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Abstract

Unsupervised domain adaptation aims to learn a task classifier that performs well on

the unlabeled target domain, by utilizing the labeled source domain. Inspiring results

have been acquired by learning domain-invariant deep features via domain-adversarial

training. However, its parallel design of task and domain classifiers limits the ability

to achieve a finer category-level domain alignment. To promote categorical domain

adaptation (CatDA), based on a joint category-domain classifier, we propose novel

losses of adversarial training at both domain and category levels. Since the joint clas-

sifier can be regarded as a concatenation of individual task classifiers respectively for

the two domains, our design principle is to enforce consistency of category predictions

between the two task classifiers. Moreover, we propose a concept of vicinal domains

whose instances are produced by a convex combination of pairs of instances respec-

tively from the two domains. Intuitively, alignment of the possibly infinite number

of vicinal domains enhances that of original domains. We propose novel adversarial

losses for vicinal domain adaptation (VicDA) based on CatDA, leading to Vicinal and

Categorical Domain Adaptation (ViCatDA). We also propose Target Discriminative

Structure Recovery (TDSR) to recover the intrinsic target discrimination damaged by

adversarial feature alignment. We also analyze the principles underlying the ability

of our key designs to align the joint distributions. Extensive experiments on several

benchmark datasets demonstrate that we achieve the new state of the art.
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domain adaptation, cross-domain weighting, domain augmentation

1. Introduction

Deep learning of neuron networks [1, 2] has achieved great success in many ma-

chine learning tasks, e.g. image classification [3] and semantic segmentation [4]. These

tasks generally assume that data learning and testing models are sampled from the

same distribution [5]. This assumption is easily violated in many practical applica-

tions, where data with easy access to labels are often from a domain different from (but

related to) that of data with no the access. To well apply a classifier learned on the

source domain to the target one for reducing its labeling cost, domain adaptation [5]

aims to reduce the distribution discrepancy between the two domains. In this work, we

focus on the unsupervised setting where the target domain has no labels.

Domain adaptation theories [6, 7] state that the expected target error is bounded by

the three terms: 1) the sum of the expected source error, 2) a distance metric measuring

the distribution discrepancy across domains, and 3) the inconsistency between labeling

functions of the two domains. Recent methods focus on minimizing the second 2) or

third 3) terms by learning domain-invariant features at the domain or category levels.

Among these methods, those based on domain-adversarial training [8, 9, 10, 11, 12]

achieve the current state of the art. They typically adopt a deep network that stacks two

parallel classifiers (i.e. the task and domain classifiers) on top of the feature extractor.

By adversarial training [13], the domain classifier is trained to distinguish features of

the source domain from those of the target domain, and the feature extractor is trained

to deceive the domain classifier and learn domain-invariant features.

Despite the progress at reducing domain discrepancy, the parallel design of task

and domain classifiers in these methods suggests that the two classifiers, with their

corresponding losses, independently back-propagate supervision signals, which lim-

its their ability to align the two domains towards the finer category level. In other

words, there possibly exists categorical mismatching between the aligned source and

target domains. Many recent works take steps to mitigate this limitation. For example,

MADA [9] weights the extracted features by corresponding category predictions from
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the task classifier as inputs of multiple category-wise domain classifiers. RCA [14]

matches the same-class labeled source instances and target instances pseudo-labeled

by the task classifier, via a joint domain-category classifier. Based on the joint classi-

fier, SymNet [15] enforces the domain- and category-level domain confusions on the

target and source domains respectively. However, MADA and RCA only utilize the

target-discriminative information from the task classifier and completely ignore that

from multiple domain classifiers or the joint classifier, resulting in an unreliable cate-

gorical match; besides, the task classifier may be redundant. Especially, SymNet takes

no account of the category-level confusion on the target domain and thus a lot of useful

information remains to be exploited.

To overcome these shortcomings, we propose novel adversarial losses at multi-

ple levels on both the source and target domains for categorical domain adaptation

(CatDA). Based on the joint classifier that can naturally play the roles of the source

and target task classifiers, CatDA applies multi-level adversarial training, where the

domain-level one aims to align the whole domains and the category-level one aims to

enhance the consistency of category predictions between two task classifiers; category-

level adversarial training is technically achieved by a heterogenous, cross-domain weight-

ing design that employs category predictions from the task classifier of one domain to

guide the domain-category predictions of the joint classifier on another domain, which

can achieve a reliable categorical match. In this work, we also explore a second direc-

tion of domain augmentation [16, 17] to push forward domain adaptation. Specifically,

we propose to generate a (theoretically) infinite number of augmented domains in the

vicinities of the source and target domains, i.e. the vicinal domains. Vicinal domains

are inspired by [18] whose instances are produced by a convex combination of pairs of

instances respectively from the source and target domains. Intuitively, the alignment

of vicinal domains suggests that of the original domains. We propose novel adversar-

ial losses for vicinal domain adaptation (VicDA) based on our adversarial losses for

CatDA, leading to our full version method Vicinal and Categorical Domain Adapta-

tion (ViCatDA). Recent works [11, 19, 20] tell that adversarial feature alignment could

damage the intrinsic discriminative structures of target data. To alleviate it, we also

propose Target Discriminative Structure Recovery (TDSR) to recover the damaged tar-
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get discriminative structures, via further fine-tuning the trained ViCatDA model by

a semantically anchored spherical k-means clustering algorithm [21]. For deep un-

derstanding, we also analyze the working mechanisms of our proposed key designs

in principle. Particularly, we explain our cross-domain weighting scheme from an

information-theoretic point of view, associated with optimization equilibrium in the

two-player game [22]. In this work, we conduct careful validation studies to verify the

efficacy of individual components of ViCatDA and we achieve the new state of the art

on several commonly used benchmark datasets. Our main contributions are as follows.

1) We propose novel adversarial losses at multiple levels on both the source and target

domains to promote categorical domain adaptation (CatDA). Based on the joint

domain-category classifier, the category-level adversarial loss of CatDA improves

over the domain-level one by a heterogenous, cross-domain weighting design that

enhances the consistency of category predictions between the source and target task

classifiers, leading to a reliable categorical match.

2) We propose a concept of vicinal domains and use the vicinal domains to augment

the alignment of the original domains. We propose novel adversarial losses for

vicinal domain adaptation (VicDA) based on our proposed adversarial losses for

CatDA, giving rise to the full version of our method termed Vicinal and Categorical

Domain Adaptation (ViCatDA).

3) To recover the intrinsic target discrimination damaged by adversarial feature align-

ment, we propose Target Discriminative Structure Recovery (TDSR), which fine-

tunes the trained ViCatDA model by semantically anchored spherical k-means.

4) We also explain the underlying mechanisms of enabling our proposed key designs

to reduce the domain discrepancy at a finer category level. Particularly, we explain

our proposed cross-domain weighting scheme by connecting it with information

theory and optimization equilibrium.

5) We conduct extensive and careful validation studies to verify the efficacy of indi-

vidual components of ViCatDA and TDSR. Notably, we achieve the state of the art

on several commonly used benchmark datasets.
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The rest of this paper is organized as follows. Section 2 briefly presents the related

works. Section 3 firstly introduces the three closely related methods of MADA [9],

RCA [14], and SymNet [15], and then describes our proposed method in detail. Section

4 analyzes our key designs in principle. Section 5 shows and discusses the experimental

results. Section 6 includes the conclusion and future work.

2. Related Works

2.1. Domain Adaptation Methods

Recent unsupervised domain adaptation (UDA) methods can be categorized into

the homogeneous and heterogeneous settings [23]. In this work, we focus on the ho-

mogeneous UDA setting. Inspired by domain adaptation theories [6, 7], recent UDA

methods learn domain-invariant deep features at the domain [8, 24, 25, 26, 27, 28] or

category [9, 10, 11, 12, 15, 19, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] level.

A popular UDA strategy is to directly minimize the domain discrepancy measured

by various metrics. For example, Gretton et al. [40] give the theoretical analysis for

comparing distributions and present a kernel-based metric of maximum mean discrep-

ancy (MMD); recently, Liu et al. [41] further advance the development of kernel two-

sample test by parameterizing kernels by deep neuron networks. After the seminal

work of [40], many MMD-based UDA methods have emerged, e.g. [25, 30, 31, 32].

For instance, JAN [31] proposes a joint maximum mean discrepancy (JMMD) cri-

terion, which is reduced to align the joint distributions of multiple domain-specific

layers across domains. TPN [32] minimizes the distance across prototypes (i.e. class

centroids) on data of source, target, and both domains. Other metrics inlcude central

moment discrepancy (CMD) [26] and association loss [34].

Another popular UDA strategy is adversarial feature alignment. Based on the cor-

nerstone [8], [24, 27] align whole domains of the source and target. CDAN [10] utilizes

multiplicative interactions between feature representations and category predictions.

MSTN [12] and PFAN [38] align labeled source centroid and pseudo-labeled target

centroid of each shared class. Some works [35, 36, 37] use individual task classi-

fiers for the two domains to detect non-discriminative features and learn discriminative
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features. VADA [39] constrains domain-adversarial training by penalizing cluster as-

sumption violation via entropy minimization. BSP [11] penalizes the largest singular

values of feature representations to increase feature discriminability. GAACN [42]

embeds an attention module in GAN to strengthen the discriminator, such that it can

distinguish transferable regions among images of the two domains. CTSN [43] consid-

ers the adaptation of tough target samples, by utilizing easy samples and the prediction

discrepancy between two individual classifiers. MADA [9] and RCA [14] utilize cate-

gory predictions from the task classifier to guide the training of category-wise domain

classifiers or the joint domain-category classifier on target data, which completely dis-

regard the target-discriminative information from multiple domain classifiers or the

joint classifier. SymNet [15] based on domain confusion [44] is sub-optimal to achieve

category-level domain alignment, since its category-level confusion fully neglects the

target-discriminative information.

Other UDA strategies are based on non-adversarial alignment of joint distributions

across domains [19, 29, 33]. TAT [19] freezes the feature extractor of a classification

model and trains its task classifier and domain discriminator on corresponding adver-

sarial examples, which fill the domain gap. DWT-MEC [29] relies on domain-specific

normalization layers to project feature distributions of the two domains to a common

spherical distribution. GPDA [33] defines a hypothesis space of task classifiers with

the Gaussian process and learns prediction consistency via the large-margin posterior

separation. Moreover, pseudo-label based methods [45, 46, 47] do self-training [48],

which uses the pseudo labels of network prediction as supervision of model training.

Differently, our CatDA applies multi-level adversarial training, where the category-

level adversarial loss improves over the domain-level one by a heterogenous, cross-

domain weighting design that enhances the consistency of category predictions be-

tween the source and target task classifiers for both the source and target data, thus

promoting the finer category-level domain alignment.

2.2. Domain Augmentation Methods

The previous work [49] learns a classifier on projected data of the source domain

in subspaces whose points are along the geodesic. GFK [16] models the domain dis-
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crepancy by integrating an infinite number of subspaces along the geodesic flow. DLID

[50] learns multiple features on augmented domains whose instances are sampled from

the source and target domains. Based on mixup [18], recent works [17, 51] generate

plausibly looking images of intermediate domains by an adversarial loss of GAN types.

Differently, our VicDA generates vicinal domains by synthesizing instances along

a convex combination path between the original source and target domains, and aligns

corresponding vicinal domains of the source and target, which can be naturally com-

bined with CatDA to enhance its alignment accuracy.

3. Method

Given {(xs
i , y

s
i )}ns

i=1 of labeled instances sampled from the source domain Ds, and

{xt
j}

nt
j=1 of unlabeled instances sampled from the target domain Dt, unsupervised do-

main adaptation aims to learn a feature extractor G(·) and a task classifier C(·) such

that the expected target error E(xt ,yt)∼Dt

[
Lcls(C(G(xt)), yt)

]
is low for a specified classi-

fication loss Lcls(·). Suppose the classification task has K categories, and accordingly

ys, yt ∈ {1, 2, · · · ,K}. Since the two domains by assumption follow different distribu-

tions, the main challenge is to minimize the domain discrepancy such that labeling on

the source domain can be transferred to the target domain to minimize its error.

State-of-the-art methods are based on domain-adversarial training [8, 11]. These

methods are usually based on a deep network comprising convolutional (conv) and

fully-connected (FC) layers, where the lower conv layers are used as the feature ex-

tractor G(·), upper FC layers are used as the task classifier C(·), and a domain classi-

fier D(·) of FC layers is also used on top of G(·), which is in parallel with C(·). The

adversarial signal of domain discrimination provided by D(·) aims to make features

learned at G(·) become domain-invariant, such that they are ready for use by C(·) for

classification of data on the target domain. However, the parallel design of C(·) and

D(·) suggests that they independently back-propagate supervision signals; even though

domain-adversarial training of D(·) would align at G(·) the source and target features

as a whole domain, the alignment is not expected to go finer to the category level, i.e.

there possibly exists categorical mismatching between the aligned source and target
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domains. Many of recent efforts are devoted to alleviating this issue, e.g. [9, 14, 15].

In this section, we first briefly introduce the three closely related works. Then, we

describe our proposed method in detail.

3.1. Brief Introduction of Closely Related Works

MADA [9]. Existing methods based on a single domain classifier [8, 24] disregard

discriminative structures of data when aligning the two domains, resulting in the false

alignment between different categories across domains. To reduce it, MADA uses

multiple category-wise domain classifiers {Fk}
K
k=1, each of which takes as input the

features weighted by the corresponding category prediction from the task classifier

C(·) (see Fig. 1(a)). Denote the cross-entropy loss as Lce(·), the adversarial objective

of MADA is

min
G,C

1
ns

ns∑
i=1

Lce(C(G(xs
i )), ys

i ) − λ
1

ns + nt

ns+nt∑
i=1

K∑
k=1

Lce(Fk(ŷi,kG(xi)), di), (1)

min
{Fk}

K
k=1

1
ns + nt

ns+nt∑
i=1

K∑
k=1

Lce(Fk(ŷi,kG(xi)), di), (2)

where λ is a hyper-parameter to trade-off the two loss terms in the unified optimization

problem, ŷi,k is the kth element of category prediction vector ŷi by C(·), and di is the

domain label for any instance xi, i.e. 0 for the source domain and 1 for the target one.

This objective aligns each instance to the several most related categories, such that

positive transfer can be promoted and negative transfer can be alleviated meanwhile.

RCA [14]. To further reduce the false alignment, instead of a binary adversarial loss

from a single domain classifier, RCA imposes a 2K-way adversarial loss from a joint

domain-category classifier F(·) (see Fig. 1(b)). The joint classifier considers the first K

as source categories and the last K as target categories, and is learned by classifying any

instance as its domain-category label, which naturally models a joint distribution over

domain and category. Here, pseudo labels of unlabeled target instances are predicted

by an additional task classifier C(·). Reversely, the feature extractor G(·) deceives F(·)

by misclassifying any instance in terms of the domain label while keeping the category
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consistent. The adversarial objective of RCA is written as

min
G,C

1
ns

ns∑
i=1

Lce(C(G(xs
i )), ys

i )+λ

 1
ns

ns∑
i=1

Lce(F(G(xs
i )), ys

i +K)+
1
nt

nt∑
j=1

Lce(F(G(xt
j)), ŷ

t
j)

 ,
(3)

min
F

1
ns

ns∑
i=1

Lce(F(G(xs
i )), ys

i ) +
1
nt

nt∑
j=1

Lce(F(G(xt
j), ŷ

t
j + K)), (4)

where ŷt
j = arg max

k
C(G(xt

j))[k] is the predicted pseudo label by C(·). The joint clas-

sifier elegantly integrates the domain and category information, such that the domain

alignment can be aware of category boundaries. On this basis, the above objective aims

to learn invariant feature representations for instances from the same category of the

two domains, which facilitates the alignment of class-conditional distributions across

domains while forming disjoint supports for different categories in the feature space.

SymNet [15]. SymNet considers the joint classifier F(·) as two task classifiers of

source F s(·) and target F t(·), and thus does not include an additional task classifier C(·)

(see Fig. 1(c)). SymNet proposes the domain- and category-level confusion losses on

target and source data respectively, each of which computes the cross entropy between

domain predictions and uniform distribution. The adversarial objective of SymNet is

min
F,F s,Ft

1
ns

ns∑
i=1

Lce(F s(G(xs
i )), ys

i ) +
1
ns

ns∑
i=1

Lce(F t(G(xs
i )), ys

i ) + (5)

1
ns + nt

ns+nt∑
i=1

Lce(

 K∑
k=1

F(G(xi))[k],
K∑

k=1

F(G(xi))[k + K]

 , di),

min
G

1
2ns

ns∑
i=1

(
Lce(F(G(xs

i )), ys
i ) +Lce(F(G(xs

i )), ys
i + K)

)
+ (6)

λ
1
nt

nt∑
j=1

−

0.5 log
K∑

k=1

F(G(xt
j))[k] + 0.5 log

K∑
k=1

F(G(xt
j))[k + K]

 ,
where F(·) has a softmax layer in the top. In Eq. (6), the first term on xs and the sec-

ond term on xt are for the domain- and category-level domain confusions respectively,

aiming to align the joint distributions of feature and category across domains. How-

ever, such a domain alignment is sub-optimal since each level of domain confusion is

performed on one domain only; especially, SymNet ignores the target-discriminative

information contained in category predictions from F s(·) and F t(·).
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(a) MADA

(b) RCA

(c) SymNet

(d) CatDA

Fig. 1: Network architectures and loss designs of MADA, RCA, SymNet, and our CatDA. G(·) is the fea-

ture extractor. (a) MADA [9] includes a task classifier C(·) and multiple category-wise domain classifiers

{Fk(·)}Kk=1. (b) RCA [14] contains a C(·) and a joint domain-category classifier F(·). (c) SymNet [15] only

comprises a F(·), but meanwhile considers it as two task classifiers of source F s(·) and target Ft(·). (d)

Our CatDA. Differently, CatDA based on adversarial training utilizes the target-discriminative information

contained in category predictions from F s(·) and Ft(·), i.e. the heterogenous, cross-domain weighting design.
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3.2. Categorical Domain Adaptation

Motivated to address the above issues, based on the joint classifier F(·) concate-

nating the source and target task classifiers of F s(·) and F t(·), we propose to apply

novel losses of adversarial training at multiple levels to probabilities of softmax out-

puts of F(·), F s(·), and F t(·), to promote categorical domain adaptation (CatDA). An

important technique wherein is a design of cross-entropy losses concerning probability

interactions between source and target category predictions.

Given an input instance x, denote the probability vectors of the softmax outputs of

F(G(x)), F s(G(x)), and F t(G(x)) respectively as

p(x) = F(G(x)) ∈ [0, 1]2K ; ps(x) = F s(G(x)),pt(x) = F t(G(x)) ∈ [0, 1]K . (7)

For ease of notations, we also write pk(x) (resp. ps
k(x) or pt

k(x)) for the kth element of

the probability vector p(x) (resp. ps(x) or pt(x)). We use p(x), ps(x), and pt(x) to define

our proposed adversarial losses, and also the loss for task classification. Adversarial

training aims to learn a domain-invariant feature extractor G(·), and also F s(·) and F t(·),

which share network parameters with F(·).

Loss for Category Discrimination. For our defined source and target task classifiers

F s(·) and F t(·), it is natural to expect their category predictions are corresponded. In

other words, for an instance x of the kth category, both ps
k(x) and pt

k(x) are expected to

be the elements of the highest scores respectively in ps(x) and pt(x). Since only source

instances are labeled, to achieve the above effect, we use {(xs
i , y

s
i )}ns

i=1 to simultaneously

train F s(·) and F t(·) with

Lcls(G, F) = Lcls(G, F s, F t) = −
1
ns

ns∑
i=1

log ps
ys

i
(xs

i ) −
1
ns

ns∑
i=1

log pt
ys

i
(xs

i ). (8)

The classification loss of Eq. (8) will be used together with the domain- and category-

level adversarial losses to constitute our objective of CatDA, as explained shortly.

Domain-Level Adversarial Loss. As illustrated in Fig. 1(d), our used network has

no an explicit domain classifier. To define a domain-level adversarial loss, we take

the first K neurons of the last layer of F(·) collectively as the source domain, and its
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last K neurons collectively as the target domain. We accordingly sum up the element

probabilities
∑K

k=1 pk(x) and
∑K

k=1 pk+K(x), and use standard binary cross entropy to

define our domain-level adversarial loss as

min
F
F D

adv(G, F) = −
1
ns

ns∑
i=1

log
K∑

k=1

pk(xs
i ) −

1
nt

nt∑
j=1

log
K∑

k=1

pk+K(xt
j),

min
G
GD

adv(G, F) = −
1
ns

ns∑
i=1

log
K∑

k=1

pk+K(xs
i ) −

1
nt

nt∑
j=1

log
K∑

k=1

pk(xt
j),

(9)

where we take the inverted (domain) label version of minimax loss [13, 24] to address

the issue of vanishing gradients, which splits the adversarial loss into two independent

ones to update network parameters involved in F(·) and G(·) respectively.

Category-Level Adversarial Loss. We have expected that the first and last K neurons

of the last layer of F(·) (i.e. neurons of the respective last layers of F s(·) and F t(·))

are corresponded in terms of category predictions, which means that for any instance x

from the two domains, py(x) and py+K(x) are of the highest probabilities (correspond-

ingly, ps
y(x) and pt

y(x) are respectively of the highest probabilities in ps(x) and pt(x)).

We try to enforce this expectation by simultaneously training F s(·) and F t(·) using the

classification loss of Eq. (8) on {(xs
i , y

s
i )}ns

i=1. Our category-level adversarial loss defined

over F(·) is based on this expectation as well.

A challenge still remains to implement category-level adversarial training on both

{(xs
i , y

s
i )}ns

i=1 and {xt
j}

nt
j=1, since for any target instance xt, we have no a reliable way to

specify its labeling. To address it, we propose a heterogenous, cross-domain weighting

scheme to aggregate category probability predictions of xt over all the K categories as

a proxy of its labeling, where weighting factors themselves are predicted pseudo labels

(probabilities) from the task classifiers F s(·) or F t(·). Based on the scheme, we again

use cross entropy to define our category-level adversarial loss as

min
F
F C

adv(G,F)=F C
adv(G,F,F s)=−

1
ns

ns∑
i=1

log pys
i
(xs

i )−
1
nt

nt∑
j=1

K∑
k=1

ps
k(xt

j) log pk+K(xt
j),

min
G
GC

adv(G,F)=GC
adv(G,F,F t)=−

1
ns

ns∑
i=1

log pys
i+K(xs

i )−
1
nt

nt∑
j=1

K∑
k=1

pt
k(xt

j) log pk(xt
j),

(10)
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where the product terms involving pseudo labels and log probabilities further enhance

the consistency of category predictions for target instances between F s(·) and F t(·),

since the two task classifiers are defined by the same FC layer of the concatenated

classifier F(·). The use of pseudo label predictions from the task classifier of one

domain to guide category probability predictions of F(·) on another domain (i.e. the

heterogenous, cross-domain weighting scheme) also improves the reliability of CatDA

in the early stage of training (cf. Fig. 4(b) for experimental evidence).

Remark. Since categorically corresponded discriminative training of F s(·) and F t(·)

are continuously enforced using the classification loss of Eq. (8) over the labeled source

data, pseudo label predictions of the target data from F s(·) or F t(·) will remain wrong in

the subsequent stage of training if they are wrong in the early stage of training. These

wrong pseudo label predictions will have no chance to be corrected if pseudo label

predictions from the task classifier of one domain are used to guide category proba-

bility predictions of F(·) on the same domain. Conversely, these wrong pseudo label

predictions will have a chance to be corrected if the proposed cross-domain weighting

scheme is used, since for any target instance, pseudo label predictions from the task

classifier of one domain could be right when those from the task classifier of another

domain are wrong, i.e. F s(xt) and F t(xt) could be complementary. Also because of Eq.

(8), pseudo label predictions of the target data from F s(·) or F t(·) that are right in the

early stage of training, are hard to be wrong in the subsequent stage of training. The

above analysis explains the effectiveness of our proposed scheme.

Overall Objective of CatDA. Combining the loss of Eq. (8) for task classification, and

the domain- and category-level adversarial losses of Eq. (9) and Eq. (10) gives the

overall training objective of CatDA as

min
F
Lcls(G, F) + F D

adv(G, F) + λF C
adv(G, F),

min
G

1
2
Lcls(G, F) + λGD

adv(G, F) + λGC
adv(G, F),

(11)

where we use Eq. (8) to update G(·) as well. This is to ensure that during adversarial

training, the respective category discrimination of F s(·) and F t(·) could be maintained,

which is neglected in SymNet. When minimizing over G(·), we halve the loss Lcls
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(a) (b)

Fig. 2: (a) An example to illustrate how instances of vicinal domains are synthesized. Domains are denoted

by ovals. Instances are denoted by circles. Intuitively, if the corresponding categories in the vicinal domains

ofDvα andDv1−α are well aligned, they will be well aligned in the source and target domains ofDs andDt .

Note that the source and target domains correspond to A and W of the Office-31 [52] dataset respectively.

Please refer to the appendix for more examples on other three datasets. (b) α ∼ Beta(β, β) with β = 0.2.

using a factor of 1/2 to normalize two flows of back-propagated gradients onto G(·),

which are respectively from F s(·) and F t(·) (i.e. the two terms in Eq. (8)). Fig. 1(d)

gives an illustration. We also use a penalty λ that is progressively increased from 0

to 1 (cf. Section 5.2 for its rule of equation), to suppress signals from a few terms of

Eq. (11), which could be less reliable in the early stage of training: λ before F C
adv and

GC
adv is for pseudo labels of the target data from F s(·) and F t(·), and λ before GD

adv is to

reduce the false alignment between different categories across the two domains.

3.3. Enhancement with Vicinal Domain Adaptation

Most of the existing methods pursue domain adaptation of the given Ds and Dt

themselves. There exists a vertical direction to pursue that generates (statistics or fea-

tures) of augmented domains from Ds and Dt, and improves domain adaptation by

leveraging these augmented domains [16, 17]. We are also motivated to contribute to

this direction that is not well-studied yet. Differently, we are inspired by the work [18]

and plainly generate augmented domains in the vicinities ofDs andDt (i.e. the vicinal

domains), whose instances are the convex combination of pairs of instances respec-

tively fromDs andDt, as illustrated in Fig. 2(a). Intuitively, ifDs andDt are perfectly

aligned, the generated vicinal domains are aligned as well. It is thus a sensible way

to align vicinal domains to improve the alignment of Ds and Dt. We propose novel
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adversarial losses for vicinal domain adaptation (VicDA) based on CatDA. We term

our full version method as Vicinal and Categorical Domain Adaptation (ViCatDA).

Technically, given α ∈ [0, 1], we denote a vicinal domain as Dvα = {x
vα
l }

nvα
l=1, where

nvα is the number of instances on Dvα . The instance xvα is generated by a convex

combination of randomly sampled xs ∈ Ds and xt ∈ Dt as

xvα = αxs + (1 − α)xt. (12)

We follow mixup [18] to sample α from a beta distribution Beta(β, β) with β = 0.2 (cf.

Fig. 2(b)), which means that a theoretically infinite number of vicinal domains {Dvα }

can be generated. Assuming a total of nv instances are generated for {Dvα }, we propose

the VicDA version of domain-level adversarial loss that extends the loss in Eq. (9) as

min
F
F VD

adv (G, F) = −
1
nv

nv∑
l=1

α log
K∑

k=1

pk(xvα
l ) + (1 − α) log

K∑
k=1

pk+K(xvα
l )

 ,
min

G
GVD

adv(G, F) = −
1
nv

nv∑
l=1

α log
K∑

k=1

pk+K(xvα
l ) + (1 − α) log

K∑
k=1

pk(xvα
l )

 ,
(13)

where for any instance xvα ∈ Dvα , the log of collective probabilities over either the first

or the last K neurons of F(·) is weighted by α to enforce the labeling of vicinal domain

Dvα . We similarly propose our VicDA version of category-level adversarial loss by

extending the loss in Eq. (10) as

min
F
F VC

adv (G, F) = −
1
nv

nv∑
l=1

(
α log pys (xvα

l ) + (1 − α)
K∑

k=1

ps
k(xt

l) log pk+K(xvα
l )

)
,

min
G
GVC

adv(G, F) = −
1
nv

nv∑
l=1

(
α log pys+K(xvα

l ) + (1 − α)
K∑

k=1

pt
k(xt

l) log pk(xvα
l )

)
,

(14)

where xt
l with l ∈ {1, . . . , nv} denotes the target instance that generates xvα

l by Eq. (12).

Replacing the terms of F D
adv, F C

adv, GD
adv, and GC

adv in the overall objective of Eq. (11)

of CatDA with the respective VicDA versions of F VD
adv , F VC

adv , GVD
adv, and GVC

adv gives our

overall objective of ViCatDA

min
F
Lcls(G, F) + F VD

adv (G, F) + λF VC
adv (G, F),

min
G

1
2
Lcls(G, F) + λGVD

adv(G, F) + λGVC
adv(G, F).

(15)
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ViCatDA can stabilize adversarial training by regularizing gradients of F(·), F s(·), and

F t(·), leading to a stable source of gradient information to G(·) [18]. Experiments show

the efficacy of enhancing CatDA with VicDA to have ViCatDA. For more clarity, we

summarize the main steps of the training process of ViCatDA in the appendix.

3.4. Target Discriminative Structure Recovery

Motivated by a fact that the adversarial feature alignment could damage the in-

trinsic discriminative structures of unlabeled target data, as discussed in recent works

[11, 19, 20]. In this work, we also propose Target Discriminative Structure Recovery

(TDSR) to recover the damaged target discriminative structures, via further fine-tuning

the trained ViCatDA model on unlabeled target samples with cluster labels assigned by

the established data clustering technique [21, 53]. Data clustering is to group unlabeled

instances into semantically meaningful clusters in a data-driven way, i.e. discovering

the intrinsic discriminative structures of unlabeled data. Among various clustering al-

gorithms, we choose the simple but flexible spherical k-means [21], which enjoys both

good solution quality and high computational efficiency. Specifically, it uses the cosine

dissimilarity to perform prototype-based data partitioning. We term this algorithm as

semantically anchored spherical k-means in that we use a trained ViCatDA as the initial

clustering model, which has already contained rich semantic information.

At each training epoch, we first estimate the class label ŷt
j of each target sample xt

j

in the maximum likelihood principle, i.e. taking the class with the highest probability

predicted by the target task classifier F t(·), and obtain the cluster center µt
k by summing

the l2 normalized feature vectors of target samples with same category prediction as

µt
k =

nt
k∑

j=1

G(xt
j)

‖G(xt
j)‖2

, s.t. ŷt
j = k (16)

where nt
k denotes the number of target samples predicted as the kth class. Starting with

semantically anchored center initialization (Eq. (16)), we refine clusters by alternat-

ing the following two steps. 1) Updating the cluster assignment of each xt
j based on

the minimum cosine dissimilarity principle, i.e. ŷt
j = arg min

k
1
2 (1 −

〈G(xt
j), µ

t
k〉

‖G(xt
j)‖2 ‖µ

t
k‖2

). 2)

Updating the cluster center based on the new cluster assignments with Eq. (16). This
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process repeats until no change in cluster assignments. Then, based on the final cluster

assignments of target samples, we optimize the objective of TDSR as

min
G,Ft
Ltdsr(G, F t) = −

1
nt

nt∑
j=1

log pt
ŷt

j
(xt

j). (17)

4. Method Analysis

4.1. Cross-Domain Weighting Scheme

In this section, we analyze our proposed cross-domain weighting scheme from the

perspective of information theory.

Let p1:K(x) and pK+1:2K(x) be the subvectors containing the first K and last K el-

ements of p(x) respectively. Let DKL(p||q) be the Kullback-Leibler (KL) divergence

between two probability vectors p and q, which are defined on the same probability

space. Let H(p) be the information entropy of a probability vector p. When mini-

mized over the joint classifier F(·), our proposed category-level target adversarial loss

is written as

F C
t-adv = −

1
nt

nt∑
j=1

K∑
k=1

ps
k(xt

j) log pk+K(xt
j)

= −
1
nt

nt∑
j=1

K∑
k=1

ps
k(xt

j) log
pk+K(xt

j)

ps
k(xt

j)
−

1
nt

nt∑
j=1

K∑
k=1

ps
k(xt

j) log ps
k(xt

j)

=
1
nt

nt∑
j=1

DKL(ps(xt
j)||pK+1:2K(xt

j)) +
1
nt

nt∑
j=1

H(ps(xt
j)).

(18)

Similarly, when minimized over the feature extractor G(·), our proposed category-level

target adversarial loss is written as

GC
t-adv =

1
nt

nt∑
j=1

DKL(pt(xt
j)||p1:K(xt

j)) +
1
nt

nt∑
j=1

H(pt(xt
j)). (19)

Minimizing F C
t-adv over F(·) is equivalent to reduce the KL-divergence between ps(xt

j)

and pK+1:2K(xt
j) while decreasing the entropy of ps(xt

j); minimizing GC
t-adv over G(·)

is equivalent to reduce the KL-divergence between pt(xt
j) and p1:K(xt

j) while decreas-

ing the entropy of pt(xt
j). Such an adversarial optimization suggests that F(·) is fully

confused, i.e. reaching an equilibrium in the two-player game [22], only when the
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probability vectors p1:K(xt) and pK+1:2K(xt) are the same as a unimodal distribution

with the maximum value of 0.5 for any target instance xt. The optimized result mani-

fests the complete consistency of category predictions between F s(·) and F t(·) in terms

of both the predicted category label and prediction confidence. If pseudo label pre-

dictions from the task classifier of one domain are used to guide category probability

predictions of F(·) on this domain, category predictions between F s(·) and F t(·) may

be inconsistent in terms of the predicted category label.

These analyses concretize the theoretical result of labeling consistency across do-

mains [6, 7] and further explain the effectiveness of our cross-domain weighting scheme.

4.2. Multi-Level Adversarial Training

In this section, we provide more explanations for the loss in Eq. (10) and the

relation between the losses in Eq. (9) and Eq. (10).

The motivation of our category-level adversarial loss of Eq. (10) is to achieve

category-level alignment of features and classifiers across domains. Minimizing Eq.

(10) over the joint classifier F(·) approaches optimal solutions of p(xs) = [ysT , 0T ]T

for any (xs, ys) where ys is K-dimensional one-hot label of xs and 0 is a K-dimensional

all-zero vector, and p(xt) = [0T ,ps(xt)T ]T for any xt, by adapting decision bound-

aries so that the task classifier of one domain can distinguish categories of instances

of this domain; minimizing Eq. (10) over the feature extractor G(·) approaches those

of p(xs) = [0T , ysT ]T and p(xt) = [pt(xt)T , 0T ]T by learning features so that the task

classifier of one domain can discriminate categories of instances of another domain.

Minimizing Eq. (9) over F(·) approaches optimal solutions of
∑K

k=1 pk(xs) = 1

and
∑K

k=1 pk+K(xs) = 0, and
∑K

k=1 pk(xt) = 0 and
∑K

k=1 pk+K(xt) = 1; minimizing

Eq. (9) over G(·) approaches those of
∑K

k=1 pk(xs) = 0 and
∑K

k=1 pk+K(xs) = 1, and∑K
k=1 pk(xt) = 1 and

∑K
k=1 pk+K(xt) = 0. Intuitively, Eq. (9) tries to classify any instance

to either source or target domain by F(·), and Eq. (10) tries to identify its (pseudo) cat-

egory label by the task classifier of this domain. Eq. (10) improves over Eq. (9) by

driving domain-adversarial training from the domain to category level, i.e. competing

between the corresponding categories of the source and target domains.
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4.3. Vicinal Domain Adaptation

In this section, we further clarify our proposed vicinal domain adaptation (VicDA).

VicDA produces instances of vicinal domains via a convex combination of pairs of

raw instances (e.g. images) respectively from the source and target domains, as shown

in Fig. 2(a). It may be less intuitive to train a model using such virtual instances, espe-

cially when raw instances are of different categories or under varying imaging condi-

tions, however, one can understand this strategy as data augmentation that extends the

benign behavior of trained model linearly between instances [18]. This strategy is used

in mixup [18] for supervised learning on a single domain; we extend it for multi-level

adversarial domain adaptation. Note that our VicDA formulation in the losses of Eq.

(13) and Eq. (14) is not based on target pseudo labels, where α is simply the variable in-

dicating the closeness of a virtual instance to the source or target domains. The smaller

α, the closer a virtual instance is to the target domain. Thus, we should impose less

force on its feature alignment to the target domain, such that the originally well-aligned

categories between the source and target domains will not be incorrectly mapped [54].

This is the essential cause of weighting the terms of aligning a virtual instance to the

target domain in Eq. (13) and Eq. (14) by α. While analysis on the theoretical stability

of VicDA may be pursued, our empirical results have already confirmed its efficacy.

5. Experiments

5.1. Datasets

Office-31 [52] is a popular benchmark dataset for visual domain adaptation, which

contains 4, 110 images of 31 object categories shared by three domains: Amazon (A),

Webcam (W), and DSLR (D). We evaluate on all the 6 adaptation tasks.

Office-Home [55] is a much more challenging benchmark dataset, which includes

about 15, 500 images of 65 object categories shared by four extremely distinct domains:

Artistic images (Ar), Clip Art (Cl), Product images (Pr), and Real-World images (Rw).

We evaluate on all the 12 adaptation tasks.

VisDA-2017 [56] is a difficult simulation-to-real benchmark. There are over 280K

images of 12 categories shared by: Training (Synthetic), Validation (Real), and Test-

19



ing. Images of the domain Training are collected by rendering 3D models and the other

two domains comprise real-world images. We evaluate on the Synthetic→Real task.

Digits is a commonly used benchmark that contains SVHN (S) [57], MNIST (M)

[2], and USPS (U) [58]. SVHN has colored images of multiple blurred digits cropped

from real scenes. MNIST includes grayscale digit images with a clean background.

USPS involves grayscale hand-written digit images with unconstrained writing style.

Each digits dataset has a training set and a test set. we follow the evaluation protocol in

[35, 36] and use the training set for training and the test set for testing. We evaluate on

the four tasks of S→M, M→U, M*→U*, and U→M. For M→U and M*→U*, part or

all instances of training sets of MNIST and USPS are used for training respectively.

We provide the statistical details of the domains of the four datasets in the appendix.

5.2. Implementation Details

For Office-31, Office-Home, and VisDA-2017, we follow the standard evaluation

protocol for unsupervised domain adaptation [8, 15]. For each task, all labeled source

instances and all unlabeled target instances are used as training data, and we evaluate

different methods on unlabeled target training data. For Office-31 and Office-Home,

based on ResNet-50 [1], we report classification results of mean(±standard deviation)

on center-crop images over three random trials. For VisDA-2017, based on ResNet-

101 [1], we report the classification result of each category. All results are obtained

from the target task classifier F t(·). Each base network is pre-trained on ImageNet [3].

We implement our proposed methods by PyTorch. We fine-tune G(·) and train F(·)

from scratch via adversarial training where the learning rate of F(·) is 10 times that of

G(·). We follow [8] to use the SGD optimizer with momentum 0.9 and weight decay

0.0001, and the training schedule: the learning rate of F(·) is adjusted by ηp =
η0

(1+αp)β ,

where p denotes the process of training epochs that is normalized to be in [0, 1], and

we set η0 = 0.01, α = 10, and β = 0.75; the penalty λ is increased from 0 to 1 by

λp =
2

1+exp(−γp) − 1, where we set γ = 10. For Digits, we follow [35, 36] to use

LeNet [2] as the backbone network, adopt the same experimental setting, and report

the classification result of mean±standard deviation over five random trials.
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Table 1: Ablation study (%) on Office-31 (ResNet-50). Please refer to Section 5.3 to know these methods.

Methods A→W D→W W→ D A→ D D→ A W→ A Avg

No Adaptation [1] 78.7±0.1 96.4±0.1 99.3±0.1 83.1±0.2 64.7±0.0 65.9±0.1 81.4

DANN [8] 81.7±0.2 98.0±0.2 99.8±0.0 83.9±0.7 66.4±0.2 66.0±0.3 82.6

MADA [9] 90.0±0.1 97.4±0.1 99.6±0.1 87.8±0.2 70.3±0.3 66.4±0.3 85.2

RCA [14] 90.4±0.2 98.8±0.1 100.0±0.0 87.6±0.3 72.2±0.3 72.6±0.2 86.9

SymNet [15] 87.9±0.1 98.4±0.2 99.9±0.1 90.8±0.5 67.4±0.6 69.7±0.7 85.7

ViDANN 82.8±0.2 97.5±0.2 99.8±0.0 84.6±0.1 66.6±0.1 66.1±0.2 82.9

ViRCA 91.4±0.1 99.1±0.1 100.0±0.0 89.2±0.5 73.0±0.3 73.9±0.5 87.8

CatDA (w/o D-adv and C-adv) 82.8±0.1 98.6±0.1 99.9±0.1 84.3±0.1 66.9±0.3 66.7±0.0 83.2

CatDA (w/o C-adv) 85.2±0.6 98.4±0.1 99.9±0.1 85.2±0.3 70.1±0.3 68.1±0.3 84.5

ViCatDA (w/o VC-adv) 85.0±0.2 98.8±0.1 100.0±0.0 85.4±0.2 70.4±0.1 68.3±0.0 84.7

CatDA (w/o D-adv) 91.2±0.1 99.1±0.1 100.0±0.0 90.2±0.3 73.0±0.7 71.1±0.3 87.4

ViCatDA (w/o VD-adv) 91.9±0.1 99.2±0.0 100.0±0.0 91.1±0.2 74.7±0.3 71.2±0.2 88.0

CatDA (w. same-domain weighting) 85.9±0.2 98.1±0.2 100.0±0.0 85.5±0.2 71.1±0.1 69.6±0.2 85.0

CatDA (w. mixup) 94.0±0.4 98.8±0.1 100.0±0.0 91.1±0.5 75.6±0.1 73.5±0.3 88.8

CatDA 94.5±0.6 99.0±0.1 100.0±0.0 90.7±0.4 74.2±0.2 73.2±0.1 88.6

ViCatDA 94.5±0.2 99.2±0.1 100.0±0.0 92.3±0.1 76.5±0.2 74.2±0.1 89.5

ViCatDA+TDSR 94.7±0.3 99.2±0.0 100.0±0.0 94.4±0.3 76.8±0.1 74.4±0.1 89.9

5.3. Quantitative and Qualitative Validation

Ablation Study. We conduct ablation study on Office-31 [52] based on ResNet-50 [1].

We begin with the very baseline “No Adaptation”, which simply fine-tunes the base

network on source data. The second, third, fourth, and fifth baselines are respectively

DANN [8], MADA [9], RCA [14], and SymNet [15], without applying entropy min-

imization [59] (for a fair comparison). To test how our VicDA affects DANN and

RCA, we apply it to DANN and RCA as the sixth and seventh baselines, denoted by

“ViDANN” and “ViRCA” respectively. To investigate how much the key components

of CatDA and ViCatDA improve the performance, we remove both the domain- and

category-level adversarial losses of Eq. (9) and Eq. (10) and their VicDA versions of

Eq. (13) and Eq. (14), or only the category-level one of Eq. (10) and its VicDA version

of Eq. (14), or only the domain-level one of Eq. (9) and its VicDA version of Eq.

(13) from the overall objectives of Eq. (11) and Eq. (15), denoted by “CatDA (w/o

D-adv and C-adv)”, “CatDA (w/o C-adv)” and “ViCatDA (w/o VC-adv)”, and “CatDA
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(w/o D-adv)” and “ViCatDA (w/o VD-adv)”, respectively. To verify the efficacy of our

cross-domain weighting scheme, we train a CatDA using pseudo label predictions from

the task classifier of one domain to guide category probability predictions of F(·) on

this domain, denoted by “CatDA (w. same-domain weighting)”. To compare VicDA to

mixup [18], we train a CatDA with mixup, denoted by “CatDA (w. mixup)”.

The results are reported in Table 1. We have the following observations. 1) DANN

improves over No Adaptation and CatDA (w/o C-adv) improves over CatDA (w/o

D-adv and C-adv), certifying the efficacy of the domain-level adversarial loss. 2)

CatDA (w/o D-adv) outperforms CatDA (w/o D-adv and C-adv) and CatDA (w/o C-

adv), testifying the effectiveness of our proposed category-level adversarial loss. 3)

ViCatDA improves over CatDA (w. mixup) and CatDA, ViCatDA (w/o VD-adv) im-

proves over CatDA (w/o D-adv), ViCatDA (w/o VC-adv) improves over CatDA (w/o

C-adv), ViDANN improves over DANN, and ViRCA improves over RCA, verifying

the usefulness of VicDA. Note that VicDA cooperates best with CatDA and RCA,

which are based on the joint domain-category classifier. 4) CatDA significantly outper-

forms CatDA (w. same-domain weighting), verifying the efficacy of our cross-domain

weighting scheme. 5) CatDA and ViCatDA exceed MADA, RCA, and SymNet by

a large margin, confirming the superiority of our methods on finer category-level do-

main alignment. The empirical evidence corroborates the method analysis in Section

4. 6) ViCatDA+TDSR further improves the performance over ViCatDA, verifying the

effectiveness of TDSR on recovering the intrinsic target discrimination.

Feature Visualization. We use t-SNE [60] to visualize features of the source and target

domains by No Adaptation, DANN, CatDA, and ViCatDA on A→W in Fig. 3. The

two domains are not well aligned by No Adaptation, better aligned by DANN but their

corresponding categories are not well aligned. The two domains and their correspond-

ing categories are well aligned while different categories are well discriminated by our

methods, confirming their efficacy in achieving the finer category-level alignment.

Convergence Performance. We compare the convergence performance of No Adapta-

tion, DANN, CatDA, and ViCatDA, in terms of test error on A→W, in Fig. 4(a). We

can observe that our methods converge faster and smoother than the compared ones. In
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(a) No Adaptation (b) DANN

(c) CatDA (d) ViCatDA

Fig. 3: The t-SNE visualization of the feature alignment between the source and target domains. Samples of

plotting are from the adaptation task A→W in Table 1. Note that different colors denote different categories.

(a) (b)

Fig. 4: (a) Convergence by No Adaptation, DANN, CatDA, and ViCatDA, and (b) training process of our pro-

posed cross-domain weighting scheme (CatDA) and the degenerate same-domain weighting one (CatDA*),

on A→W. “(F s)” and “(Ft)” denote results respectively from the source and target task classifiers.

the early stage of training (e.g. the first 25 epochs), the test error of CatDA decreases

rapidly and then stabilizes at a certain level, indicating the improvement of training

reliability. Fig. 4(b) compares the training process of our proposed heterogeneous,
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(a) ViCatDA (F s) (b) ViCatDA (Ft)

Fig. 5: Confusion matrix for the target domain on A→W. (Zoom in to see the exact class names!)

cross-domain weighting scheme (CatDA) and the degenerate same-domain weighting

one (CatDA*). We can observe that in the early stage of training (e.g. the first 25

epochs), CatDA has a smaller test error with a smaller fluctuation than CatDA*, in-

dicating that our proposed heterogeneous, cross-domain weighting scheme indeed im-

proves the reliability and stability of model training. Especially, in CatDA, F t and F s

synchronously improve the classification of target data whereas in CatDA*, the target

task classifier F t degenerates to the source one F s in terms of the test error. This reflects

that our proposed CatDA takes advantage of the complementarity between discrimina-

tive information of the source and target domains.

Consistency Verification. In Fig. 5, we report confusion matrices when our ViCatDA

converges, i.e. class-wise classification accuracy by two task classifiers of source F s(·)

and target F t(·) on A→W. We also draw statistical histograms of maximum category

probabilities predicted by F s(·) and F t(·), and their prediction discrepancy in Fig. 6.

We can observe the consistency between F s(·) and F t(·) in terms of both the predicted

category label and prediction confidence, verifying the method analysis in Section 4.1.

Parameter Sensitivity. To evaluate the effect of α ∼ Beta(β, β), we do experiments by

varying β ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. Beta distributions with different β are illustrated

in the appendix. Table 2 reports the results on the commonly used Office-31 [52]

benchmark and ResNet-50 [1] backbone. We can observe that with a higher probability
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Fig. 6: Statistical histogram of maximum category probabilities predicted by F s(·) and Ft(·) of ViCatDA,

and their prediction discrepancy for all target instances on A→W.

Table 2: Effect evaluation (%) of the parameter α ∼ Beta(β, β) by varying β on Office-31 (ResNet-50).

Methods A→W D→W W→ D A→ D D→ A W→ A Avg

β = 0.2 94.5±0.2 99.2±0.1 100.0±0.0 92.3±0.1 76.5±0.2 74.2±0.1 89.5

β = 0.4 94.0±0.4 99.2±0.1 100.0±0.0 91.4±0.4 75.3±0.3 73.2±0.4 88.9

β = 0.6 93.4±0.9 99.2±0.0 100.0±0.0 90.8±0.6 75.7±0.8 72.2±0.4 88.6

β = 0.8 92.2±0.4 99.2±0.1 100.0±0.0 90.8±0.8 75.4±0.2 71.6±0.7 88.2

β = 1.0 90.6±0.3 99.2±0.1 100.0±0.0 90.6±0.6 74.6±0.5 70.2±0.4 87.5

density about 0.5, i.e. a larger β, the averaged classification performance degrades. This

suggests that more signals of vicinal domain adaptation would be more beneficial for

adaptation on the original source and target domains.

Complementation to Popular Techniques. Both entropy minimization (ENT) [59] and

consistency enforcing (CON) [61] are classical semi-supervised learning techniques,

which are popular in domain adaptation community [14, 39, 62]; to examine whether

our proposed ViCatDA can be complementary to the two techniques, we do experi-

ments that combine ViCatDA with ENT or CON on the realistically significant setting

Synthetic→Real of the VisDA-2017 benchmark [56]. Specifically, ENT enforces the

task classifier to output a unimodal distribution over category probabilities for target

data, such that decision boundaries lie in the low-density region. CON penalizes the

inconsistency between category predictions of perturbed copies of the same target in-

stance. Here, we adopt the same data augmentation operations as [29] and use the
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Table 3: Results (%) on Office-31 (ResNet-50).

Methods A→W D→W W→ D A→ D D→ A W→ A Avg

No Adaptation [1] 78.7±0.1 96.4±0.1 99.3±0.1 83.1±0.2 64.7±0.0 65.9±0.1 81.4

DANN [8] 81.7±0.2 98.0±0.2 99.8±0.0 83.9±0.7 66.4±0.2 66.0±0.3 82.6

JAN-A [31] 86.0±0.4 96.7±0.3 99.7±0.1 85.1±0.4 69.2±0.4 70.7±0.5 84.6

MADA [9] 90.0±0.1 97.4±0.1 99.6±0.1 87.8±0.2 70.3±0.3 66.4±0.3 85.2

GAACN [42] 90.2 98.4 100.0 90.4 67.4 67.7 85.6

VADA[39] 86.5±0.5 98.2±0.4 99.7±0.2 86.7±0.4 70.1±0.4 70.5±0.4 85.4

MCD [36] 88.6±0.2 98.5±0.1 100.0±0.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5

RCA [14] 90.4±0.2 98.8±0.1 100.0±0.0 87.6±0.3 72.2±0.3 72.6±0.2 86.9

SAFN+ENT [62] 90.1±0.8 98.6±0.2 99.8±0.0 90.7±0.5 73.0±0.2 70.2±0.3 87.1

rRevGrad+CAT [63] 94.4±0.1 98.0±0.2 100.0±0.0 90.8±1.8 72.2±0.6 70.2±0.1 87.6

CTSN [43] 90.6±0.3 98.6±0.5 99.9±0.1 89.3±0.3 73.7±0.4 74.1±0.3 87.7

SymNet+ENT [15] 90.8±0.1 98.8±0.3 100.0±0.0 93.9±0.5 74.6±0.6 72.5±0.5 88.4

TAT [19] 92.5±0.3 99.3±0.1 100.0±0.0 93.2±0.2 73.1±0.3 72.1±0.3 88.4

BSP+CDAN [11] 93.3±0.2 98.2±0.2 100.0±0.0 93.0±0.2 73.6±0.3 72.6±0.3 88.5

CatDA 94.5±0.6 99.0±0.1 100.0±0.0 90.7±0.4 74.2±0.2 73.2±0.1 88.6

ViCatDA 94.5±0.2 99.2±0.1 100.0±0.0 92.3±0.1 76.5±0.2 74.2±0.1 89.5

ViCatDA+TDSR 94.7±0.3 99.2±0.0 100.0±0.0 94.4±0.3 76.8±0.1 74.4±0.1 89.9

KL-divergence between probability vectors of the two different copies predicted by the

joint classifier F(·) as the consistency loss. The results are reported in Table 5. As

we can see, with ENT or CON to regularize the target data structure, ViCatDA further

improves the classification accuracy of target data by 1.4% and 4.9% respectively.

5.4. Object Classification

In this section, we compare our proposed method with existing ones on Office-

31 [52], Office-Home [55], and VisDA-2017 [56] in Tables 3, 4, and 5 respectively,

where results of existing methods are quoted from their respective papers or [10, 19,

29, 36]. Our proposed ViCatDA improves the performance on hard adaptation tasks,

e.g. D → A and W → A, and on the difficult dataset of Office-Home with more

categories and larger size, verifying the effectiveness of ViCatDA. On the realistically

significant Synthetic→Real task, ViCatDA with the KL-divergence based consistency
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Table 4: Results (%) on Office-Home (ResNet-50).

Methods Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

No Adaptation [1] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [30] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN [8] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN [31] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

SE [64] 48.8 61.8 72.8 54.1 63.2 65.1 50.6 49.2 72.3 66.1 55.9 78.7 61.5

DWT-MEC [29] 50.3 72.1 77.0 59.6 69.3 70.2 58.3 48.1 77.3 69.3 53.6 82.0 65.6

TAT [19] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8

GAACN [42] 53.1 71.5 74.6 59.9 64.6 67.0 59.2 53.8 75.1 70.1 59.3 80.9 65.8

BSP+CDAN [11] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3

SAFN [62] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3

SymNet+ENT [15] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6

CatDA 49.3 72.8 78.2 63.7 70.7 72.5 64.3 50.2 79.2 73.4 56.7 82.3 67.8

ViCatDA 50.9 74.7 78.8 64.8 71.7 74.4 64.5 52.4 80.4 74.5 57.4 83.2 69.0

ViCatDA+TDSR 56.1 75.4 78.8 65.0 71.9 74.4 64.5 55.1 80.4 74.5 61.1 83.2 70.0

Table 5: Results (%) on VisDA-2017 (ResNet-101). Please refer to Section 5.3 to know ENT and CON.

Methods plane bcycl bus car horse knife mcycl person plant sktbrd train truck mean

No Adaptation [1] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

DANN [8] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

DAN [30] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

MCD [36] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

GPDA [33] 83.0 74.3 80.4 66.0 87.6 75.3 83.8 73.1 90.1 57.3 80.2 37.9 73.3

ADR [35] 87.8 79.5 83.7 65.3 92.3 61.8 88.9 73.2 87.8 60.0 85.5 32.3 74.8

BSP+CDAN [11] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9

TPN [32] 93.7 85.1 69.2 81.6 93.5 61.9 89.3 81.4 93.5 81.6 84.5 49.9 80.4

CatDA 93.9 71.3 75.9 56.0 86.3 92.4 86.0 80.0 87.9 55.8 89.3 40.8 76.3

ViCatDA 93.9 67.3 78.6 66.9 89.3 88.4 91.0 77.9 90.2 68.2 88.4 31.8 77.7

ViCatDA+TDSR 92.8 76.4 80.2 64.0 88.4 92.1 87.9 78.9 88.0 81.8 89.6 42.1 80.2

ViCatDA+ENT 92.2 76.4 79.3 68.1 92.2 91.5 90.4 79.8 93.7 67.0 90.7 28.4 79.1

ViCatDA+CON 95.9 76.5 89.0 71.1 91.8 89.2 92.4 79.6 92.9 90.8 88.8 33.3 82.6

enforcing loss (CON), achieves the best result, confirming the validity of ViCatDA

and the excellent effect of consistency enforcing on reducing simulation-to-real shift.

ViCatDA consistently performs better than the compared methods on the three datasets,
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Table 6: Results (%) on Digits (LeNet).

Methods S→M M→ U M*→ U* U→M Avg

No Adaptation [2] 67.1 76.7 79.4 63.4 71.7

DAN [30] 71.1 - 81.1 - -

DANN [8] 71.1 77.1±1.8 85.1 73.0±0.2 76.6

MSTN [12] 91.7±1.5 92.9±1.1 - - -

TPN [32] 93.0 92.1 - 94.1 -

PFAN [38] 93.9±0.8 95.0±1.3 - - -

ADR [35] 94.1±1.37 91.3±0.65 - 91.5±3.61 -

GAACN [42] 94.6 95.4 - 98.3 -

DM-ADA [51] 95.5±1.1 94.8±0.7 96.7±0.5 94.2±0.9 95.3

ASSC [34] 95.7±1.5 - - - -

MCD [36] 96.2±0.4 94.2±0.7 96.5±0.3 94.1±0.3 95.3

CTSN [43] 97.1±0.3 96.1±0.3 - 97.3±0.2 -

CatDA 96.4±0.2 95.0±0.4 97.0±0.2 96.0±0.2 96.1

ViCatDA 97.1±0.1 96.0±0.2 97.9±0.1 96.7±0.2 96.9

ViCatDA+TDSR 97.2±0.1 96.7±0.1 98.1±0.1 97.1±0.1 97.3

testifying its superiority in category-level domain alignment. With the proposed TDSR

to recover the intrinsic target discrimination, ViCatDA+TDSR achieves a remarkable

performance gain over ViCatDA, demonstrating the necessity and usefulness of TDSR.

5.5. Digit Classification

We show the comparison of different methods on Digits in Table 6. Results of exist-

ing methods are quoted from their respective papers or [35, 36]. From Table 6, we take

several interesting observations. 1) No Adaptation performs worst, suggesting the exis-

tence of domain discrepancy and the necessity of domain adaptation. 2) Methods based

on domain-level domain alignment, e.g. DAN [30] and DANN [8], perform better than

No Adaptation, showing their efficacy in learning domain-invariant features. 3) Meth-

ods based on both domain- and category-level domain alignments, e.g. MSTN [12]

and our ViCatDA, significantly outperform those based on only domain-level domain

alignment, which is unaware of classification boundaries and thus causes false align-

ment between different classes across domains, i.e. negative transfer. It attests that the

category-level domain alignment, which exploits the target-discriminative information
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from the task classifier(s), is essential. 4) Our ViCatDA (with TDSR) exceeds all com-

pared methods on almost all tasks, verifying its efficacy in reducing the domain gap. 5)

We consistently achieve the new state of the art whether the network is small like LeNet

or large like ResNet-101, demonstrating the robustness of our proposed methods.

6. Conclusion and Future Work

In this work, based on the joint domain-category classifier, we propose novel losses

of adversarial training at multiple levels to promote categorical domain adaptation

(CatDA), where the category-level adversarial training improves over the domain-level

one by a heterogenous, cross-domain weighting design that enhances the consistency

of category predictions between the source and target task classifiers. To improve,

we generate a (theoretically) infinite number of vicinal domains whose instances are

constructed by a convex combination of pairs of instances respectively from the two

domains, and propose novel adversarial losses for vicinal domain adaptation (VicDA)

based on CatDA, leading to our Vicinal and Categorical Domain Adaptation (ViCatDA).

To recover the intrinsic target discrimination damaged by adversarial feature alignment,

we propose Target Discriminative Structure Recovery (TDSR) based on semantically

anchored spherical k-means. We also analyze the working mechanisms of our key

designs in principle. We achieve the new state of the art on four benchmark datasets.

In future work, we will further improve domain adaptation from three perspectives.

On the aspect of model, we will design a fine-grained joint classifier, which learns a dis-

tribution over not only domain and category but also cluster. Generally, each category

has various objects with different appearances or shapes, and its images are taken from

diverse viewpoints. According to these variation factors, images of each category can

be divided into multiple clusters. On the aspect of algorithm, we will explore a more

effective and efficient way to generate and align vicinal domains, and conduct more

careful studies in different clustering frameworks that discover and utilize the intrinsic

target discrimination. On the aspect of dataset, to approach practical application, we

will collect a large-scale synthetic-to-real dataset with more real-world categories.
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