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Abstract

Spectral clustering became a popular choice for data clustering for its
ability of uncovering clusters of different shapes. However, it is not always
preferable over other clustering methods due to its computational demands.
One of the effective ways to bypass these computational demands is to per-
form spectral clustering on a subset of points (data representatives) then
generalize the clustering outcome, this is known as approximate spectral
clustering (ASC). ASC uses sampling or quantization to select data repre-
sentatives. This makes it vulnerable to 1) performance inconsistency (since
these methods have a random step either in initialization or training), 2)
local statistics loss (because the pairwise similarities are extracted from data
representatives instead of data points). We proposed a refined version of k-
nearest neighbor graph, in which we keep data points and aggressively reduce
number of edges for computational efficiency. Local statistics were exploited
to keep the edges that do not violate the intra-cluster distances and nul-
lify all other edges in the k-nearest neighbor graph. We also introduced an
optional step to automatically select the number of clusters C. The pro-
posed method was tested on synthetic and real datasets. Compared to ASC
methods, the proposed method delivered a consistent performance despite
significant reduction of edges.
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1. Introduction

Spectral clustering gains popularity due to its ability of uncovering clus-

ters with non-convex shapes. It uses the spectrum of pairwise similarity

matrices to map data points to a space where they can be easily sepa-

rated [1, 2, 3, 4]. Spectral clustering has been used in image segmentation

[5, 6], remote sensing image analysis [7, 8], and detecting clusters in networks

[9, 10, 11, 12]. Despite its elegance in uncovering clusters, spectral clustering

comes with a heavy computational price. Decomposing the pairwise similar-

ity matrix requires O(N3) for N data points. Spectral clustering is infeasible

for applications with large N .

For the graph G(V,E) represented by its affinity matrix A, reducing the

size of A means removing some vertices in V , whereas making A sparser

means removing edges. This is the motivation of approximate spectral clus-

tering (ASC) [6, 7, 8, 13, 14, 15], which adds two steps to the original algo-

rithm of spectral clustering. First, it places m prototypes in the data space

where m� N . Then, spectral clustering is carried out on m prototypes and

uses the initial assignments to generalize the outcome. The m prototypes

are usually placed via vector quantization methods (e.g., k-means and self-

organizing maps). Despite being a popular choice for approximate spectral

clustering, vector quantization could converge badly, resulting in ill represen-

tation of data points due to randomness in initialization and/or training.

Fig. 1 illustrates two graphs by Zelnik-Manor and Perona [16], where

approximate spectral clustering graphs were confused by the variation in

local statistics. Generally, one can identify three deficiencies related to ASC

via vector quantization: 1) these methods have a random selection step either
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progressively and monitor local statistics to stop linking when links appear outside the local neighborhood of 

points. Then, we used mutual k-nearest neighbor graph [3] to filter edges that lack mutual agreement of the pair 

of points. The experiments show the proposed method outperforming ASC via vector quantization. 

This paper is outlined as follows: in the next section we introduce spectral clustering. Also, we reviewed 

different approaches in the literature to construct a graph. In section 3, we present our approach for refining k-

nn graph and automatically selecting the number of clusters C. In section 4, experiments were discussed. 

 

  

 

 
Original data 

 

    

    
Graphs by SOM and 
weighted by local σ. 

Graphs by SOM and 
weighted by CONN. 

Graphs by k-means and 
weighted by CONN. 

Proposed graph. 

Fig. 1. Running approximate spectral clustering (ASC) via vector quantization on synthetic data (best viewed in color). 

Fig. 1. Running approximate spectral clustering (ASC) via vector quantization on syn-
thetic data (best viewed in color).

in initialization or training which affects the consistency of clustering, 2) the

obtained m prototypes provide a global overview of the data leaving out

local information that could be crucial for clustering 3) vector quantization

methods have to accommodate noisy data points as part of their training.

Considering aforementioned deficiencies, we proposed a graph for spectral

clustering G = (V,E∗) where we kept the same number of vertices V and

find the most important subset of edges E∗ ⊂ E. Our goal is to create

a graph with less number of edges without compromising on the clustering
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accuracy. Hence, using a graph with edges less than E∗ would negatively

impact the clustering accuracy.

To get E∗, we used a set of refinement stages that are computation-

ally inexpensive. It starts by linking data points to their nearest neighbors

progressively and monitor local statistics to stop linking when links appear

outside the local neighborhood of points. Then, we used mutual k-nearest

neighbor graph [3] to filter edges that lack mutual agreement of the pair of

points. The experiments show the proposed method outperforming ASC via

vector quantization.

This paper is outlined as follows: in the next section we introduce spec-

tral clustering. Also, we reviewed different approaches in the literature to

construct a graph. In section 3, we present our approach for refining k-nn

graph and automatically selecting the number of clusters C. In section 4,

experiments were discussed.

2. Spectral clustering (SC)

The graph G(V,E) connecting data points and its digital representation

the affinity matrix A are the core components of spectral clustering. This

clustering scheme is a relaxation of the normalized cut problem (Ncut) in-

troduced by Shi and Malik [1]. Their contribution made progress on the

minimum cut (Mincut) defined as:

cut
(
B, B̄

)
=

∑
i∈B,j∈B̄

Aij , (1)
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where B ⊂ V, B̄ is the complement of B, and Aij is the similarity score

between the nodes i and j. However, Mincut tends to cut isolated sets

rather than significant partitions since it increases with the number of edges

[1, 3]. Consequently, Ncut was introduced as:

Ncut
(
B, B̄

)
=

cut
(
B, B̄

)
assoc (B, V )

+
cut
(
B, B̄

)
assoc

(
B̄, V

) . (2)

It penalizes the cut cost by the total connections from the nodes in B to

all nodes V in the graph. Let y be the exact solution of Ncut
(
B, B̄

)
, with

yi = 1 if i ε B, and −1 otherwise. Then Ncut
(
B, B̄

)
can be optimized as:

min
x
Ncut (x) = min

y

yT (D − A) y

yTDy
, (3)

where D and A are the degree and affinity matrices respectively.

To exactly solve Ncut, we have to look for two subsets with strong intra-

connections and relatively weak weights between them, which was shown to

be an NP-complete problem by Shi and Malik [1]. However, by relaxing y to

take real values it was shown by Shi and Malik [17] that equation 3 can be

minimized by solving the generalized eigenvalue system:

(D − A) y = λDy . (4)

The second smallest eigenvalue λL of the graph Laplacian L = D − A and

its corresponding eigenvector vL, provide an approximation for solving Ncut
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[3, 18]. When there is a partitioning between B and B̄ such that:

vLi =

α, i ∈ B

β, i ∈ B̄
, (5)

Then B and B̄ becomes the optimal Ncut with a value of Ncut
(
B, B̄

)
= λL

[18]. vL is used to bipartition the graph then the following eigenvectors are

used to partition the graph further.

2.1. SC grouping algorithm

Clustering through graph Laplacian eigenvectors could be done iteratively

(i.e., ordered by eigenvalues) or by constructing an embedding space using

top eigenvectors. The latter approach is more convenient and a well-known

method for embedding space clustering was introduced by Ng, Jordan and

Weiss [2]. They proposed a symmetric graph Laplacian Lsym = D−1/2AD−1/2

where D and A are degree and similarity matrices respectively. Lsym top

eigenvectors constitute an embedding space in which points that are strongly

connected will fall close to each other making clusters detectable by k-means.

2.2. Graph construction

When it comes to spectral clustering, it is all about quantifying simi-

larities. Ideally, points in the same cluster are linked by large weights so

they can fall close in the embedding space. A näıve approach of assigning

weights would be through Euclidean distance. However, this is not a prac-

tical choice, since it only considers first-order relationships. In first-order

relationships edges are drawn based on information from pair of points only.

A more practical approach would be considering second-order relationships
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where edges are drawn based on information from the neighbors. In the

following subsections, we will go through some of the popular methods to

construct a graph whose similarity matrix is fed into spectral clustering.

2.2.1. Conventional graphs

Conventional choices of constructing a graph include k-nearest neighbor

graph and ε-neighborhood graph. These graphs use first-order relationships.

In nearest neighbor graph, each point is linked to k points of its nearest

neighbors. While in ε-neighborhood graph, each point becomes a center of

a sphere of radius ε and link with all points inside that sphere. These are

straightforward approaches for constructing a graph, but their reliance on

first-order relationships and hyperparameters limit their usability. Some re-

strictions could be applied to boost their performance. For example, connect

with k-neighbors if they are closer than a threshold distance. Interested

reader is referred to section 2.2 in [3] and Appendix D in [19].

2.2.2. Approximate graphs

Approximate graphs use vector quantization method to construct a graph

using a reduced set of prototypes. These methods can be classified into

two categories: 1) methods that only places prototypes in the feature space

such as k-means [12, 20], 2) methods that are capable of placing prototypes

and connecting them by edges (self-organizing map [11, 21] and neural gas

[22, 23]). k-means attempts to minimize the sum of squared distances be-

tween points and their closest prototypes. Self-organizing map (SOM) uses a

predefined lattice that connects prototypes. During SOM training, a winning

prototype would pull its neighbors in the lattice towards the selected data
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point. Neural gas (NG) was an improvement over SOM since it links proto-

types based on their location on the feature space not on the lattice. During

NG training, the winning prototype would link to its closest neighbor, and

that edge is allowed to age and “die” if it is not updated again. Both SOM

and NG can produce a graph with less edges and vertices making spectral

clustering computationally efficient.

Once the vector quantization training finishes, pairwise similarities could

be set as: 1) a prototype to prototype similarity (approximate graph [8, 14]))

or 2) a prototype to data point similarity (anchor graph [24, 25]). The former

was used as a benchmark in experiments due to its a larger presence in the

literature. Connectivity matrix (CONN) [14] defines the similarity for a pair

of prototypes according to the induced Delaunay triangulation [23] which

links the pair if there exists a data point that selects them as first and second

best matching units (BMUs). When such a point does not exist, the pair of

prototypes are not linked which makes CONN capable of producing sparse

graphs. Growing neural gas (GNG) was used in [6] as approximation graph.

GNG applies the same training as NG, but in an incremental manner, where

prototypes introduced to bridge the gaps during training. A comparison

study [15] discussed different approximate graphs and how to assign their

weights using local scaling [16] or CONN [8, 14].

2.2.3. Proximity graphs

In proximity graphs, a pair of points are linked if they satisfy a predefined

condition. This makes them use second-order relationships since the linking

decision is based on neighbors. In [26], that condition was if the neighborhood

between pair of points is empty from any other point, then the pair should be
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linked. This type of graphs is known as empty region graphs (ERGs). ERGs

rely on β parameter to identify the neighborhood, that should be empty, to

link the pair with an edge. Edges in the graph were locally scaled using

similarity metric in [16] to achieve accurate clustering. A more sophisticated

condition for the empty region could be parameter free. Inkaya et al. intro-

duced neighborhood construction NC algorithm [27]. It starts by assigning

direct neighbors as core neighbors and indirectly connects a point to other

points through its core neighbors. Then it tracks the density between each

pair, a pair having a density zero represents core neighbors. Once each point

has a list of neighbors, the method tests the mutuality between neighbors’

lists, and drops the points lacking mutual agreement. Drawback of NC in-

clude isolated vertices, subgraphs, and asymmetric similarity matrix. This

was rectified in [28], where additional steps were proposed to achieve symmet-

ric similarity matrix. An undirected graph was constructed using NC, and if

its connected components is less than the desired number of clusters C, edges

were introduced between nearest points to satisfy the condition. Proximity

graphs are capable of capturing underlying shape of the data. However, they

came with a heavy computational price or the need for a hyperparameter.

Density calculation alone requires O(n3) [27].

2.2.4. Constrained graphs

Constrained graphs require special types of constraints prior to data link-

age. These constraints are must-link ML and cannot-link CL to force link or

unlink of data points regardless of their location in the feature space. Au-

thors of [29] found that constraints are limited to a small number of points

which is not very useful for clustering. They introduced an affinity propaga-
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tion method where points are linked not only based on their affinity but with

evaluation of nearby constraints. This makes a greater impact of constraints

to improve clustering. Another approach introduced by Li, Liu and Tang [30].

Instead of applying the constraints to the similarity matrix, they were applied

to the eigenvectors constituting the embedding space. In that space must-

link points should be close to each other and cannot-link points should be far

apart. The authors created a measure of “good representation” that should

hold the minimum cost when optimized. This method has a computational

advantage over applying constraints to the similarity matrix. A separation

of constrained graphs was proposed in [31]. Must-link graph and cannot-link

graph were created, and bi-objective graph optimization employed instead

of eigen-decomposition. It is clear that constraining the graph created from

data points would get better clustering results. However, this comes at a

price of fundamentally changing the problem into semi-supervised instead of

unsupervised. Constraints are usually created from the ground truth.

3. Refined k-nearest neighbor graph for Spectral clustering

From the previous overview, it can be noticed that there is no graph selec-

tion that works for different sets of data. Every method has to compromise

at some stage, but we believe that local statistics between data points rep-

resent clustering information and should not be compromised. The ultimate

goal of spectral clustering is to detect non-convex clusters, and local statis-

tics are crucially important to achieve that goal. They have been avoided in

approximate spectral clustering for computational efficiency. Also, most of

the weirdly shaped clusters could be detected by approximation as long as

10
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link points should be close to each other and cannot-link points should be far apart. The authors created a 

measure of “good representation” that should hold the minimum cost when optimized. This method has a 

computational advantage over applying constraints to the similarity matrix. A separation of constrained graphs 

was proposed in [33]. Must-link graph and cannot-link graph were created, and bi-objective graph optimization 

employed instead of eigen-decomposition. It is clear that constraining the graph created from data points would 

get better clustering results. However, this comes at a price of fundamentally changing the problem into semi-

supervised instead of unsupervised. Constraints are usually created from the ground truth. 

3. Refined k-nearest neighbor graph for Spectral clustering 

From the previous overview, it can be noticed that there is no graph selection that works for different sets of 

data. Every method has to compromise at some stage, but we believe that local statistics between data points 

represents clustering information and should not be compromised. The ultimate goal of spectral clustering is to 

detect non-convex clusters, and local statistics are crucially important to achieve that goal. They have been 

avoided in approximate spectral clustering for computational efficiency. Also, most of the weirdly shaped 

clusters could be detected by approximation as long as they are dense, but this is not always the case. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 2. A summary of the proposed approach. (a) k-nearest neighbor graph with k set according to local statistics; (b) mutual k-nearest 
neighbor graph to filter edges lacking mutual agreement; (c) an optional step to locally monitor the change in eigenvalues to detect the 
number of clusters; (d) clustering outcome (best viewed in color). 

Our method attempts to balance the tradeoff between locally scaled graphs and computational efficiency. It 

starts by creating k-nearest neighbor graph at each point and stop when it violates local statistics. Then, a 

Fig. 2. A summary of the proposed approach. (a) k-nearest neighbor graph with k set
according to local statistics; (b) mutual k-nearest neighbor graph to filter edges lacking
mutual agreement; (c) an optional step to locally monitor the change in eigenvalues to
detect the number of clusters C; (d) clustering outcome (best viewed in color).

they are dense, but this is not always the case.

Our method attempts to balance the tradeoff between locally scaled

graphs and computational efficiency. It starts by creating k-nearest neigh-

bor graph at each point and stop when it violates local statistics. Then, a

mutuality check was run to ensure agreement among data points. We also

introduced an eigengap detection method to uncover number of clusters C.

Overview of the method is shown in Fig. 2.

3.1. Setting k in k-nearest neighbor graph

Conventional k-nearest neighbor graphs have the problem of treating all

data points equally. Due to their location in feature space, data points have

different needs for the number of edges that could be larger or smaller than

k. Ignoring these needs, and forcing each point to have k edges, might result

in linking two clusters or breaking a single cluster. Therefore, the parameter

k should be adaptively computed to accommodate the needs for each data

point.

Setting k manually for each data point is not a practical process. There-
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the sparsity of a cluster. In Fig. 3 (a), the point marked as x sits in a sparse cluster making its distribution more 

naturally looking covering large interval (0.1,0.4), due to varying distances around it. On the other hand, the 

point in bottom row sitting in a dense cluster has a sharp distribution covering a narrow interval (0.01,0.04), 

given similar distances around it. 

(a) (b) 

(c) (d) 

Fig. 3. Illustration of tracking the distribution of distances to automatically set k in k-nearest neighbor graph. Column on the left shows 
the location of data point. Column on the right shows three distributions: (dashed line) baseline distribution k=7 (solid line) automatically 
selected distribution (dotted line) if we add more 20 neighbors to the automatically selected distribution. 

Fig. 3. Distribution of distances from the point marked as ×. (dashed line) k = 7 (solid
line) k set by the proposed method (dotted line) k set by the proposed method plus 20
neighbors.

fore, we used the distribution of distances to monitor how it changes as we

add more neighboring distances to the distribution. The intuition behind it

is at some point we are leaving the current cluster to another cluster while

adding more neighbors. This movement between clusters should be reflected

on the distribution of distances. First, we need a baseline distribution of dis-

tances indicating how distances are distributed in the current cluster. Also,

we need a threshold to notify us that we are leaving the baseline distribu-
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tion towards something different. Our baseline distribution is the normal

distribution of distances to the first seven neighbors, this was selected for

locally scaled pairwise distances in [16, 19]. By setting the baseline distri-

bution to seven we’re implying that the first seven neighbors belong to the

same cluster. This is a strong assumption and it fails in large datasets (as we

will see in Table 3) where we had to change it to be fifty, because seven was

very narrow. that’s why we are currently working on figuring this parameter

automatically.

Since we are moving in one direction which is far from the mean µ of

the baseline distribution, we set the threshold to stop adding more neighbors

as [µ + σ]. Once the new mean is outside the interval [µ + σ] we set the

k for the current point at its current neighbor. In Fig. 3, we compare the

distribution of distances for two points sitting in different locations in the

feature space. The plot on the right shows a dashed line that is a baseline

distribution of distances k = 7, solid line is the selected distribution set not

to violate the interval [µ+σ], dotted line is the distribution if we add 20 more

neighbors beyond [µ+σ]. The selected distribution kept the shape of baseline

distribution while adding more edges that are useful for clustering. However,

if we keep adding more neighbors beyond[µ + σ] interval, the distribution

becomes flatter losing the shape of the baseline. Interestingly the distribution

of distances indicates the sparsity of a cluster. In Fig. 3 (a), the point marked

as × sits in a sparse cluster making its distribution more naturally looking

covering large interval (0.1,0.4), due to varying distances around it. On the

other hand, the point in bottom row sitting in a dense cluster has a sharp

distribution covering a narrow interval (0.01,0.04), given similar distances

13



Algorithm 1: Constructing a refined k-nearest neighbor graph

Input: N data points, maximum number of neighbors kmax

Output: Refined k-nearest neighbor graph
/* The following step has computations in order of O(dNlogN) */

1 Construct k-nn graph where k = kmax represented by its distance
matrix D(N, kmax)

/* The following loop has computations in order of O(Nkmax) */

2 for i = 1 to N do
3 for j = 1 to kmax do
4 DMi,j = mean(Di, 1 to j) + standard deviation(Di, 1 to j)

5 let DM7(N, kmax) be an empty matrix
6 let all columns in DM7 equal the 7th column in DM
7 D∗(N, kmax) = DM7(N, kmax)−DM(N, kmax)

/* The following loop has computations in order of O(Nkmax) */

8 for all elements in D∗(N, kmax) do
9 if D∗i,j < 0 then

10 D∗i,j = 0

/* The following loop has computations in order of O(Nkmax) */

11 for all elements in D∗(N, kmax) do
12 if D∗i,j == 0 or D∗j,i == 0 then
13 D∗i,j = 0 D∗j,i = 0

14 Construct refined k-nn using distance matrix D∗(N, kmax)

around it.

The computational bottleneck is to get the initial k-nearest neighbor

graph. These computations could be reduced by using efficient data structure

like kd-trees which can be constructed in O(dNlogN) [34]. The parameter

k was set as kmax. By setting kmax we are comfortable that each data point

requires edges less than kmax. Then, getting the refined k-nearest neighbor

graph requires low computations O(Nkmax). Once we have the distance ma-

trix of size N × kmax, we compute mean and standard deviation µ0 and σ0

14
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agreement, we end up with a graph highlighting groups of points separated by different local statistics (check 

steps 6-7 in Algorithm 1). 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Illustration on the importance of mutuality test. (a) refined k-nn graph with directed edges, (b) refined k-nn graph with undirected 
edges, (c) refined k-nn after removing edges lacking mutual agreement (best viewed in color). 

3.3 Looking for the eigengap 

Once the graph is ready, we can construct the pairwise similarity matrix and assign weights on edges. We 

used the similarity introduced by Zelnik-Manor and Perona [16] it is superior in highlighting clusters with 

different statistics. A is defined as follows: 

 𝐴௜௝ ൌ expቆ
െ𝑑ଶሺ𝑖, 𝑗ሻ

𝜎௜ 𝜎௝
ቇ . (6) 

The local scale 𝜎௜ set as the distance of a point to its kth neighbor, here we set it to be the 7th neighbor 𝑑ሺ𝑖, 𝑖௞ୀ଻ሻ. 

The eigen-decomposition is carried out afterwards to get the top C eigenvectors (C is number of clusters). 

Setting C manually is not practical. Our recent work in [6] introduced a framework to uncover C by evaluating 

eigenvectors independently and calculate Davies-Bouldin index (DBI) for each eigenvector. However, that 

framework was built around approximate spectral clustering where number of prototypes is m compared to N 

points in our case (m ≪ N). Applying the same framework here could be computationally expensive. Therefore, 

we preferred to track the change in eigenvalues. Liu et al. proposed predicting C from eigenvalues, but their 

method requires a parameter  [35]. To keep it simple, we start with 2nd and 3rd eigenvalues and compute their 

Fig. 4. Illustration on the importance of mutuality test. (a) refined k-nn graph with di-
rected edges, (b) refined k-nn graph with undirected edges, (c) refined k-nn after removing
edges lacking mutual agreement (best viewed in color).

for the first seven columns. Then we add more neighbors to compute the

new mean µi. Once µi > µ0 + σ0, the comparison stops and all elements up

to kmax are nullified. This process is illustrated by steps 1–5 in Algorithm 1.

3.2. Checking mutual agreement

The graph obtained in the previous step is a directed graph. Each edge

indicates the existence of the destination point in the source point refined

k-nn list. A pair of points have a mutual agreement if they have each other

in their refined k-nn lists. Fig. 4 shows how crucial this step is. If we convert

the refined k-nn graph Fig. 4 (a) into undirected graph Fig. 4 (b) and proceed

with spectral clustering, we should not expect great results since all clusters

are connected. However, if we drop the edges between neighbors lacking

mutual agreement, we end up with a graph highlighting groups of points

separated by different local statistics (check steps 6–7 in Algorithm 1).
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3.3. Looking for the eigengap

Once the graph is ready, we can construct the pairwise similarity matrix

and assign weights on edges. We used the similarity introduced by Zelnik-

Manor and Perona [16] it is superior in highlighting clusters with different

statistics. The affinity matrix A is defined as follows:

Aij = exp

(
−d2 (i, j)

σi σj

)
. (6)

The local scale σi set as the distance of a point to its kth neighbor, here we

set it to be the 7th neighbor d(i, ik=7). The eigen-decomposition is carried out

afterwards to get the top C eigenvectors (C is number of clusters). Setting

C manually is not practical. Our recent work in [6] introduced a framework

to uncover C by evaluating eigenvectors independently and calculate Davies-

Bouldin index (DBI) for each eigenvector. However, that framework was

built around approximate spectral clustering where number of prototypes is

m compared to N points in our case m� N . Applying the same framework

here could be computationally expensive. Therefore, we preferred to track

the change in eigenvalues. Liu et al. proposed predicting C from eigenvalues,

but their method requires a parameter τ [32]. To keep it simple, we start

with 2nd and 3rd eigenvalues and compute their mean and standard deviation.

As we add more eigenvalues we check if the new mean is less than old mean

plus standard deviation (see steps 1–3 in Algorithm 2). C would be set as:

C = i, where µi+1 > µi + σi. (7)

16
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mean and standard deviation. As we add more eigenvalues we check if the new mean is less than old mean plus 

standard deviation (see steps 1-3 in Algorithm 2). C would be set as: 

 𝐶 ൌ 𝑖,       𝑤ℎ𝑒𝑟𝑒 𝜇௜ାଵ ൐ 𝜇௜ ൅ 𝜎௜ . (7) 

3.4 Clustering in the embedding space 

In spectral clustering, it is not enough to specify only the number of clusters C, it also needs the number of 

dimensions of the embedding space. The original algorithm [2] states that for C clusters k-means should 

operates in the top C eigenvectors space. In practice, C eigenvectors could be detected in a space where number 

of eigenvectors is less than C. For example, in Fig. 5 the original data points form three clusters, and by plotting 

them using top two eigenvectors, it is clear that clusters are separated and detectable via k-means. Therefore, it 

is worth checking how k-means would perform in an embedding space with less than C eigenvectors. 

(a) (b) (c) 

Fig. 5. Illustration of embedding space projection. (a) k-nn refined graph; (b) data points in feature space; (c) data points projected onto 
2nd and 3rd eigenvectors of graph Laplacian. 

For all eigenvectors less than C, we constructed embedding spaces starting by 2nd and 3rd eigenvectors then 

add one more eigenvector up to C. On each embedding space, k-means operates to detect C clusters. We end 

up with C vectors each of which represents cluster memberships. To choose the right cluster membership, we 

applied each membership vector to the refined k-nn graph and sum the weights of inter-cluster edges. Inter-

cluster edges link points with different cluster membership. The right membership vector is the one that yields 

Fig. 5. Illustration on the importance of mutuality test. (a) refined k-nn graph with di-
rected edges, (b) refined k-nn graph with undirected edges, (c) refined k-nn after removing
edges lacking mutual agreement (best viewed in color).

3.4. Clustering in the embedding space

In spectral clustering, it is not enough to specify only the number of

clusters C, it also needs the number of dimensions of the embedding space.

The original algorithm [2] states that for C clusters k-means should operates

in the top C eigenvectors space. In practice, C eigenvectors could be detected

in a space where number of eigenvectors is less than C. For example, in Fig.

5 the original data points form three clusters, and by plotting them using

top two eigenvectors, it is clear that clusters are separated and detectable

via k-means. Therefore, it is worth checking how k-means would perform in

an embedding space with less than C eigenvectors.

For all eigenvectors less than C, we constructed embedding spaces starting

by 2nd and 3rd eigenvectors then add one more eigenvector up to C. On each

embedding space, k-means operates to detect C clusters. We end up with C

vectors each of which represents cluster memberships. To choose the right

cluster membership, we applied each membership vector to the refined k-nn
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Algorithm 2: Clustering in embedding space with unknown C

Input: A refined k-nn graph G(V,E) with N vertices,
number of required eigenvalues λmax

Output: N data points grouped into C clusters
1 Compute graph Laplacian Lsym = D−1/2AD−1/2

/* The following step has computations in order of O(N3) */

2 Compute eigenvalues λ and eigenvectors v of graph Laplacian Lsym

/* The following loop has computations in order of O(λmax) */

3 for i = 3 to λmax do
4 if λi+1 > (mean(λ2 to i) + standard deviation(λ2 to i) then
5 set C = i

/* The following loop has computations in order of O(CdtN) */

6 for all elements in D∗(N, kmax) do
7 run k-means with k = C on N data points using eigenvectors v2

to vi of v.
8 set li as the label vector returned by k-means.

/* The following loop has computations in order of O(CE) */

9 for i = 2 to C do
10 let ai be the variable holding sum of weights connecting

unmatched labels in li.
11 label all vertices in V using li.
12 for each edge E(p, q) in E where p, q ∈ V do
13 if labels are different li(p) 6= li(q) then
14 ai = ai + E(p, q)

15 Return the lowest ai and its associated li

graph and sum the weights of inter-cluster edges. Inter-cluster edges link

points with different cluster membership. The right membership vector is

the one that yields the lowest sum of inter-cluster weights. Ideally, this sum

would be zero indicating no edges are linking different clusters (see steps 4–6

in Algorithm 2).
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3.5. Integration with SpectralNet

Spectral clustering using deep neural networks (SpectralNet) was intro-

duced by Shaham et al. [33]. They highlighted two shortcomings of spectral

clustering: 1) the scalability issue with large datasets where direct computa-

tion of eigenvectors could be infeasible, and 2) the generalization issue which

is extending spectral embedding to unseen data in a task commonly known

as out-of-sample-extension [34, 35, 36].

Our proposed method could be integrated with SpectralNet. The Spec-

tralNet consists of three main stages: 1) unsupervised learning of an affinity

matrix given a distance measure, via a Siamese network, 2) unsupervised

learning of an embedding space by optimizing spectral clustering objective,

and 3) learning cluster assignments by running k-means in the embedding

space. Our method for filtering the graph could be executed before running

the Siamese net. Siamese nets [37, 38] are trained to learn complex affin-

ity relations that cannot be captured by Euclidean distance. Shaham et al.

[33] empirically found that using Siamese net to determine the affinity often

improves the quality of clustering.

Siamese nets are usually trained on similar (positive) and dissimilar (neg-

ative) pairs of data points. For labeled data, positive and negative pairs could

be decided from the labels. For example, a pair with the same label is set a

positive pair, while a pair with different labels is set as negative pair. But

this is not the case with unlabeled data where nearest neighbor graph can

be used to determine positive and negative pairs. Shaham et al. [33] con-

structed positive pairs for Siamese net by pairing each point with two of its

nearest neighbors. An equal number of negative pairs was randomly chosen
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from farther neighbors. We used a different approach in our experiments.

We let our method detailed in Algorithm 1 to decide how many neighbors a

data points should have as positive pairs. Then, an equal number of farther

neighbors is set as negative pairs.

Our approach to pass positive and negative pairs to Siamese has two

advantages. First, the number of positive pairs is not fixed for all data points.

This makes points in dense regions to have more positive and negative pairs.

Second, we did not use a random selection for negative pairs, instead we

assigned farther neighbors as negative pairs. This would contribute to the

consistency of the method over independent executions.

4. Experiments and discussions

Experiments were conducted using synthetic data, real data, and a dataset

with an increasing noise (10% to 50% of N). The proposed method was com-

pared against approximate spectral clustering (ASC) methods. The most

famous vector quantization for ASC are: k-means and self-organizing map

(SOM). These were selected for approximation. Similarities between pro-

totypes obtained through k-means and SOM were computed using local σ

[16], CONN [14], and CONNHybrid [8]. There were other similarity metrics

proposed in [8], but they were built on top of CONN and their performance

was highly correlating with CONN. All experiments were coded in MAT-

LAB 2018b and run on a windows 10 machine (3.40 GHz CPU and 8 GB

of memory). The code is available on https://github.com/mashaan14/

Spectral-Clustering.
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4.1. Evaluation metrics

The performance of competing methods was evaluated by comparing la-

bels obtained by the clustering method with the true labels provided in

ground truth. Two metrics were used for the evaluation: clustering accu-

racy (ACC) and adjusted Rand index (ARI). Clustering accuracy checks one

on one assignments and computes the percentage of hits. Let Ti and Li

be ground truth labels and labels obtained through clustering respectively.

Then, accuracy is defined as [39]:

ACC(T, L) =

∑N
i=1 δ(Ti,map(Li))

N
, (8)

where N is the number of points and the function δ(x, y) equals one when

x = y and equals zero otherwise. The function map(Li) is the permutation

mapping that maps the obtained cluster labels to its equivalent in the ground

truth labels.

The adjusted Rand index (ARI) [40] is one of the “pair counting evalu-

ation measures”. For two groupings T and L, ARI counts how many pairs

T and L agreed or disagreed. It has better bounds than the original Rand

index (RI) [41]. The upper bound is 1 indicating identical groupings and the

lower bound 0 indicates random groupings. Let N be the number of elements

in the contingency table with T rows and L columns. Given all possible pairs

in
(
n
2

)
, they can be classified into four types: n11: pairs in the same cluster

in both T and L; n00: pairs in different clusters in both T and L; n01: pairs

in the same cluster in T but in different clusters in L; n10: pairs in different
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Table 1. Properties of tested datasets. N = number of samples, d = number of dimensions (i.e., features), and C = number of clusters. 

Synthetic datasets Real datasets 
 N	 d	 C	  N d C 

sparse303 303 2 3 iris 150 4 3 
ring 238 2 3 wine 178 13 3 
aggregation 788 2 7 ImageSeg 2100 18 7 
sparse622 622 2 5 statlog 6435 5 6 
    PenDigits 10992 16 10 
    mGamma 19020 10 2 

4.2 Synthetic datasets 

For approximate spectral clustering (ASC), the number of prototypes was selected as the elbow point in the 

quantization error curve by k-means. It was set as 32, 32, 64, and 32 for sparse303, ring, aggregation, and 

sparse622 respectively. As a general observation, prototypes placed by self-organizing map (SOM) performed 

better than the ones placed by k-means (especially in sparse303 and sparse622). This behaviour could be 

explained by training of SOM in which prototypes move as a group towards a data point and not independent 

from each other as in k-means. This enables SOM to place more neurons into dense regions than k-means 

(please refer to Fig. 1 for illustration). In terms of the similarity metric, CONN and CONNHybrid have a slight 

advantage over local  especially in aggregation dataset in which all clusters are dense. In ring dataset, CONN 

and CONNHybrid achieved similar performances higher than local . 

There were performance drops when C was unknown compared when it was given. The most significant 

drops occurred in sparse622 when it reached 50% drop compared to when C was given. In sparse303, the drop 

was around 25%. For ring and aggregation datasets the drop was smaller compared to sparse datasets with 

Fig. 6. Synthetic datasets used in the experiments.

clusters in T but in the same cluster in L. Then, ARI is defined as:

ARI(T, L) =
2(n00n11 − n01n10)

(n00 + n01)(n01 + n11) + (n00 + n10)(n10 + n11)
. (9)

The computational efficiency of competing methods was measured by

the percentage of edges used compared to all edges in a fully connected

graph. This is more suitable measure than simply measuring the running

time which is sensitive to the experimental setup (e.g., computation power,

machine used, etc.). The metric is computed as follows:

E% =
E(G)

E(Gfull)
, (10)

where E(G) is the number of edges in the filtered graph and E(Gfull) is the

number of edges in the fully connected graph.

4.2. Synthetic datasets

For approximate spectral clustering (ASC), the number of prototypes was

selected as the elbow point in the quantization error curve by k-means. It was

set as 32, 32, 64, and 32 for sparse303, ring, aggregation, and sparse622
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Table 1. Properties of tested datasets. N = number of samples, d = number of dimen-
sions (i.e., features), and C = number of clusters.
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from each other as in k-means. This enables SOM to place more neurons into dense regions than k-means 
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advantage over local  especially in aggregation dataset in which all clusters are dense. In ring dataset, CONN 

and CONNHybrid achieved similar performances higher than local . 

There were performance drops when C was unknown compared when it was given. The most significant 

drops occurred in sparse622 when it reached 50% drop compared to when C was given. In sparse303, the drop 

was around 25%. For ring and aggregation datasets the drop was smaller compared to sparse datasets with 

respectively. As a general observation, prototypes placed by self-organizing

map (SOM) performed better than the ones placed by k-means (especially in

sparse303 and sparse622). This behaviour could be explained by training

of SOM in which prototypes move as a group towards a data point and not

independent from each other as in k-means. This enables SOM to place

more neurons into dense regions than k-means (please refer to Fig. 1 for

illustration). In terms of the similarity metric, CONN and CONNHybrid

have a slight advantage over local σ especially in aggregation dataset in

which all clusters are dense. In ring dataset, CONN and CONNHybrid

achieved similar performances higher than local σ.

There were performance drops when C was unknown compared when it

was given. The most significant drops occurred in sparse622 when it reached

50% drop compared to when C was given. In sparse303, the drop was

around 25%. For ring and aggregation datasets the drop was smaller com-

pared to sparse datasets with exception of local σ in aggregation dataset.

Usually in sparse datasets, the graph has a single connected component and

by giving C we are forcing the method to break it into the desired number of

connected components. But when C is unknown it was very difficult for the
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Table 2. Evaluating competing methods on synthetic data for 100 runs. Three rows
for each dataset: ACC: mean accuracy ± standard deviation, ARI: mean adjusted Rand
index ± standard deviation, and E%: the percentage of edges compared to edges in a fully
connected graph. Bold values are the best scores.
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Table 2. Evaluating competing methods on synthetic data for 100 runs. Three rows for each dataset: ACC: mean accuracy with standard 
deviation, ARI: mean adjusted Rand index with standard deviation, and E%: the percentage of edges compared to edges in a fully connected 
graph. Bold values are the best scores. 

    C is given     

  Local σ Local σ CONN CONN CONNHybrid CONNHybrid Ours 

  k-means SOM k-means SOM k-means SOM  

sparse303 

ACC 73.50 ± 08.86 80.04 ± 05.25 62.90 ± 17.40 85.25 ± 13.60 51.83 ± 15.84 82.64 ± 14.03 99.67 ± 00.00 

ARI 0.467 ± 0.11 0.586 ± 0.06 0.395 ± 0.26 0.748 ± 0.21 0.198 ± 0.22 0.686 ± 0.23 0.990 ± 0.00 

E% 1.08 ± 0.00 0.19 ± 0.00 0.09 ± 0.01 0.11 ± 0.01 0.09 ± 0.01 0.11 ± 0.01 3.51 ± 0.00 

Ring 

ACC 85.26 ± 00.67 86.99 ± 01.94 92.76 ± 05.88 94.25 ± 05.99 90.67 ± 05.02 91.19 ± 05.55 99.16 ± 00.00 

ARI 0.691 ± 0.01 0.739 ± 0.03 0.843 ± 0.12 0.870 ± 0.13 0.803 ± 0.10 0.811 ± 0.11 0.976 ± 0.00 

E% 1.76 ± 0.00 0.30 ± 0.00 0.13 ± 0.01 0.14 ± 0.01 0.13 ± 0.01 0.14 ± 0.01 4.41 ± 0.00 

aggregation 

ACC 86.62 ± 05.52 79.90 ± 05.75 98.31 ± 03.13 96.65 ± 04.48 96.96 ± 04.23 95.50 ± 06.65 99.02 ± 01.42 

ARI 0.837 ± 0.08 0.735 ± 0.07 0.971 ± 0.04 0.942 ± 0.07 0.951 ± 0.06 0.930 ± 0.09 0.978 ± 0.02 

E% 0.65 ± 0.00 0.05 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 1.42 ± 0.00 

sparse622 

ACC 80.69 ± 02.72 77.56 ± 08.00 85.28 ± 06.94 91.35 ± 06.75 76.79 ± 07.93 83.05 ± 04.27 96.33 ± 06.46 

ARI 0.670 ± 0.03 0.645 ± 0.08 0.780 ± 0.09 0.854 ± 0.09 0.634 ± 0.08 0.706 ± 0.05 0.931 ± 0.07 

E% 0.26 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 1.69 ± 0.00 

    C is unknown    

  Local σ Local σ CONN CONN CONNHybrid CONNHybrid Ours 
  k-means SOM k-means SOM k-means SOM  

sparse303 

ACC 60.45 ± 08.33 65.89 ± 04.55 52.38 ± 17.00 67.88 ± 14.77 44.22 ± 11.48 65.87 ± 11.94 99.67 ± 00.00 

ARI 0.338 ± 0.16 0.466 ± 0.09 0.262 ± 0.27 0.533 ± 0.23 0.102 ± 0.17 0.496 ± 0.20 0.990 ± 0.00 

E% 1.08 ± 0.00 0.19 ± 0.00 0.09 ± 0.00 0.11 ± 0.01 0.09 ± 0.00 0.11 ± 0.01 3.51 ± 0.00 

ring 

ACC 80.46 ± 04.43 76.67 ± 01.38 88.06 ± 08.02 84.34 ± 09.26 88.87 ± 07.20 86.33 ± 07.50 99.16 ± 00.00 

ARI 0.638 ± 0.05 0.637 ± 0.03 0.781 ± 0.13 0.733 ± 0.14 0.778 ± 0.12 0.745 ± 0.12 0.976 ± 0.00 

E% 1.76 ± 0.00 0.30 ± 0.00 0.13 ± 0.01 0.14 ± 0.01 0.13 ± 0.00 0.14 ± 0.01 4.41 ± 0.00 

aggregation 

ACC 61.50 ± 12.03 51.24 ± 01.58 89.42 ± 09.49 87.84 ± 10.98 87.35 ± 09.25 83.01 ± 10.12 95.17 ± 01.36 

ARI 0.485 ± 0.17 0.361 ± 0.03 0.853 ± 0.11 0.827 ± 0.13 0.834 ± 0.10 0.777 ± 0.12 0.903 ± 0.01 

E% 0.65 ± 0.00 0.05 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 1.42 ± 0.00 

sparse622 

ACC 42.07 ± 00.69 42.00 ± 00.20 51.76 ± 10.88 49.30 ± 10.35 42.04 ± 03.90 43.00 ± 03.34 96.80 ± 05.65 

ARI 0.275 ± 0.05 0.307 ± 0.02 0.392 ± 0.13 0.341 ± 0.15 0.280 ± 0.07 0.232 ± 0.06 0.936 ± 0.06 

E% 0.26 ± 0.00 0.04 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 1.69 ± 0.00 

 

The major drawback of ASC that kept persisting across all synthetic datasets is the standard deviation of 

performance scores. In different experiments it reached 17% of ACC and 0.2 of ARI, this highlights the 

inconsistency of these methods. Our proposed method achieved a score close to a full mark across all synthetic 

datasets. Another advantage of our method was the consistent performance. This indicates that no matter how 

many times you repeat the method there is a high chance to get a score close to the full mark. 

eigengap detection to uncover C because it was a single connected compo-

nent which cause the sharp drops in performance. For ring and aggregation

datasets, ASC passes a graph with multiple connected components making

the task easier for the eigengap detector.

The major drawback of ASC that kept persisting across all synthetic

datasets is the standard deviation of performance scores. In different exper-

iments it reached 17% of ACC and 0.2 of ARI, this highlights the inconsis-
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tency of these methods. Our proposed method achieved a score close to a full

mark across all synthetic datasets. Another advantage of our method was

the consistent performance. This indicates that no matter how many times

you repeat the method there is a high chance to get a score close to the full

mark.

The third evaluation metric was the percentage of used edges compared

to fully connected undirected graph. All ASC methods had a lower number

of edges than our method because they are constructing a graph out of m

prototypes and ours used all data points N (m � N). However, the high-

est percentage of edges for our method was 4.41% in ring dataset. This

means that 95.59% were removed from the fully connected graph, this is a

considerable reduction in computations and memory footprint.

4.3. Real datasets

For real datasets the number of prototypes in ASC methods was set by

monitoring quantization error to 32, 32, 40, 100, 500, and 1000 for datasets:

iris, wine, ImageSeg, statlog, Pen digits, and mGamma. For iris dataset

and when C was given our method achieved the highest performance with a

low standard deviation across all runs. However, when C was unknown our

method dropped the most compared to ASC methods since we lost an en-

tire cluster. SOM based approximation scores above k-means approximation

across all similarity measures when C was given, due to high quality graphs

provided by SOM. For memory footprint, our method used 6.76% of edges

compared to a full graph out of all points in iris.

In wine dataset, our method lagged behind ASC methods with a little

performance drop when C was unknown. We went to investigate that by
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Table 3. Testing competing methods on real datasets for 100 runs. Three rows for
each dataset: ACC: mean accuracy ± standard deviation, ARI: mean adjusted Rand index
± standard deviation, and E%: the percentage of edges compared to edges in a fully
connected graph. Bold values are the best scores.
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    C is given     
  Local σ Local σ CONN CONN CONNHybrid CONNHybrid Ours 
  k-means SOM k-means SOM k-means SOM  

iris 
ACC 67.45 ± 9.49 82.99 ± 7.69 77.11 ± 10.29 81.31 ± 10.17 78.26 ± 10.44 84.59 ± 8.84 90.00 ± 0.00 
ARI 0.556 ± 0.08 0.650 ± 0.06 0.591 ± 0.11 0.614 ± 0.13 0.634 ± 0.11 0.685 ± 0.09 0.740 ± 0.00 
E% 4.50 ± 0.00 0.77 ± 0.00 0.40 ± 0.03 0.43 ± 0.03 0.39 ± 0.03 0.44 ± 0.03 6.76 ± 0.00 

wine 
ACC 82.64 ± 6.56 75.99 ± 14.63 68.84 ± 10.29 65.77 ± 12.27 74.53 ± 12.30 70.44 ± 11.17 69.66 ± 0.00 
ARI 0.591 ± 0.09 0.519 ± 0.21 0.376 ± 0.14 0.337 ± 0.17 0.473 ± 0.17 0.417 ± 0.16 0.331 ± 0.00 
E% 3.15 ± 0.00 0.54 ± 0.00 0.22 ± 0.02 0.25 ± 0.01 0.22 ± 0.01 0.25 ± 0.02 5.75 ± 0.00 

ImageSeg 
ACC 42.50 ± 9.81 54.67 ± 5.40 48.75 ± 13.29 50.95 ± 6.39 34.80 ± 14.47 50.14 ± 10.06 64.85 ± 2.99 
ARI 0.246 ± 0.11 0.381 ± 0.07 0.334 ± 0.14 0.387 ± 0.06 0.190 ± 0.16 0.360 ± 0.12 0.498 ± 0.03 
E% 0.04 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.50 ± 0.00 

statlog 
ACC 56.60 ± 5.57 60.92 ± 6.09 64.06 ± 3.67 64.85 ± 2.87 59.68 ± 3.96 61.76 ± 2.51 59.30 ± 0.90 
ARI 0.380 ± 0.06 0.450 ± 0.07 0.501 ± 0.04 0.518 ± 0.03 0.431 ± 0.07 0.463 ± 0.04 0.466 ± 0.01 
E% 0.06 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.28 ± 0.00 

Pen digits 
ACC 63.30 ± 07.87 66.35 ± 06.18 61.33 ± 21.14 73.13 ± 16.50 63.35 ± 20.34 64.77 ± 27.08 83.41 ± 03.95 
ARI 0.494 ± 0.07 0.525 ± 0.06 0.462 ± 0.20 0.609 ± 0.17 0.479 ± 0.20 0.535 ± 0.27 0.712 ± 0.03 
E% 0.21 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.72 ± 0.00 

mGamma 
ACC 66.57 ± 00.14 59.28 ± 05.08 64.66 ± 00.97 62.81 ± 01.79 66.13 ± 01.98 62.02 ± 01.61 65.54 ± 00.00 
ARI 0.080 ± 0.00 0.018 ± 0.03 0.017 ± 0.03 0.021 ± 0.03 0.034 ± 0.04 0.007 ± 0.03 0.065 ± 0.00 
E% 0.28 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.43 ± 0.00 

    C is unknown     
  Local σ Local σ CONN CONN CONNHybrid CONNHybrid Ours 
  k-means SOM k-means SOM k-means SOM  

iris 
ACC 66.66 ± 00.07 66.67 ± 00.00 67.99 ± 05.56 65.87 ± 05.19 68.07 ± 02.74 67.31 ± 02.47 66.67 ± 00.00 
ARI 0.568 ± 0.00 0.568 ± 0.00 0.527 ± 0.07 0.498 ± 0.08 0.552 ± 0.02 0.554 ± 0.03 0.558 ± 0.00 
E% 4.50 ± 0.00 0.77 ± 0.00 0.39 ± 0.02 0.43 ± 0.03 0.40 ± 0.03 0.43 ± 0.03 6.76 ± 0.00 

wine 
ACC 69.00 ± 05.69 61.73 ± 13.08 62.64 ± 09.26 59.12 ± 11.86 63.89 ± 08.02 59.02 ± 10.62 67.42 ± 00.00 
ARI 0.460 ± 0.10 0.341 ± 0.21 0.328 ± 0.15 0.276 ± 0.18 0.340 ± 0.15 0.278 ± 0.18 0.408 ± 0.00 
E% 3.15 ± 0.00 0.54 ± 0.00 0.22 ± 0.02 0.25 ± 0.02 0.22 ± 0.01 0.25 ± 0.01 5.75 ± 0.00 

ImageSeg 
ACC 15.75 ± 03.24 24.62 ± 05.97 24.60 ± 06.37 28.57 ± 00.01 24.19 ± 06.42 27.07 ± 04.29 26.81 ± 02.74 
ARI 0.006 ± 0.02 0.124 ± 0.08 0.074 ± 0.05 0.102 ± 0.00 0.070 ± 0.05 0.091 ± 0.03 0.094 ± 0.01 
E% 0.04 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.50 ± 0.00 

statlog 
ACC 34.17 ± 02.66 33.02 ± 00.84 32.90 ± 00.26 32.97 ± 00.16 33.09 ± 00.13 33.17 ± 00.08 32.96 ± 00.00 
ARI 0.099 ± 0.04 0.137 ± 0.00 0.079 ± 0.00 0.080 ± 0.00 0.082 ± 0.00 0.083 ± 0.00 0.080 ± 0.00 
E% 0.06 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.28 ± 0.00 

Pen digits 
ACC 19.92 ± 03.75 20.54 ± 01.52 11.19 ± 01.86 15.98 ± 03.75 11.17 ± 01.88 15.21 ± 04.03 18.66 ± 00.00 
ARI 0.067 ± 0.04 0.116 ± 0.02 0.003 ± 0.01 0.038 ± 0.03 0.003 ± 0.01 0.030 ± 0.03 0.049 ± 0.00 
E% 0.21 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.72 ± 0.00 

mGamma 
ACC 66.61 ± 00.21 57.96 ± 06.28 64.20 ± 01.39 63.19 ± 01.76 65.56 ± 01.90 62.78 ± 01.91 16.85 ± 01.54 
ARI 0.081 ± 0.00 0.014 ± 0.02 0.027 ± 0.03 0.027 ± 0.03 0.027 ± 0.04 0.020 ± 0.03 0.038 ± 0.00 
E% 0.28 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.43 ± 0.00 

 

Our method achieved the highest score for ImageSeg dataset when C was given. Projecting the points onto 

first three principal components reveal non-convex clusters with varying densities. This explains the high score 

delivered by our method. For statlog dataset, the performance of our method was in line with ASC methods 

with a slight advantage for methods based on CONN similarity measure. 
26



projecting points in wine dataset onto their first three principle components.

The three clusters were of a convex shape and similar density. In such cases,

we do not expect our method to outperform ASC methods that are capable

of capturing convex clusters. The inconsistency of ASC methods continues

to persist with the standard deviation of runs reached 14% of ACC and 0.2

of ARI.

Our method achieved the highest score for ImageSeg dataset when C was

given. Projecting the points onto first three principal components reveal non-

convex clusters with varying densities. This explains the high score delivered

by our method. For statlog dataset, the performance of our method was in

line with ASC methods with a slight advantage for methods based on CONN

similarity measure.

For the last two datasets: Pen digits and mGamma, the value of the base-

line distribution of 7 neighbors was not providing good results. Therefore,

it was set manually to be 50 neighbors after testing a range of values. This

change makes our method the best performer in Pen digits dataset when

C was given. For mGamma dataset, the proposed method was close to the

best performer when C was given. But when C was unknown it produced 13

clusters compared to 2 clusters in the ground truth, causing a sharp decline

in ACC.

4.4. Noise robustness test

The last experiment was testing competing methods’ robustness against

increasing noise, where C was given. The datasets in Fig. 7 were retrieved

from [16] and the evaluation in Fig. 8 was based on ARI. In general, CONN

based similarities performed better when data was clean. With increasing
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delivered by our method. For statlog dataset, the performance of our method was in line with ASC methods 

with a slight advantage for methods based on CONN similarity measure. 

For the last two datasets: Pen digits and mGamma, the value of the baseline distribution of 7 neighbors was 

not providing good results. Therefore, it was set manually to be 50 neighbors after testing a range of values. 

This change makes our method the best performer in Pen digits dataset when C was given. For mGamma dataset, 

the proposed method was close to the best performer when C was given. But when C was unknown it produced 

13 clusters compared to 2 clusters in the ground truth, causing a sharp decline in ACC. 

4.4 Noise robustness test 

The last experiment was testing competing methods’ robustness against increasing noise, where C was given. 

The datasets in Fig. 7 were retrieved from [16] and the evaluation in Fig. 8 was based on ARI. In general, 

CONN based similarities performed better when data was clean. With increasing noise, ASC methods start to 

drop in performance. On the other hand, our method continues to score better than ASC methods with noise 

approaching 30% of the data. Even with 40% noise, our method delivered the highest score on lines dataset. 

The core difference between our method and ASC methods is that our method cuts noisy points since they do 

not match the lines/rings density and ASC tries to accommodate noisy points due to its vector quantization 

component. 

 

0% 10% 20% 30% 40% 50% 

Fig. 7. Two datasets used for noise robustness test contaminated by 10% to 50% noisy points. 
Fig. 7. Datasets used for noise robustness test contaminated by 10% to 50% noisy points.

noise, ASC methods start to drop in performance. On the other hand, our

method continues to score better than ASC methods with noise approaching

30% of the data. Even with 40% noise, our method delivered the highest

score on lines dataset. The core difference between our method and ASC

methods is that our method cuts noisy points since they do not match the

lines/rings density and ASC tries to accommodate noisy points due to its

vector quantization component.

4.5. Experiments for Integration with SpectralNet

For Integration with spectral clustering using deep neural networks (Spec-

tralNet), we used three synthetic datasets, three methods, four evaluation

metrics. The three datasets are: cc, aggregation, and compound, shown in

Fig. 9. Two of the three methods were designed as described by Shaham

et al. [33], where each data point is paired with k of its nearest neighbors

to form positive points. In our experiments we set k as k = 2 and k = 4.

Once positive pairs are constructed, an equal number of randomly selected

farther neighbors is set as negative pairs. In the third method we let the

proposed method detailed in Algorithm 1 to decide the number of positive

pairs. Then, an equal number of farther neighbors as set as negative pairs.
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(a) 

 
(b) 

Fig. 8. Results of noise robustness test; (a) results on lines datasets; (b) results on rings dataset (best viewed in color). 

5. Conclusion 

Spectral clustering is a clustering paradigm with heavy computational demands. These demands were closely 

studied in the literature, and many solutions were proposed. However, many of these solutions compromised 

on consistency of clustering, or local statistics that are crucial for sparseness and noise detection. We proposed 

Fig. 8. Results of noise robustness test; (a) results on lines datasets; (b) results on rings
dataset (best viewed in color).
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where $T$ and $L$ be ground truth labels and labels obtained through clustering respectively. $I(T;L)$ denotes 

the mutual information between $T$ and $L$, and $H(\cdot)$ denotes their entropy. We also used the total 

number of pairs as an indicator of computational efficiency. 

In \texttt{cc} dataset, our proposed method outperformed the method with fixed $k$. It got ARI score of 

0.800 with an increase of 30\% over its closest competitor. This performance was largely due to the higher 

number of pairs passed to Siamese net. Our method passed 21478 pairs on average, compared to 6000 and 

12000 pairs passed by $k=2$ and $k=4$ respectively. In \texttt{aggregation} dataset, $k=2$ was the best 

performer with ARI score of 0.808. Our method came behind $k=2$ by almost 10\%. However, the performance 

of fixed $k$ method dropped by 20\% when we run $k=4$. In \texttt{compound} dataset, our method was the 

best performer with ARI score of 0.705 with a difference of 15\% from the second performer. 

This experiment reveals that although Siamese nets are superior in building an affinity matrix, they still need 

an informative selection of positive and negative pairs. Fixing the number of positive pairs for all points limits 

the influence of points in dense regions. Points in dense regions should be able to pair with more nieghbors to 

strengthen intra-cluster connections. 

cc aggregation compound 
 

Fig. 9. Datasets used for SpectralNet experiments.

For evaluation metrics, we used clustering accuracy and ARI that are de-

scribed in equations 8 and 9 respectively. In addition to ACC and ARI we

used normalized mutual information (NMI) as an evaluation metric because

it was reported in the original SpectralNet paper [33]. NMI is defined as:

NMI(T, L) =
I(T ;L)

max{H(T ), H(L)}
, (11)

where T and L be ground truth labels and labels obtained through clustering

respectively. I(T ;L) denotes the mutual information between T and L, and

H(·) denotes their entropy. We also used the total number of pairs as an

indicator of computational efficiency.

Table 4 displays the results of our SpectralNet experiments. In cc dataset,

our proposed method outperformed the method with fixed k. Our method

achieved ARI score of 0.800 with an increase of 30% over its closest com-

petitor. This performance was largely due to the higher number of pairs

passed to Siamese net. Our method passed 21,478 pairs on average, com-

pared to 6,000 and 12,000 pairs passed by k = 2 and k = 4 respectively.
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Table 4. Results of experiments for Integration with SpectralNet for 10 runs. Four
rows for each dataset: ACC: mean accuracy ± standard deviation, ARI: mean adjusted
Rand index ± standard deviation, NMI: mean normalized mutual information ± standard
deviation, and Total pairs: the total number of positive and negative pairs passed to
Siamese net. Bold values are the best scores.
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  k = 2 k = 4 Ours 

cc 

ACC 82.36 ± 14.59 77.00 ± 15.27 93.35 ± 10.99 

ARI 0.504 ± 0.41 0.385 ± 0.40 0.800 ± 0.32 

NMI 0.568 ± 0.35 0.450 ± 0.36 0.810 ± 0.27 

Total pairs 6000.00 ± 0.00 12000.00 ± 0.00 21478 ± 127 

aggregation 

ACC 83.73 ± 06.00 67.98 ± 10.97 72.45 ± 09.55 

ARI 0.808 ± 0.07 0.599 ± 0.15 0.702 ± 0.10 

NMI 0.867 ± 0.05 0.714 ± 0.10 0.782 ± 0.09 

Total pairs 3152.00 ± 0.00 6304.00 ± 0.00 10760 ± 29 

compound 

ACC 68.97 ± 08.56 71.71 ± 08.23 79.50 ± 05.91 

ARI 0.545 ± 0.15 0.572 ± 0.15 0.705 ± 0.11 

NMI 0.617 ± 0.10 0.660 ± 0.09 0.776 ± 0.09 

Total pairs 1596.00 ± 0.00 3192.00 ± 0.00 5450 ± 48 

 

5. Conclusion 

Spectral clustering is a clustering paradigm with heavy computational demands. These demands were closely 

studied in the literature, and many solutions were proposed. However, many of these solutions compromised 

on consistency of clustering, or local statistics that are crucial for sparseness and noise detection. We proposed 

a series of refinement stages to the well-known k-nearest neighbor graph. The obtained graph can detect sparse 

clusters and noisy points. Also, our method was capable of delivering consistent clustering over multiple runs, 

since it was based on k-nearest neighbor graph with no random operations involved. Compared to approximate 

spectral clustering (ASC), the proposed method detected sparse clusters, and achieved accurate clustering with 

substantial noise. 

The future directions of this work lie in two areas: 1) improving memory efficiency, and 2) automatically 

finding number of neighbors included in the baseline distribution. For memory efficiency, our method still 

requires memory larger than ASC methods to store the graph. ASC benefits from reducing nodes through vector 

quantization. Reducing nodes in a deterministic way would improve the memory efficiency of this work. 

Additionally, the number of neighbors included in the baseline distribution was tuned manually. The baseline 

distribution was used as a reference to whether or not further edges will be eliminated. 

 

In aggregation dataset, k = 2 was the best performer with ARI score of

0.808. Our method scored lower ARI than k = 2, close to 10%. However, the

performance of k = 4 was worse than ours, 40% when compared to ground

truth. In compound dataset, our method was the best performer with ARI

score of 0.705 with a difference of 15% from the second performer.

This experiment reveals that although Siamese nets are superior in build-

ing an affinity matrix, they still need an informative selection of positive and

negative pairs. Fixing the number of positive pairs for all points limits the

influence of points in dense regions. Points in dense regions should be able

to pair with more neighbors to strengthen intra-cluster connections.
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5. Conclusion

Spectral clustering is a clustering paradigm with heavy computational

demands. These demands were closely studied in the literature, and many

solutions were proposed. However, many of these solutions compromised on

consistency of clustering, or local statistics that are crucial for sparseness and

noise detection. We proposed a series of refinement stages to the well-known

k-nearest neighbor graph. The obtained graph can detect sparse clusters and

noisy points. Also, our method was capable of delivering consistent clustering

over multiple runs, since it was based on k-nearest neighbor graph with no

random operations involved. Compared to approximate spectral clustering

(ASC), the proposed method detected sparse clusters, and achieved accurate

clustering with substantial noise.

The future directions of this work lie in two areas: 1) improving memory

efficiency, and 2) automatically finding number of neighbors included in the

baseline distribution. For memory efficiency, our method still requires mem-

ory larger than ASC methods to store the graph. ASC benefits from reducing

nodes through vector quantization. Reducing nodes in a deterministic way

would improve the memory efficiency of this work. Additionally, the number

of neighbors included in the baseline distribution was tuned manually. The

baseline distribution was used as a reference to whether or not further edges

will be eliminated.
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