure 4: Example plot of the class-specific potential function ωm(x). Axes x1 and x2 span
two dimensional space X = R

2. The values of the potential function are presented using axes
denoted as ωm(x). Parameters of the potential function are set as follows: β = 0.5, γ = 0.25.
The decision limit is a straight line with equation x1 = 0. The ridge parallel to the x1 axis is
related to the distance between x and the decision boundary dnm(x). The peak is related to
distance between x and class centroid dcm(x).

4. Experimental Setup

This section provides a detailed description of the experimental setup.

4.1. Design of the Experiment

In the experimental study we conducted, the proposed approach was used to
combine classifiers using a homogeneous ensemble of classifiers. The ensembles
were created using a bagging approach [28]. The generated ensembles consist
of 11 classifiers learned by using the bagging method containing 80% of the
number of instances from the original dataset.

During the experiment, the following ensembles were considered:

• ψSM – outputs of the linear classifiers were normalized using the softmax
rule, and then combined according to (10).

• ψMA – bagged classifiers were combined using the model-averaging ap-
proach (8).

• ψMV – bagged classifiers were combined using majority-voting approach (7).
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• ψPF – the approach using the potential function proposed in [35]. Classi-
fiers were combined using model averaging.

• ψPC – the proposed approach.

The following base classifiers were used to build the above-mentioned en-
sembles:

• ψFLDA – Fisher LDA [37],

• ψLR – Logistic regression classifier [17],

• ψMLP – single layer MLP classifier [38],

• ψNC – nearest centroid (Nearest Prototype) [39] with the class-specific
Mahalanobis distance,

• ψSVM – SVM classifier with linear kernel (no kernel) [19].

The classifiers used were implemented in the WEKA framework [40]. If
not stated otherwise, the classifier parameters were set to their defaults. The
multi-class problems were dealt with using One-vs-One decomposition [41]. The
source code of the proposed algorithms is available online 1.

The β and γ coefficients (see equation (19)) are tuned using the grid search
approach in such a way that it maximizes the kappa coefficient [42]. The follow-
ing sets of values are considered β ∈ {0, 0.1, 0.2, · · · , 1.0}, γ ∈

{
2−2, 2−1, · · · , 22

}
.

To evaluate the proposed methods, six classification-quality criteria are used.
The criteria are described in section 4.2.

Following the recommendation of [43] the statistical significance of the ob-
tained results was assessed using the two-step procedure. The first step was
to perform the Friedman test [43] for each quality criterion separately. Since
the multiple criteria were employed, the family-wise errors (FWER) should be
controlled [44]. To do so, the Bergmann-Hommel [44] procedure of controlling
FWER of the conducted Friedman tests was employed. When the Friedman test
shows that there is a significant difference within the group of classifiers, the
pairwise tests using the Wilcoxon signed-rank test [43] were employed. To con-
trol FWER of the Wilcoxon-testing procedure, the Bergmann-Hommel approach
was employed [44]. For all tests, the significance level was set to α = 0.05.

Table 1 displays the collection of the 43 benchmark sets that were used
during the experimental evaluation of the proposed algorithms. The table is
divided into three columns. Each column is organized as follows. The first
column contains the names of the datasets. The remaining ones contain the
set-specific characteristics of the benchmark sets: the number of instances in
the dataset (|S|); dimensionality of the input space (d); the number of classes
(C); average imbalance ratio (IR).

1https://github.com/ptrajdos/piecewiseLinearClassifiers/tree/master
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Table 1: The characteristics of the benchmark sets
Name |S| d C IR Name |S| d C IR Name |S| d C IR

appendicitis 106 7 2 2.52 housevotes 435 16 2 1.29 shuttle 57999 9 7 1326.03

australian 690 14 2 1.12 ionosphere 351 34 2 1.39 sonar 208 60 2 1.07

balance 625 4 3 2.63 iris 150 4 3 1.00 spambase 4597 57 2 1.27

banana2D 2000 2 2 1.00 led7digit 500 7 10 1.16 spectfheart 267 44 2 2.43

bands 539 19 2 1.19 lin1 1000 2 2 1.01 spirals1 2000 2 2 1.00

Breast Tissue 105 9 6 1.29 lin2 1000 2 2 1.83 spirals2 2000 2 2 1.00

check2D 800 2 2 1.00 lin3 1000 2 2 2.26 spirals3 2000 2 2 1.00

cleveland 303 13 5 5.17 magic 19020 10 2 1.42 texture 5500 40 11 1.00

coil2000 9822 85 2 8.38 mfdig fac 2000 216 10 1.00 thyroid 7200 21 3 19.76

dermatology 366 34 6 2.41 movement libras 360 90 15 1.00 titanic 2201 3 2 1.55

diabetes 768 8 2 1.43 newthyroid 215 5 3 3.43 twonorm 7400 20 2 1.00

Faults 1940 27 7 4.83 optdigits 5620 62 10 1.02 ULC 675 146 9 2.17

gauss2DV 800 2 2 1.00 page-blocks 5472 10 5 58.12 vehicle 846 18 4 1.03

gauss2D 4000 2 2 1.00 penbased 10992 16 10 1.04 Vertebral Column 310 6 3 1.67

gaussSand2 600 2 2 1.50 phoneme 5404 5 2 1.70 wdbc 569 30 2 1.34

gaussSand 600 2 2 1.50 pima 767 8 2 1.44 wine 178 13 3 1.23

glass 214 9 6 3.91 ring2D 4000 2 2 1.00 winequality-red 1599 11 6 20.71

haberman 306 3 2 1.89 ring 7400 20 2 1.01 winequality-white 4898 11 7 82.94

halfRings1 400 2 2 1.00 saheart 462 9 2 1.44 wisconsin 699 9 2 1.45

halfRings2 600 2 2 1.50 satimage 6435 36 6 1.66 yeast 1484 8 10 17.08

hepatitis 155 19 2 2.42 Seeds 210 7 3 1.00

HillVall 1212 100 2 1.01 segment 2310 19 7 1.00

1
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The datasets come from the Keel 2 repository or are generated by us. The
datasets are available online 3.

During the dataset-preprocessing stage, a few transformations on the datasets
were applied. The PCA method was applied and the percentage of covered vari-
ance was set to 0.95. The attributes were also normalized to have zero mean
and unit variance.

4.2. Quality Measures

To asses the classification quality offered by the proposed method, six quality
criteria are employed

• Macro-averaged:

– false discovery rate (1 − precision,FDR),

– false negative rate (1 − recall,FNR),

– F1
loss

• Micro-averaged:

– false discovery rate (1 − precision,FDR),

– false negative rate (1 − recall,FNR),

– F1
loss

Macro and micro averaged measures were used to assess the performance for the
majority and minority classes. This is because the macro-averaged measures
are more sensitive to the performance for minority classes [45]. The criteria are
bounded in the interval [0, 1], where zero denotes the best classification quality.

The exact values of the criteria can be calculated using entries of the class-
specific confusion matrix created using the testing dataset R. To create the
class-specific confusion matrix, the multi-class classification problem is decom-
posed using One-vs-Rest technique. An example of the above-mentioned con-
fusion matrix is shown in Table 2. The rows of the matrix correspond to the
ground-truth classes, whereas the columns match the outcome of the classi-
fier. The entries denoted as TPi, TNi, FPi, FNi are class-specific true positive,
true negative, false positive, and false negative rates , respectively. The above-

2https://sci2s.ugr.es/keel/category.php?cat=clas
3https://github.com/ptrajdos/MLResults/blob/master/data/slDataFull.zip
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mentioned values are calculated as follows:

TPi =
∑

x(k)∈R

r
Ψ(x(k)) = i ∧m(k) = i)

z
, (21)

TNi =
∑

x(k)∈R

r
Ψ(x(k)) 6= i ∧m(k) 6= i)

z
, (22)

FPi =
∑

x(k)∈R

r
Ψ(x(k)) = i ∧m(k) 6= i)

z
, (23)

FNi =
∑

x(k)∈R

r
Ψ(x(k)) 6= i ∧m(k) = i)

z
, (24)

where J·K is the Iverson bracket – function defined as:

Ji = jK =

{
0 if i 6= j

1 if i = j
(25)

Table 2: The confusion matrix for a binary classification problem.

prediction
posi negi

ground truth
posi TPi FNi

negi FPi TNi

The macro-averaged measures are defined as follows:

FDRmacro =
1

|M|

|M|∑

i=1

FPi
TPi + FPi

, (26)

FNRmacro =
1

|M|

|M|∑

i=1

FNi

TPi + FNi

, (27)

F1
loss
macro =

1

|M|

|M|∑

i=1

FPi + FNi

2TPi + FPi + FNi

, (28)

where M is a set containing class numbers.
The micro-averaged measures are defined as follows:

FDRmicro =

∑|M|
i=1 FPi∑|M|

i=1 TPi +
∑|M|
i=1 FPi

, (29)

FNRmicro =

∑|M|
i=1 FNi∑|M|

i=1 TPi +
∑|M|
i=1 FNi

, (30)

F1
loss
micro =

∑|M|
i=1 FPi +

∑|M|
i=1 FNi

2TPi +
∑|M|

i=1 FPi +
∑|M|

i=1 FNi

(31)
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5. Results and Discussion

This section presents the results and the discussion of the outcome of the
experimental study. Due to the page limit, the full results are published online 4

To compare multiple algorithms on multiple benchmark sets, the average
ranks approach is used. In this approach, the winning algorithm achieves rank
equal ’1’, the second achieves rank equal ’2’, and so on. In the case of ties, the
ranks of algorithms that achieve the same results are averaged. To provide a
visualization of the average ranks the radar plots are employed. In the radar
plot, each of the radially arranged axes represents one quality criterion. In the
plots, the data is visualized in such a way that the lowest ranks are closer to the
centre of the graph. Consequently, higher ranks are placed near the outer ring
of the graph. Graphs are also scaled so that the inner ring represents the lowest
rank recorded for the analyzed set of classifiers, and the outer ring is equal to
the highest recorded rank.

The numerical results are given in Table 3 to 7. Each table is structured
as follows. The first row contains the names of the investigated algorithms.
Then, the table is divided into six sections – one section is related to a single
evaluation criterion. The first row of each section is the name of the quality
criterion investigated in the section. The second row shows the p-value of the
Friedman test. The third one shows the average ranks achieved by algorithms.
The following rows show p-values resulting from the pairwise Wilcoxon test.
The p-value equal to .000 informs that the p-values are lower than 10−3 and
p-value equal to 1.00 informs that the value is higher than 0.999. P-values lower
than α are bolded.

Now let us analyze the classification quality of the previously proposed
method ψPF. In general, the results showed that the method is comparable
to or worse than reference methods. The method is comparable to reference
methods for ψFLDA and ψNC classifiers. This is probably because the decision
boundary is produced using the distance to the class centroids. Under these cir-
cumstances, the peaks of the symmetric potential function may be easily tuned
to be in the correct position. The situation changes for ψSVM classifier. That is,
the ensemble is comparable to the reference methods in terms of macro-averaged
measures, but it is worse for the micro-averaged criteria. It means that the clas-
sifier prefers the minority class. This is probably because the peak position is
placed near the centroid of the minority class. The wide separation margin may
also play a role in the process of finding the best ζ coefficient for the ensemble.
That is, even if the potential function is badly tuned, the wider margin prevents
some points from being misclassified. For the remaining base classifiers (ψLR

and ψMLP) ψPF ensemble performs worse than the reference methods. This
is most likely because the potential peaks cannot be set up properly with the
narrow decision margins produced by those base classifiers. In other words, the
ζ coefficient cannot be set properly because the peaks are too close to the deci-

4https://github.com/ptrajdos/MLResults/blob/master/Boundaries/PR_2020.zip
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sion boundary. If too many points are placed near the decision boundary, the
tuned potential function is narrow and placed near to the decision boundary.
Consequently, the peak is too narrow. This is because the ζ coefficient controls
the peak position and its width simultaneously.

The analysis of the results related to the approach proposed in this paper
starts with the ψNC base classifier. This is because this model is equivalent to
the part of the proposed model. That is, the part uses the distance dcm(x) is a
nearest-centroid classifier. The other distance dnm(x) together with the normal
vector of the decision plane n is responsible for creating the ridge (see Figure 3).
The results for this classifier are a bit inconsistent. The Friedman test shows no
significant differences among the group of the analyzed classifiers; however, the
post-hoc test shows significant differences for micro-averaged measures. These
results suggest that the obtained differences may be on the boundary of the
statistical significance. On the other hand, the average ranks for all criteria
clearly show that the proposed method gets lower ranks than the other methods.
The significant improvement in terms of micro-averaged criteria shows that the
proposed method can improve the classification quality of the ensemble. This
improvement is significant only for majority classes. The boundary produced
by ψNC classifier gives no additional information to the model since the decision
boundary produced by the distance dcm(x) is the same. The improvement is
only a result of incorporating the ridge-shaped potential into the ensemble-
response-creating process.

The quality of the obtained results also depends on the decision boundary
used to build the model (please remember that the ridge is parallel to the deci-
sion boundary fed into the model). The ψFLDA

SM classifier presents similar quality
to the ψNC

SM. The average ranks also suggests that ψFLDA
SM follow the same pattern

as ψFLDA
SM . What is more important, it may be a bit weaker than ψNC

SM. Although
the intuition says that the weaker classifier should be easier to outperform, the
proposed approach is unable to outperform any reference classifier. This is prob-
ably because the boundary produced by the ψFLDA

SM classifier does not allow the
proposed approach to producing the ridge in the right direction. The same is
for ψMLP and ψSVM. The average-rank-pattern produced by the base classifiers
is similar however, only for ψSVM the performance for macro-averaged F1 and
FNR criteria are significantly improved by the proposed approach. For ψMLP

the improvement is significant only for macro-averaged FNR (the same is for
ψLR). It means that the recall increases at the cost of increasing the number of
false positives for the minority classes.

The situation is a bit different for ψLR classifier. Although the statistical
tests show no significant difference, the average ranks show that applying the
proposed method may decrease the classification quality measured using micro-
averaged criteria. The possible explanation of this phenomenon is that the
ψLR classifier has the lowest average ranks for micro-averaged criteria and one
of the lowest ranks according to macro-averaged criteria. Consequently, any
attempt to improve the recall for the minority class harms the performance of
the majority class. The other explanation is that the proposed scheme is tuned
for the kappa coefficient, whereas the reference methods do not directly optimize
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this quality criterion.dge-shaped potential into the ensemble-response-creating
process.

The quality of the obtained results also depends on the decision bound-
ary used to build the model (please remember that the ridge is parallel to the
decision boundary fed into the model). The ψFLDA

SM classifier presents similar
quality to the ψNC

SM . The average ranks also suggests that ψFLDA
SM follows the

same pattern as ψFLDA
SM . What is more important, it may be a bit weaker than

the ψNC
SM . Although intuition says that the weaker classifier should be easier to

outperform, the proposed approach is unable to outperform any reference clas-
sifier. This is probably because the boundary produced by the ψFLDA

SM classifier
does not allow the proposed approach to produce the ridge in the right direc-
tion. The same is for the ψMLP and ψSVM. The average-rank-pattern produced
by the base classifiers is similar; however, only for the ψSVM does the perfor-
mance for macro-averaged F1 and FNR criteria are significantly improved by
the proposed approach. For the ψMLP, the improvement is significant only for
the macro-averaged FNR (the same is for the ψLR). It means that the recall
increases at the cost of increasing the number of false positives for the minority
classes.

The situation is a bit different for ψLR classifier. Although the statistical
tests show no significant difference, the average ranks show that applying the
proposed method may decrease the classification quality measured using micro-
averaged criteria. The possible explanation of this phenomenon is that the
ψLR classifier has the lowest average ranks for micro-averaged criteria and one
of the lowest ranks according to macro-averaged criteria. Consequently, any
attempt to improve the recall for the minority class harms the performance for
the majority class. The other explanation is that the proposed scheme is tuned
for the kappa coefficient, whereas the reference methods do not directly optimize
this quality criterion.

Table 3: Statistical evaluation: the Wilcoxon test for the ensembles based on the FLDA
classifier.

ψSM ψMA ψMV ψPF ψPC ψSM ψMA ψMV ψPF ψPC ψSM ψMA ψMV ψPF ψPC

Nam. MaFDR MaFNR MaF1
Frd. 2.999e-01 2.999e-01 2.999e-01
Rank 2.930 3.140 2.616 3.360 2.953 3.035 3.209 2.744 3.430 2.581 3.070 3.186 2.686 3.360 2.698
ψSM 1.00 1.00 .874 1.00 .452 .962 .183 .204 .657 .657 .325 .657
ψMA 1.00 .874 1.00 .587 .183 .204 .657 .337 .657
ψMV .874 1.00 .159 .183 .180 .657
ψPF .874 .039 .069
Nam. MiFDR MiFNR MiF1
Frd. 2.999e-01 2.999e-01 2.999e-01
Rank 3.035 3.233 2.721 3.419 2.593 3.035 3.233 2.721 3.419 2.593 3.035 3.233 2.721 3.419 2.593
ψSM .428 .471 .134 .069 .428 .471 .134 .069 .428 .471 .134 .069
ψMA .428 .134 .069 .428 .134 .069 .428 .134 .069
ψMV .095 .120 .095 .120 .095 .120
ψPF .043 .043 .043
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Figure 5: Radar plot for the homogeneous ensemble based on ψFLDA

Figure 6: Radar plot for the homogeneous ensemble based on ψLR
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Figure 7: Radar plot for the homogeneous ensemble based on ψMLP

Figure 8: Radar plot for the homogeneous ensemble based on ψNC
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Table 4: Statistical evaluation: the Wilcoxon test for the ensembles based on ψLR classifier.
ψSM ψMA ψMV ψPF ψPC ψSM ψMA ψMV ψPF ψPC ψSM ψMA ψMV ψPF ψPC

Nam. MaFDR MaFNR MaF1
Frd. 6.166e-02 5.932e-06 2.201e-02

Rank 2.686 2.942 2.930 3.581 2.860 2.802 3.093 2.953 3.965 2.186 2.733 2.942 2.837 3.721 2.767
ψSM 1.00 1.00 .173 1.00 1.00 1.00 .001 .011 1.00 1.00 .013 .443
ψMA 1.00 .566 1.00 1.00 .011 .011 1.00 .083 .443
ψMV .173 1.00 .002 .011 .013 .443
ψPF .173 .000 .013

Nam. MiFDR MiFNR MiF1
Frd. 2.578e-05 2.578e-05 2.578e-05

Rank 2.500 2.593 2.605 3.837 3.465 2.500 2.593 2.605 3.837 3.465 2.500 2.593 2.605 3.837 3.465
ψSM 1.00 1.00 .001 .399 1.00 1.00 .001 .399 1.00 1.00 .001 .399
ψMA 1.00 .003 .399 1.00 .003 .399 1.00 .003 .399
ψMV .000 .399 .000 .399 .000 .399
ψPF .492 .492 .492

Table 5: Statistical evaluation: the Wilcoxon test for the ensembles based on ψMLP classifier.
ψSM ψMA ψMV ψPF ψPC ψSM ψMA ψMV ψPF ψPC ψSM ψMA ψMV ψPF ψPC

Nam. MaFDR MaFNR MaF1
Frd. 4.715e-01 4.608e-08 1.595e-03

Rank 3.023 3.209 2.767 3.209 2.791 3.093 3.267 2.686 3.988 1.965 3.140 3.256 2.628 3.651 2.326
ψSM 1.00 1.00 1.00 .560 .226 .070 .002 .004 .228 .228 .023 .118
ψMA .093 1.00 .347 .024 .005 .001 .046 .228 .062
ψMV 1.00 1.00 .000 .002 .006 .140
ψPF .025 .000 .001

Nam. MiFDR MiFNR MiF1
Frd. 1.509e-02 1.509e-02 1.509e-02

Rank 2.860 2.895 2.453 3.663 3.128 2.860 2.895 2.453 3.663 3.128 2.860 2.895 2.453 3.663 3.128
ψSM 1.00 .302 .004 .820 1.00 .302 .004 .820 1.00 .302 .004 .820
ψMA .302 .005 .820 .302 .005 .820 .302 .005 .820
ψMV .000 .820 .000 .820 .000 .820
ψPF .302 .302 .302

Table 6: Statistical evaluation: the Wilcoxon test for the ensembles based on ψNC classifier.
ψSM ψMA ψMV ψPF ψPC ψSM ψMA ψMV ψPF ψPC ψSM ψMA ψMV ψPF ψPC

Nam. MaFDR MaFNR MaF1
Frd. 3.756e-01 3.756e-01 3.756e-01
Rank 3.023 3.000 3.302 3.047 2.628 2.930 3.105 3.070 3.360 2.535 3.047 3.023 3.349 3.093 2.488
ψSM 1.00 .743 1.00 .128 .620 .133 .297 .201 1.00 .241 1.00 .021

ψMA 1.00 1.00 .171 .620 .620 .133 1.00 1.00 .094
ψMV 1.00 .032 .620 .040 1.00 .003

ψPF .128 .030 .051
Nam. MiFDR MiFNR MiF1
Frd. 1.899e-01 1.899e-01 1.899e-01
Rank 2.930 3.151 3.233 3.314 2.372 2.930 3.151 3.233 3.314 2.372 2.930 3.151 3.233 3.314 2.372
ψSM .197 .084 .197 .197 .197 .084 .197 .197 .197 .084 .197 .197
ψMA .372 .372 .020 .372 .372 .020 .372 .372 .020

ψMV .372 .010 .372 .010 .372 .010

ψPF .020 .020 .020
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Table 7: Statistical evaluation: the Wilcoxon test for the ensembles based on ψSVM classifier.
ψSM ψMA ψMV ψPF ψPC ψSM ψMA ψMV ψPF ψPC ψSM ψMA ψMV ψPF ψPC

Nam. MaFDR MaFNR MaF1
Frd. 7.472e-02 5.787e-08 3.427e-05

Rank 3.070 3.198 3.070 3.326 2.337 3.151 3.442 3.151 3.512 1.744 3.233 3.267 3.233 3.349 1.919
ψSM 1.00 1.00 1.00 .097 .795 1.00 .795 .000 1.00 1.00 1.00 .005

ψMA 1.00 1.00 .025 .795 1.00 .000 1.00 1.00 .000

ψMV 1.00 .097 .795 .000 1.00 .005

ψPF .004 .000 .000

Nam. MiFDR MiFNR MiF1
Frd. 1.942e-01 1.942e-01 1.942e-01
Rank 2.837 2.977 2.837 3.570 2.779 2.837 2.977 2.837 3.570 2.779 2.837 2.977 2.837 3.570 2.779
ψSM 1.00 1.00 .026 1.00 1.00 1.00 .026 1.00 1.00 1.00 .026 1.00
ψMA 1.00 .128 1.00 1.00 .128 1.00 1.00 .128 1.00
ψMV .026 1.00 .026 1.00 .026 1.00
ψPF .124 .124 .124

Figure 9: Radar plot for the homogeneous ensemble based on ψSVM
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6. Conclusions and Future Work

This paper presents a new method of combining linear classifiers in the
geometrical space. It means that the combination rule takes into consideration
not only the classifier’s outcome but also the geometrical properties of the input
space and the geometrical properties of the decision boundary created by the
classifiers. In the case presented, the combination rule takes into account the
class-specific centroids and the normal vector of the base classifiers harnessed for
the ensemble. The main purpose of employing the above-mentioned properties
was to create a potential function that is spanned around the class centroids and
the decision boundary. Contrary to the state-of-the-art methods, the potential
function is not a monotonic function that grows with the distance to the decision
boundary. The aim of using a non-monotonic function is to incorporate some
information about the data distribution into the ensemble of linear classifiers.
That is, the captured information is the data spread along with the decision
plane and the data spread along the normal vector of the decision plane.

The experimental results show that the proposed method may create an
ensemble classifier that outperforms the commonly used methods of combining
the linear classifiers. On the other hand, the proposed approach has also a few
drawbacks. First of all, it uses two shape coefficients of the potential function
that have to be carefully tuned. In this work, we used a grid search approach
and cross-validation to find the best values of those coefficients which is rather a
time-consuming approach. Consequently, our future research needs to be aimed
at finding a heuristic approach that allows finding a good set of shape coefficients
in a more efficient way.
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