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Abstract

While Zero Shot Learning models can recognize new classes without training

examples, they often fails to incorporate both seen and unseen classes together

at the test time, which is known as the Generalized Zero-shot Learning (GZSL)

problem. This paper identifies a bottleneck issue when attributes are not well-

defined, reliable, inaccurate in quantitative representations, or suffering from the

visual-semantic discrepancy. We propose a Generic Plug-in Attribute Correction

(GPAC) module which can effectively accommodate conventional ZSL in GZSL

tasks. Different from existing embedding-based approaches which often lose

the favor of transparency in attributes, our key challenge is to fully preserve the

original meaning of the attributes and make it complementary and interpretable

to upgrade existing ZSL models. To this end, we propose a novel nonnegative

constraint with iterative Stochastic Gradient Descent toolbox to effectively fit

our GPAC module into previous ZSL models. Extensive experiments on five

popular datasets show that our method can effectively correct attributes and

make conventional ZSL can achieve state-of-the-art performance on GZSL tasks.

It is also a good practice for future models when incorporating prior human

knowledge.
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1. Introduction

Conventional supervised learning-based image classification systems have

achieved promising results due to the rapid development of deep learning tech-

nologies [31] and large-scale datasets of common categories. With the growth

of digital technologies and daily increasing new items, the challenge now is to5

make pre-trained models can generalize to new categories without collecting

new training examples with structured annotations. As a promising solution,

Zero-Shot Learning (ZSL) [16, 7] can recognize unseen objects by transferring

learned knowledge model from seen classes. Previous ZSL research has achieved

promising results on the old setting that assume test images are from unseen10

classes only. A new challenging Generalized ZSL (GZSL) [5] has become the

emerging problem in this research field. In particular, GZSL considers that the

test image can come from both seen and unseen categories. Conventional ZSL

approaches are proved to suffer from the prediction bias towards seen categories

[39]. For example, a zebra can be correctly predicted by comparing its simi-15

larity to other unseen categories of dogs and cats. However, when considering

training categories of horses, and cows together with unseen classes, most of

zebra images will be misclassified as horses.

Most of existing GZSL work ascribe such a bias to the overlap between

learned unseen distribution and that of seen classes [38]. In this paper, we20

investigate another important issue that has become the bottleneck issue to im-

prove the performance of GZSL models. Since no training examples are avail-

able in ZSL, explicit prior knowledge is necessary to estimate the distribution

of unseen images. There are mainly four popular knowledge representations in

current work. The first is based on textual embeddings, e.g. Word2Vec [22],25

that are learned from large scale text dataset in unsupervised learning frame-

works; the second is exploring the class relationship with ontology [11]; the third
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Is tasteful a task‐relevant attribute?
How much it looks tasteful?
How people agree on whether it looks tasteful?
What visual contexts can be reflected by tasteful?

Figure 1: Designing and annotating attributes require appropriate guidelines and may not be

accurate and discriminative.

is to associate unseen categories by similes in seen classes [20]; and the last is

semantic attributes, which are manually defined and annotated by domain ex-

perts. Most of theoretical studies [34] adopt semantic attributes because of30

that each dimension of the attribute embedding has an explicit meaning. Using

attributes can help qualitatively analysis of the ZSL model. More generally,

such attribute-based predictions can benefit the model interpretation in deep

learning research by large audience.

Currently, latent embedding has become one of the dominant frameworks35

for conventional ZSL problems. The learned latent space aims to mitigate the

visual-semantic gap and make the representation more discriminative [39]. Such

approaches have achieved state-of-the-art performance since the latent space can

effectively preserve correlated visual-semantic information and remove the re-

dundancy. However, the latent space fails to preserve the original meaning of40

each dimension in the attribute space, which makes the model difficult to in-

terpret and understand. Guo et al. [8] select a subset of the attributes for

learning different class distribution, variance, and entropy. Some recent work

also attempts to synthesize samples of unseen classes from the attributes us-

ing Generative Adversarial Networks (GANs) [10], and then train a supervised45

model for all classes. However, these methods suffer from the same problem as

the traditional supervised models, i.e. when a new unseen category is added,

the model needs to be trained from scratch.

This paper proposes a new idea by correcting the attributes according to

the visual contexts. Our key challenge and unique contribution is to preserve50

the original meanings of attributes. As the problems shown in Fig. 1, we pro-
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pose a General Plug-in Attribute Correction (GPAC) algorithm to make the

attributes more discriminative by two constraints: 1) different class attributes

should be maximumly distinguishable, especially similar ones between seen and

unseen classes in GZSL problems; 2) do not change the meaning of attributes55

and know how much and when not to make the correction. It is worth noting

that GPAC is a plug-in module rather than a new ZSL framework. The cor-

rected attributes can be well complementary to existing ZSL approaches. This

paper adopts autoencoder-based [14] and label embedding-based [1] frameworks

as examples. Furthermore, we provide an iterative optimization toolbox to effec-60

tively fit the GPAC module into ZSL models. Extensive evaluations are carried

on five popular benchmarks, and the results show that GPAC can not only

preserve the realistic meanings of the original attributes, but also significantly

improve conventional ZSL models to state-of-the-art level in GZSL tasks. The

contributions of our method are summarized as follows:65

1) To our best knowledge, this is the first work that can explicitly correct

attributes according to the visual contexts while preserving the original

meaning of each attribute dimension;

2) To our best knowledge, GPAC is also the first plug-in module that aims to

facilitate existing approaches and makes conventional ZSL models eligible70

or even state-of-the-art in GZSL tasks;

3) On five popular benchmarks, extensive quantitative and qualitative re-

sults manifest that the corrected attributes can better reflect the visual

contexts without losing the integrability in attributes, which provides a

good practice for future models when incorporating prior human knowl-75

edge.

The remaining part of this paper is organized as follows, Sec. 2 introduces

the related works about ZSL and GZSL. Sec. 3 shows the detailed description

of our method, which is followed by our experimental results and their analysis

in Sec. 4. Sec. 5 makes a conclusion on this method.80
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2. Related Works

2.1. Zero Shot Learning

Zero Shot Learning (ZSL) has attracted an increasing number of attention

by its powerful capability of recognizing new objects without training examples.

Early frameworks such as DAP [15] estimated the labels by learning probabilis-85

tic attribute classifiers individually. In ALE [1], Akata et al. projected visual

feature into semantic spaces via bilinear compatibility constraints with discrim-

inative representation learning to disperse instances. Other conventional ZSL

models such as CONvex combination of Semantic Embeddings (CONSE) [24]

tried to automatically build unseen attributes from the instances of seen cat-90

egories to reduce the effect of manual attributes. Kodirov et al. [14] adopted

the idea of Auto-Encoder and directly used Euclidean distance to constrain the

similarity of projected visual vectors and semantic embeddings.

There is a new trend of synthesis-based ZSL approaches. Long et al. [20]

proposed to use the attributes of unseen classes to synthesize unseen visual95

features, and then train a fully supervised model with the seen data and the

synthesized unseen visual features. An increasing number of generative meth-

ods have been proposed [10, 26], and many of them are based on GANs [32]

or Variational Auto-Encoders (VAE). These methods all suffer from a serious

problem when there comes a new category, retraining is unavoidable with the100

synthesized features of that unseen category.

The reliability of human-annotated attributes have been questioned since

[12]. To the best of our knowledge, however, there is no attribute correction

method has been proposed. On the similar purpose, attribute selection methods

[8] have attempted to select part of the attributes by considering their class105

distribution, variance, and entropy. Such methods do not improve the quality

of the attributes and cannot help with the GZSL tasks.

2.2. Generalized Zero Shot Learning

Different from conventional ZSL which assumes that all the test samples

are only from the unseen categories, GZSL, firstly proposed by Chao et al.[5],110
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enlarges the query range to both seen and unseen classes. This is important

in practice because we cannot guarantee whether the test image only belongs

to unseen classes and hope the ZSL model can cooperate with the pre-trained

model rather than discarding it. However, GZSL is more challenging. Due

to there was no standard benchmarks particularly designed for GZSL, Xian et115

al. [35] defined a unified evaluation protocols and data splits on existing ZSL

datasets. They evaluated a significant number of the state-of-the-art methods

in depth, both in the conventional ZSL and GZSL settings. From then on,

many methods have been proposed on this more realistic setting. For example,

Liu et al. designed a Deep Calibration Network (DCN) to enable simultaneous120

calibration of deep networks on the confidence of source classes and uncertainty

of target classes [17]. Pseudo distribution of seen samples on unseen classes

is also employed to solve the domain shift problem on GZSL [37]. Besides,

there are many other methods developed for this more realistic setting [10].

Significant performance gap has been reported between when applying ZSL125

approaches in GZSL tasks. A large proportion of misclassification is due to

predicting unseen images into confusing seen classes. Despite some attempts

on model development, there is no research attributing the GZSL problem with

the attribute discriminativeness.

3. Methodology130

3.1. Problem Definition

The dataset C consists of two completely separate splits, the seen S and the

unseen classes U , where, S = {1, · · · , s}, U = {s+1, · · · , s+u}, and S ∩U = ∅.

In addition, each class of both S and U is associated with auxiliary attributes

which are denoted as Ss ⊂ Rda×s and Su ⊂ Rda×u respectively, where da is the135

dimension of the attribute space. Let Xs = {xs1, · · · ,xsi , · · · ,xsNs
} ⊂ Rdx×Ns

denote the samples from seen classes S, where Ns is the number of samples, dx

is the dimension of visual feature space, and each sample xsi is labeled with a

single class in S. Similarly, let Xu = {xu1 , · · · ,xuj , · · · ,xuNu
} ⊂ Rdx×Nu denote
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Figure 2: Illustration of the proposed GPAC, which tries to make the similar classes more

discriminative while preserving their original meanings.

the samples from unseen classes U , where Nu is the number of samples. In this140

paper, we aim to quantitatively correct the attributes S = [Ss;Su] and learn

a projection function f(x) = xTW from visual feature space to the attribute

space to well classify these samples from both the seen and unseen classes S∪U .

3.2. Attribute Correction

In this section, we introduce the concept of the proposed GPAC module.

It is known that attributes are designed and annotated by experts and each

entry has its realistic meaning. For example, the attribute of AWA [15] has

an entry “black” with non-zero value denoting an animal has the black color

on the body, e.g. killer whale and blue whale. Therefore, keeping the original

meaning of attributes help interpret the prediction. In Fig. 2, “Killer Whale”

and “Blue Whale” both have the attributes “black” and “gray”, and neither

of them has the attribute “orange”, so it is necessary to preserve the “black”

and “gray” and not introduce the “yellow” in the corrected attributes to keep

their original meanings. Furthermore, attributes of both seen and unseen classes

should be more discriminative for GZSL but human annotator would not be able
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to provide accurate quantitative supervision or the quantity cannot reflect the

visual contexts. Therefore, it is required to enlarge the gap between the similar

classes, e.g., the distance between “Killer Whale” and “Blue Whale” in Fig. 2 is

increased to make them discriminative while preserving their original meanings.

Therefore, we define the following loss function,

LI = α‖A− S‖2F + β‖ATA− I‖2F ,

s.t. Aij > 0, and if Sij = 0 then Aij = 0.
(1)

where, α and β are balancing coefficients for the two items, S = Ss ∪ Su, A is145

the corrected attributes for both the seen and unseen classes, and Aij , Sij are

the entries of the ith row and jth column of A and S respectively.

The former item keeps the originality of attributes while the later one dis-

perse attributes and make the more discriminative to each other. Eq. 1 is

independent of any ZSL models and thus can be effectively plugged into exist-150

ing ZSL models. In the following, we adopt two conventional ZSL models as

examples.

3.3. Plug in Autoencoder Frameworks

Autoencoder has become a main stream framework for two reasons: 1) it

constrains both visual-semantic and the reverse embeddings to learn a optimal

projection matrix W ; 2) can straightly fit to deep models, e.g. GANs. Without

losing the generality, we adopt the earliest model SAE [14] in the example and

plug in our GPAC module in the loss function LI :

LS =‖XTW − (AB)T ‖2F + γ‖W (AB)−X‖2F

+ α‖A− S‖2F + β‖ATA− I‖2F ,
(2)

where, γ is the balancing coefficient, X = Xs, and B is the one-hot label vector

corresponding to X. By applying the derivative of LS with respect to W and

setting it to zero, then we can obtain,

∂LS
∂W

= 0⇔XXTW + γW (AB)(AB)T

= X(AB)T + γX(AB)T .

(3)
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Considering Â = XXT , B̂ = γ(AB)(AB)T , and Ĉ = X(AB)T+γX(AB)T ,

Eq. 3 gives the form in,

ÂW + WB̂ = Ĉ, (4)

and such Sylvester Equation can be solved in one line of implementation. Then,

the derivative of LS w.r.t. A can be calculated by

∂LS
∂A

=−W TXBT + ABBT + α(A− S) + 2β(AATA−A)

+ γ(W TWABBT −W TXBT )

=ABBT + αA + 2βAATA + γW TWABBT

− (W TXBT + αS + 2βA + γW TXBT ).

(5)

A can be effectively solved by iteratively updating with Stochastic Gradient

Descent (SGD)

a
(t)
ij =a

(t−1)
ij − η ∂LS

∂a
(t−1)
ij

= a
(t−1)
ij −∆ (6)

where, ∆ = η(ABBT +αA+2βAATA+γW TWABBT −(W TXBT +αS+

2βA+ γW TXBT ))ij , a
(t)
ij is the result of tth iteration in the row i and column

j of A, η is the learning rate, and all A in Eq. 6 is the abbreviation for A(t−1).

By setting η =
a
(t−1)
ij

(ABBT+αA+2βAATA+γWTWABBT )ij
, Eq. 6 can be modified as

a
(t)
ij =a

(t−1)
ij

(W TXBT + αS + 2βA + γW TXBT )ij
(ABBT + αA + 2βAATA + γW TWABBT )ij

. (7)

Since the attribute of each class should be nonnegative, we take the absolute

value of Eq. 7. The denominator and numerator of Eq. 7 are both nonnegative,155

thus the updated aij is also kept to be nonnegative. Furthermore, if one entry of

ai equals zero, which means this class does not have such property, the updated

ai will also have zero value in this entry. This is important that our method does

not change the absence/presence of an attribute, and just correct the values of

attributes. The detailed algorithm of SAE+GPAC is described in Alg. 1.160

3.4. Plug in Compatibility Models

Another widely adapted framework is based on compatibility functions,

among which ALE [1] is the earliest ZSL model that exploits a max-margin
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Algorithm 1: SAE+GPAC algorithm

Input :

The training data X, and its corresponding labels B and

attributes S;

The hyper-parameters α, β, γ;

The outer iterative number ITER and the inner iterative

number iter.

Output:

The learned projection matrix W , and the corrected

attributes A.

1 Initialize W with random value;

2 for K = 1→ ITER do

3 Update W with W = Sylvester(Â, B̂, Ĉ) ;

4 for k = 1→ iter do

5 Update A with

a
(t)
ij = a

(t−1)
ij

(WTXBT+αS+2βA+γWTXBT )ij
(ABBT+αA+2βAATA+γWTWABBT )ij

;

6 A = |A|;

7 end

8 S = A;

9 end

10 Return the learned W and A.
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strategy to learn a projection matrix from visual space to attribute space. Its

difference to traditional max margin method is to utilize an inner product of

attributes to replace the fixed margin value. By plugging in the GPAC module

gives ALE+GPAC function,

LA =
1

Ns

Ns∑
i=1

∑
j∈S\`(xi)

max(xTi W (aj − a`(xi)) + aTj a`(xi), 0)

+ α‖A− S‖2F + β‖ATA− I‖2F + γ‖W ‖2,1,

(8)

where, `(xi) represents for the class of xi. j ∈ S \ `(xi) means j is selected

from S except `(xi). ‖W ‖2,1 is the L2,1 norm, which can be represented as∑dx
i=1

√∑da
j=1 w

2
ij . Therefore, by fixing A, the derivative of LA with respect to

W is,

∂LA
∂W

=
1

Ns

Ns∑
i=1

∑
j∈S

1(xTi W (aj − a`(xi)) + aTj a`(xi) > 0)xi(aj − a`(xi))
T

+ 2γDW

=
1

Ns

Ns∑
i=1

∑
j∈S

1(xTi W (aj − a`(xi)) + aTj a`(xi) > 0)xia
T
j

− 1

Ns

Ns∑
i=1

∑
j∈S

1(xTi W (aj − a`(xi)) + aTj a`(xi) > 0)xia
T
`(xi)

+ 2γDW ,

(9)

where, D = diag([1/‖w1‖2, · · · , 1/‖wdx‖2]). 1(·) is the indicator function that

when the condition is satisfied the result is one, otherwise zero. Thus, W can

be updated with SGD,

W (t) = W (t−1) − η1
∂L

∂W
(t)
ij

= W (t−1) − η1(P 1− P2 + 2γDW ),

(10)

where, η1 is the learning rate, P1 = 1
Ns

∑Ns

i=1

∑
j∈S 1(xTi W (aj − a`(xi)) +

aTj a`(xi) > 0)xia
T
j , and P2 = 1

Ns

∑Ns

i=1

∑
j∈S 1(xTi W (aj−a`(xi))+aTj a`(xi) >

0)xia
T
`(xi)

. All the W in the second item of Eq. 10 is short for W (t).
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Since the derivative of A cannot be directly calculated, we split the first item

of Eq. 8 into two parts according to the appearance of aj . The loss function

LA can be represented as the following,

LA =
1

Ns
(

Ns\aj∑
i=1

∑
k∈S

max(xTi W (ak − a`(xi)) + aTk a`(xi), 0)

+

aj∑
i=1

∑
k∈S

max(xTi W (ak − aj) + aTk aj , 0))

+ α
∑
k∈S

‖ak − sk‖2 + β‖[a1, · · · ,ac]T [a1, · · · ,ac]− I‖2F .

(11)

where,
∑Ns\aj

i=1 means all the training samples except those belong to the aj165

class, and
∑aj

i=1 represents for the samples only belong to the aj class.

Similar as Eq. 9, by fixing W , the derivative of L with respect to each seen

class aj is,

∂Laj

∂a
(s)
j

=
1

Ns

Ns\aj∑
i=1

1(xTi W (aj − a`(xi)) + aTj a`(xi) > 0)

(W Txi + a`(xi))

− 1

Ns

aj∑
i=1

∑
k∈S\j

1(xTi W (ak − aj) + aTk aj > 0)W Txi

+
1

Ns

aj∑
i=1

∑
k∈S\j

1(xTi W (ak − aj) + aTk aj > 0)ak

+ 2α(aj − sj) + 4β(AAT − I)aj .

(12)

Since the unseen classes are independent of the first item in Eq. 8, the

derivative of LA with respect to each unseen class aj is,

∂Laj

∂a
(u)
j

= 2α(aj − sj) + 4β(AAT − I)aj . (13)

Similar as that in Eq. 10, aj can also be implemented with SGD as,

a
(t)
ij = a

(t−1)
ij − η2

∂Laj

∂a
(t−1)
ij

. (14)

By setting η2 =
a
(t−1)
ij

(q1+q3+2αaj+4βAATaj)i
, where q1 = 1

Ns

∑Ns\aj

i=1 1(xTi W (aj−

a`(xi)) + aTj a`(xi) > 0)(W Txi + a`(xi)) and q3 =
∑aj

i=1

∑
k∈S\j 1(xTi W (ak −
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aj) + aTk aj > 0)ak, Eq. 14 for the seen classes can be further represented as,

a
(t)
ij = a

(t−1)
ij

(q2 + 2αsj + 4βaj)i
(q1 + q3 + 2αaj + 4βAATaj)i

, (15)

where q2 = 1
Ns

∑aj

i=1

∑
k∈S\j 1(xTi W (ak−aj)+aTk aj > 0)W Txi. In addition,

it is easy to compute the update function for the unseen classes,

a
(t)
ij = a

(t−1)
ij

(αsj + 2βaj)i
(αaj + 2βAATaj)i

. (16)

Similar as that in SAE to keep the attribute nonnegative, we also apply the

same operation a
(t)
ij = |a(t)ij | on Eq. 15 and Eq. 16. Furthermore, from Eq. 15

and Eq. 16, it is obvious to discover that when a
(t−1)
ij equals zero, a

(t)
ij is kept

zero during the whole iteration, which guarantees that the existence of attribute170

will not be changed. The process of the algorithm for ALE+GPAC can be found

in Alg. 2.

3.5. Discussion

In this subsection, we discuss the issue that why we apply the operation

of making absolute value of A during iteration. Since it is known that the175

attribute has its realistic meaning, it is surely nonnegative. In Eq. 7, Eq. 15

and Eq. 16, if the numerators and denominators are nonnegative, the result

of updated A is nonnegative, which need us to guarantee W is nonnegative.

The nonnegative W can be realized by applying wij
(P2)ij

(P1+2γDW )ij
. However,

since both nonnegative constraints of W and A can cause large concussion180

for loss value and finally lead to non-convergence, shown in Fig. 3 (a), we only

constrain A to be nonnegative. In Fig. 3 (b), we show that the value of A (using

‖A(t) −A(t−1)‖2F ) can well converge without the nonnegative constraint of W .

In addition, we do not utilize the closed-form solution for W in ALE+GPAC,

because the computational complexity of it can reach O(N ×C × dx× da) for a185

single iteration, we use mini-batch SGD to reduce the computational complexity.
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Algorithm 2: ALE+GPAC algorithm

Input :

The training data X, and its corresponding attributes S;

The hyper-parameters α, β, γ, and the mini-batch size t;

The iterative number ITER.

Output:

The learned projection matrix W , and the corrected

attributes A.

1 Initialize W with random value;

2 for K = 1→ ITER do

3 Randomly choose t samples as a mini-batch X̂ from the training

set X;

4 Update W with W (t) = W (t−1) − η1(P 1− P2 + 2γDW ) ;

5 for κ = 1→ number of seen classes do

6 Update aκ with a
(t)
ij = a

(t−1)
ij

(q2+2αsj+4βaj)i
(q1+q3+2αaj+4βAATaj)i

;

7 end

8 for κ = 1→ number of unseen classes do

9 Update aκ with a
(t)
ij = a

(t−1)
ij

(αsj+2βaj)i
(αaj+2βAATaj)i

;

10 end

11 A = |A|;

12 end

14
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Figure 3: The convergence curves of loss function and A on AWA1, where ‘NW’ means

Nonnegative W .

4. Experiments

4.1. Datasets and settings

Datasets: To verify the effectiveness of our approach, we conduct experi-

ments on five popular datasets, including SUN attribute (SUN) [25], Caltech-190

UCSD Birds-200-2011 (CUB-200) [30], Animal with Attribute 1 (AWA1) [15],

Animal with Attribute 2 (AWA2) [34] and a Pascal & Yahoo attribute (aPY)

[6]. The dataset splits for training and testing follow that used in [34].

Settings: The extracted features with ResNet [9] are exploited as our train-

ing data, and the same expert-annotate attributes employed in the evaluation195

in [34] are also utilized. Additionally, there are three hyper-parameters α, β, γ

and learning rate η1 in our method. Among these four hyper-parameters, we set

γ = 1 × 10−3 and η1 = 0.1 for ALE+GPAC. Besides, due to the fact that dif-

ferent hyper-parameters can lead to different performance on each dataset, we

search our optimal parameters for α and β by employing a cross-validation strat-200

egy. To be specific, we randomly select 20% of the seen classes as validational

unseen classes, and the parameters of best average performance of 5 executions

are selected as the optimal hyper-parameters for each dataset. The source codes

of all the three extensions can be found in the supplementary material.

4.2. Results on GZSL205

Since our method focuses on the more realistic GZSL setting, the experi-

ments are only conducted on GZSL. We follow the metrics proposed by Xian
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Table 1: Comparison with state-of-the-art baselines on GZSL setting. ’-’ means not reported

or not available.

SUN CUB AWA1 AWA2 aPY

Method ts tr H ts tr H ts tr H ts tr H ts tr H

DAP [15] 4.2 25.1 7.5 1.7 67.9 3.3 0.0 88.7 0.0 0.0 84.7 0.0 4.8 78.3 9.0

CONSE [24] 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0

SSE [40] 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 8.1 82.5 14.8 0.2 78.9 0.4

LATEM [33] 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 0.1 73.0 0.2

CVAE-ZSL [23] - - 26.7 - - 34.5 - - 47.2 - - - - - -

CDL [13] 21.5 34.7 26.5 23.5 55.2 32.9 28.1 73.5 40.6 - - - 19.8 48.6 28.1

GFZSL [28] 0.0 39.6 0.0 0.0 45.7 0.0 1.8 80.3 3.5 2.5 80.1 4.8 0.0 83.3 0.0

LAGO [4] 18.8 33.1 23.9 21.8 73.6 33.7 23.8 67.0 35.1 - - - - - -

PSEUDO [19] 19.0 32.7 24.0 23.0 51.6 31.8 22.4 80.6 35.1 - - - 15.4 71.3 25.4

KERNEL [36] 21.0 31.0 25.1 24.2 63.9 35.1 18.3 79.3 29.8 18.9 82.7 30.8 11.9 76.3 20.5

TVN [39] 18.2 28.9 22.3 21.6 47.5 29.7 18.2 87.5 30.2 - - - 8.8 59.1 15.4

VZSL [29] 15.2 23.8 18.6 17.1 37.1 23.8 22.3 77.5 34.6 - - - 8.4 75.5 15.1

RELNET [27] 11.1 20.0 14.3 14.0 35.7 20.1 22.9 76.9 35.3 18.6 87.3 30.6 11.5 60.9 19.4

PSR [2] 20.8 37.2 26.7 24.6 54.3 33.9 - - - 20.7 73.8 32.3 13.5 51.4 21.4

GAFE [18] 19.6 31.9 24.3 22.5 52.1 31.4 25.5 76.6 38.2 36.8 78.3 40.0 15.8 68.1 25.7

MSEA 12.3 23.1 16.1 11.1 54.0 18.4 1.9 86.1 3.7 2.2 88.5 4.3 1.5 83.7 2.9

MSEA+GPAC 33.6 23.7 27.8 34.4 37.5 35.9 36.3 45.2 40.3 33.0 48.0 39.1 23.7 45.9 31.3

ALE [1] 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 9.0 78.1 16.1

ALE+GPAC 23.5 31.3 26.8 30.0 47.5 36.8 41.4 60.4 49.1 37.0 77.5 50.1 19.4 59.4 29.3

SAE [14] 17.1 28.1 21.3 17.4 50.7 25.9 13.9 74.8 23.5 14.3 79.0 24.3 6.7 59.6 12.1

SAE+GPAC 33.1 21.9 26.3 33.4 39.0 36.0 36.1 45.4 40.2 31.1 52.6 39.1 20.0 50.3 28.6
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Figure 4: The original and the corrected attributes (ALE+GPAC) on AWA1, the upper figure

is ‘killer whale’ from the seen classes, and the bottom one is ’blue whale’ from the unseen

classes.

et al. in [34], which uses the test unseen accuracy (ts), test seen accuracy (tr),

and harmonic mean (H) to evaluate the performance.

In the first section of this paper, we have claimed that our GPAC can be

effectively extended to many linear methods, so here we additionally implement

the Mean Square Error of Attribute (MSEA) and apply our GPAC on it, and

it can be represented as,

LM =‖XTW − (AB)T ‖2F + γ‖W ‖2,1

+ α‖A− S‖2F + β‖ATA− I‖2F .
(17)

The iterative result of Eq. 17 can be solved similar as that in SAE+GPAC,
W =(XXT + γD)−1XABT

aij =aij |
(W TXBT + αS + 2βA)ij

(ABBT + αA + 2βAATA)ij
|.
, (18)

where, D is same as that in Eq. 9.210

We compare our method with 17 recently proposed methods, including DAP

[15], CONSE [24], SSE [40], LATEM [33], ALE [1], SAE [14], CVAE-ZSL [23],

PRESERVE [3], CDL [13], GFZSL [28], LAGO [4], PSEUDO [19], KERNEL

[36], TVN [39], VZSL [29], RELNET [27], PSR [2], and GAFE [18], and all the

results on five datasets are recorded in Tab. 1. From this table, we can clearly215
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find that the extension of GPAC on MSEA and ALE can outperform all the

listed state-of-the-art methods, especially on the datasets of AWA1, AWA2 and

aPY. Concretely, MSEA extended our by GPAC can reach the best performance

on SUN and aPY, and exceed 1.0% and 2.0% respectively compared to the

second best method ALE+GPAC, which is also our GPAC based method. On220

other three datasets, our GPAC based ALE can achieve the best performance,

and obtain 0.8%, 1.9%, and 11.0% improvement respectively in each dataset

compared to the second best methods. In addition, from the bottom part of

the Tab. 1, it is clearly observed that after the extension of our GPAC, all the

methods including MSEA, ALE, and SAE can get improved significantly.225
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Figure 5: The effects of cross learning on AWA1.

4.3. Detailed Analysis

Visualization in Attribute Space. The objective of our GPAC in at-

tribute space is to disperse all classes and make them more discriminative. Thus,

in order to have a more intuitive understanding, we employ t-SNE [21] on AWA1

to illustrate the distributions of samples in this space. Specifically, we choose230

representative class pairs whose cosine similarities of prototypes in original at-
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Figure 6: The distribution of some selected similar classes in AWA1.

tribute space are about 0.8, i.e., they are very similar and hard to be classified.

After that, we finally get five pairs, including eight seen classes and two unseen

classes, which can be found in the legend of Fig. 6. In Fig. 6, we illustrate the

distribution of the samples from the selected classes with original ALE model235

and our ALE+GPAC. From this figure, it can be clearly seen that samples of

‘Killer Whale (Seen) and ‘Blue Whale (Unseen) are overlapped in original ALE

model, while our GPAC+ALE can separate them effectively. This phenomenon

can also be found in seen-seen pairs, e.g., ‘Persian Cat and ‘Siamese Cat, which

indicates our GPAC can perform well not only in the seen classes, but also in240

the unseen classes.

Attribute Correction. Since our GPAC focuses on the attribute correc-

tion, it is necessary to show what the corrected attribute is after the optimiza-

tion. We select a pair of classes, ‘killer whale’ from the seen classes and ‘blue

whale’ from the unseen classes, which are hard to be classified in original ALE245

model (shown in Fig. 6), and illustrate them with bar figures in Fig. 4. There

are two phenomena worthy of attention. The first is that when the original

attribute items equal zero, the corrected attribute items also equal zero, which

indicates that our GPAC does not change the existence of the properties for

each class. For example, when the class ’killer whale’ does not have the prop-250
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erty ‘stripe’, the correct attribute also does not include it, which is reasonable

for realistic world. The second phenomenon is when the two attribute values

are similar for the two classes, the correction of GPAC is to make them change

to opposite directions or vary with different amplitudes. For example, the 19th

item and the 74th item have different change directions, which can guarantee255

the corrected attributes are more discriminative.

0 790 83 0.790.83

0 840.84

(a) Original attributes

0 690 80 0.690.80

0 790.79

(b) Corrected attributes

Figure 7: The cosine similarities of class attributes on AWA1.

Similarity Check. Since it is known that the more different the class at-

tributes are from each other, the easier the input samples can be classified, we

further illustrate the change of similarities of class attributes in this section. We

calculate the cosine similarity of each class attribute on AWA1, and visualize260

the similarity matrix in Fig. 7. Specifically, vectors from 0# to 40# in matrix

are seen classes prototypes and the rest belongs to the unseen classes. Fig. 7(a)

demonstrates the similarity of original attributes, while Fig. 7(b) illustrates

that of the corrected attributes learned with ALE+GPAC. From the compar-

ison of two figures, we can obviously found that the corrected attributes are265

much more discriminative from each other, which demonstrates the effective-

ness of our model. Noted that not only seen classes become more discriminative

against seen, seen against unseen, and unseen against unseen also become more

discriminative. For example, we pick out three pairs, including the similarities of
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‘Killer Whale’ (Seen) and ‘Hamper-back Whale’ (Seen), ‘Killer Whale’ (Seen)270

and ‘Blue Whale’ (Unseen), ‘Walrus’ (Unseen) and ‘Seal’ (Unseen). These

three pairs are very similar under the original attributes, around 0.8 in cosine

similarity, which makes them hard to be classified, while the similarities of the

corrected attributes are decreased, which shows the superiority of our GPAC.

Cross Learning. To verify whether the corrected attributes optimized with275

a single method are suitable for other methods, we conduct three cross learn-

ing experiments on AWA1, including the experiment with corrected attributes

learned with MSEA+GPAC on traditional SAE and ALE, the experiments with

corrected attributes learned with SAE+GPAC on traditional MSEA and ALE,

and the experiments with corrected attributes learned with ALE+GPAC on tra-280

ditional MSEA and SAE. The results are recorded in Fig. 5. From this figure,

it can be clearly discovered that with the corrected attributes all these methods

are significantly improved, which further demonstrates the effectiveness of the

proposed method.

5. Conclusion285

In this paper, we proposed a novel and effective GPAC module to accom-

modate conventional ZSL models in GZSL tasks. GPAC corrected the original

expert-annotated attributes while preserving the realistic meanings of them. A

similarity retention and an orthogonal constraints were introduced to make the

corrected attribute make them more discriminative. The paper demonstrated290

two examples of plugging the GPAC module into typical ZSL frameworks, and

an iterative optimization strategy was employed. Extensive experiments on

five popular datasets were conducted and the results showed that the proposed

GPAC can not only improve the traditional ZSL methods up to a state-of-the-

art level in GZSL. Most importantly, detailed analysis on corrected attributes295

further validated the effectiveness of our GPAC. This paper has provided two

good practices for future work. One is to seek an unified way to merge plug-in

modules and models. The second is how to properly incorporate prior human
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knowledge without losing the interpretability and eventually can give feedback

and contribute to knowledge-level discovery and correction.300

Acknowledgement

This work was supported in part by National Natural Science Foundation

of China (No.61872187, No.61929104), and in part by Medical Research Coun-

cil (MRC) Innovation Fellowship (MR/S003916/1), and in part by the “111”

Program (No.B13022).305

References

[1] Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C., 2013. Label-

embedding for attribute-based classification, in: Proceedings of the IEEE

Conference on Computer Visiona and Pattern Recognition.

[2] Annadani, Y., Biswas, S., 2018a. Preserving semantic relations for zero-shot310

learning, in: Proceedings of the IEEE Conference on Computer Visiona and

Pattern Recognition.

[3] Annadani, Y., Biswas, S., 2018b. Preserving semantic relations for zero-

shot learning, in: Proceedings of the IEEE Conference on Computer Vi-

siona and Pattern Recognition.315

[4] Atzmon, Y., Chechik, G., 2018. Probabilitic and-or attribute grouping for

zero-shot learning, in: The Conference on Uncertainty in Artificial Intelli-

gence.

[5] Chao, W.L., Changpinyo, S., Gong, B., sha, F., 2016. An empirical study

and analysis of generalized zero-shot learning for object recognition in the320

wild, in: European Conference on Computer Vision.

[6] Farhadi, A., Endres, I., Hoiem, D., Forsyth, D., 2009. Describing objects

by their attributes, in: Proceedings of the IEEE Conference on Computer

Visiona and Pattern Recognition.

22



[7] Geng, C., Tao, L., Chen, S., 2020. Guided cnn for generalized zero-shot325

and open-set recognition using visual and semantic prototypes. Pattern

Recognition 102, 107263.

[8] Guo, Y., Ding, G., Han, J., Tang, S., 2018. Zero-shot learning with at-

tribute selection, in: AAAI Conference on Artificial Intelligence, pp. 6870–

6877.330

[9] He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image

recognition, in: Proceedings of the IEEE Conference on Computer Visiona

and Pattern Recognition, pp. 770–778.

[10] Huang, H., Wang, C., Yu, P.S., Wang, C.D., 2019. Generative dual ad-

versarial network for generalized zero-shot learning, in: Proceedings of the335

IEEE Conference on Computer Visiona and Pattern Recognition, pp. 801–

810.

[11] Huang, L., Ji, H., Cho, K., Dagan, I., Riedel, S., Voss, C.R., 2018. Zero-shot

transfer learning for event extraction, in: Annual Meeting of the Associa-

tion for Computational Linguistics, pp. 2160–2170.340

[12] Jayaraman, D., Grauman, K., 2014. Zero-shot recognition with unreliable

attributes, in: Advances in Neural Information Processing Systems.

[13] Jiang, H., Wang, R., Shan, S., Chen, X., 2018. Learning class prototypes

via structure alignment for zero-shot recognition, in: European Conference

on Computer Vision, pp. 118–134.345

[14] Kodirov, E., Xiang, T., Gong, S., 2017. Semantic autoencoder for zero-shot

learning, in: Proceedings of the IEEE Conference on Computer Visiona and

Pattern Recognition.

[15] Lampert, C.H., Nickisch, H., Harmeling, S., 2009. Learning to detect un-

seen object classes by between-class attribute transfer, in: Proceedings of350

the IEEE Conference on Computer Visiona and Pattern Recognition.

23



[16] Li, Z., Yao, L., Chang, X., Zhan, K., Sun, J., Zhang, H., 2019. Zero-

shot event detection via event-adaptive concept relevance mining. Pattern

Recognition 88, 595 – 603.

[17] Liu, S., Long, M., Wang, J., Jordan, M.I., 2018. Generalized zero-shot355

learning with deep calibration network, in: Advances in Neural Information

Processing Systems 31, pp. 2005–2015.

[18] Liu, Y., Xie, D., Gao, Q., Han, J., Wang, S., Gao, X., 2019. Graph and au-

toencoder based feature extraction for zero-shot learning, in: Proceedings

of the Twenty-Eighth International Joint Conference on Artificial Intelli-360

gence, pp. 3038–3044.

[19] Long, T., Xu, X., Li, Y., Shen, F., Song, J., Shen, H., 2018. Pseudo

transfer with marginalized corrupted attribute for zero-shot learning, in:

ACM Conference on Multimedia, pp. 1802–1810.

[20] Long, Y., Liu, L., Shao, L., Shen, F., Ding, G., Han, J., 2017. From zero-365

shot learning to conventional supervised classification: Unseen visual data

synthesis, in: Proceedings of the IEEE Conference on Computer Visiona

and Pattern Recognition, pp. 1627–1636.

[21] Maaten, L.v.d., Hinton, G., 2008. Visualizing data using t-sne. Journal of

Machine Learning Research 9, 2579–2605.370

[22] Mikolov, T., Chen, K., Corrado, G.S., Dean, J., 2013. Efficient estimation

of word representations in vector space, in: International Conference on

Learning Representations.

[23] Mishra, A., Reddy, S.K., Mittal, A., Murthy, H.A., 2018. A generative

model for zero shot learning using conditional variational autoencoders,375

in: Proceedings of the IEEE Conference on Computer Visiona and Pattern

Recognition.

[24] Norouzi, M., Mikolov, T., Bengio, S., Singer, Y., Shlens, J., Frome, A.,

Corrado, G.S., Dean, J., 2014. Zero-shot learning by convex combination

24



of semantic embeddings, in: International Conference on Learning Repre-380

sentations.

[25] Patterson, G., Xu, C., Su, H., Hays, J., 2014. The sun attribute database:

Beyond categories for deeper scene understanding. International Journal

of Computer Vision 108, 59–81.

[26] Schonfeld, E., Ebrahimi, S., Sinha, S., Darrell, T., Akata, Z., 2019. Gen-385

eralized zero-and few-shot learning via aligned variational autoencoders,

in: Proceedings of the IEEE Conference on Computer Visiona and Pattern

Recognition, pp. 8247–8255.

[27] Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.,

2018. Learning to compare: Relation network for few-shot learning, in:390

Proceedings of the IEEE Conference on Computer Visiona and Pattern

Recognition.

[28] Verma, V.K., Rai, P., 2017. A simple exponential family framework for

zero-shot learning, in: The European Conference on Machine Learning and

Principles and Practice of Knowledge Discovery in Databases, Springer. pp.395

792–808.

[29] Wang, W., Pu, Y., Verma, V.K., Fan, K., Zhang, Y., Chen, C., Rai, P.,

Carin, L., 2018. Zero-shot learning via class-conditioned deep generative

models, in: AAAI Conference on Artificial Intelligence.

[30] Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S.,400

Perona, P., 2010. Caltech-UCSD birds 200. Technical Report. California

Institute of Technology.

[31] Wu, F., Jing, X., Dong, X., Hu, R., Yue, D., Wang, L., Ji, Y., Wang,

R., Chen, G., 2020a. Intraspectrum discrimination and interspectrum cor-

relation analysis deep network for multispectral face recognition. IEEE405

Transactions on Cybernetics 50, 1009–1022.

25



[32] Wu, F., Jing, X.Y., Wu, Z., Ji, Y., Dong, X., Luo, X., Huang, Q., Wang,

R., 2020b. Modality-specific and shared generative adversarial network for

cross-modal retrieval. Pattern Recognition 104, 107335.

[33] Xian, Y., Akata, Z., Sharma, G., Nguyen, Q., Hein, M., Schiele, B., 2016.410

Latent embeddings for zero-shot classification, in: Proceedings of the IEEE

Conference on Computer Visiona and Pattern Recognition.

[34] Xian, Y., Lampert, C.H., Schiele, B., Akata, Z., 2018. Zero-shot learning-a

comprehensive evaluation of the good, the bad and the ugly. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 41, 2251–2265.415

[35] Xian, Y., Schiele, B., Akata, Z., 2017. Zero-shot learning-the good, the

bad and the ugly, in: Proceedings of the IEEE Conference on Computer

Visiona and Pattern Recognition.

[36] Zhang, H., Koniusz, P., 2018. Zero-shot kernel learning, in: Proceedings of

the IEEE Conference on Computer Visiona and Pattern Recognition, pp.420

7670–7679.

[37] Zhang, H., Liu, J., Yao, Y., Long, Y., 2020a. Pseudo distribution on unseen

classes for generalized zero shot learning. Pattern Recognition Letters 135,

451 – 458.

[38] Zhang, H., Liu, L., Long, Y., Zhang, Z., Shao, L., 2020b. Deep transduc-425

tive network for generalized zero shot learning. Pattern Recognition 105,

107370.

[39] Zhang, H., Long, Y., Guan, Y., Shao, L., 2019. Triple verification network

for generalized zero-shot learning. IEEE Transactions on Image Processing

28, 506–517.430

[40] Zhang, Z., Saligrama, V., 2015. Zero-shot learning via semantic similarity

embedding, in: International Conference on Computer Vision.

26


	Introduction
	Related Works
	Zero Shot Learning
	Generalized Zero Shot Learning

	Methodology
	Problem Definition
	Attribute Correction
	Plug in Autoencoder Frameworks
	Plug in Compatibility Models
	Discussion

	Experiments
	Datasets and settings
	Results on GZSL
	Detailed Analysis

	Conclusion

