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Abstract

Attention-based scene text recognizers have gained huge success, which lever-

ages a more compact intermediate representation to learn 1d- or 2d- atten-

tion by a RNN-based encoder-decoder architecture. However, such meth-

ods suffer from attention-drift problem because high similarity among

encoded features leads to attention confusion under the RNN-based local

attention mechanism. Moreover, RNN-based methods have low efficiency

due to poor parallelization. To overcome these problems, we propose the

MASTER, a self-attention based scene text recognizer that (1) not only

encodes the input-output attention but also learns self-attention which en-

? https://doi.org/10.1016/j.patcog.2021.107980
?? © 2021 The Author(s). This manuscript version is made available under the CC-

BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
∗ Corresponding author.
Email addresses: jiangxiluning@gmail.com (Ning Lu), yuwenwen62@gmail.com

(Wenwen Yu), qixianbiao@gmail.com (Xianbiao Qi), o0o@o0oo0o.cc (Yihao Chen),
gongping@xzhmu.edu.cn (Ping Gong), xiaorong283@pingan.com.cn (Rong Xiao),
xbai@hust.edu.cn (Xiang Bai)

1 Co-first authors.

Preprint submitted to Pattern Recognition April 13, 2021

ar
X

iv
:1

91
0.

02
56

2v
3 

 [
cs

.C
V

] 
 1

1 
A

pr
 2

02
1

http://creativecommons.org/licenses/by-nc-nd/4.0/


codes feature-feature and target-target relationships inside the encoder and

decoder and (2) learns a more powerful and robust intermediate represen-

tation to spatial distortion, and (3) owns a great training efficiency be-

cause of high training parallelization and a high-speed inference because

of an efficient memory-cache mechanism. Extensive experiments on var-

ious benchmarks demonstrate the superior performance of our MASTER

on both regular and irregular scene text. Pytorch code can be found at

https://github.com/wenwenyu/MASTER-pytorch, and Tensorflow code can

be found at https://github.com/jiangxiluning/MASTER-TF.

Keywords:

Scene text recognition, Transformer, Non-local network, Memory-cached

mechanism

1. Introduction

Scene text recognition in the wild is a hot area in both industry and

academia in the last two decades [1, 2, 3]. There are various application sce-

narios such as text identification on the signboard for autonomous driving, ID

card scan for a bank, and key information extraction in Robotic Process Au-

tomation (RPA). However, constructing a high-quality scene text recognition

system is a non-trivial task due to unexpected blur, strong exposure, spatial

and perspective distortion, and complex background. There are two types of

scene text in nature, regular and irregular, as exemplified in Figure 1.

Regular scene text recognition aims to recognize a sequence of characters

from an almost straight text image. It is usually considered as an image-based

sequence recognition problem. Some traditional text recognition methods [4]
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(a) Regular text

(b) Irregular text

Figure 1: Examples of regular and irregular images. (a). regular text. (b). irregular text.

use human-designed features to segment patches into small glyphs, then cat-

egorize them into corresponding characters. However, these methods are

known to be vulnerable to the complicated background, diverse font types,

and irregular arrangement of the characters. Connectionist temporal clas-

sification (CTC) based methods [5, 6] and attention-based methods [7, 8]

are the mainstream methods for scene text recognition because they do not

require character-level annotations and also show superior performance on

real applications.

Irregular scene text recognition is more challenging due to various curved

shapes and perspective distortions. Existing irregular scene text recognizers

can be divided into three categories: rectification based, multi-direction en-

coding based, and attention-based approaches. Shi et al. [7] propose ASTER

to combine a Thin-Plate Spline (TPS) [9] transformation as rectification mod-

ule and an attentional BiLSTMs as recognition module. ASTER achieves

excellent performance on many public benchmarks. Yang et al. [10] put for-

ward a Symmetry-constrained Rectification Network (ScRN) to tackle highly
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curved or distorted text instances. Liao et al. [11] conduct scene text recogni-

tion from a two-dimensional perspective. Xie et al. [12] utilize a convolutional

attention networks for unconstrained scene text recognition. Fang et al. [13]

propose to ensemble attention and language models in an attention-based

architecture. Inspired by the Show-Attend-Tell [14], Li et al. [8] propose a

Show-Attend-Read (SAR) method which employs a 2D attention in encoder-

decoder architecture. Nonetheless, attention drifting remains a serious prob-

lem in these methods, especially when the text lines contain repetitive digits

or characters.

Incorporating global context proves to be an effective way to alleviate

the problem of attention drifting. Self-attention [15] provides an effective

approach to encode global context information. Recently, self-attention at-

tracts a lot of eyeballs and gains unprecedented success in natural language

processing [15, 16, 17, 18] and computer vision [19, 20]. It can depict a

long-range dependency between words and image regions. Wang et al. [21]

proposes a Transformer-like non-local block that can be plugged in any back-

bone to model spatial global dependencies between objects. Its successors,

GCNet, proposed in [19], found that the attention maps are almost the same

for different query positions. GCNet simplifies non-local block with SE block

[22] to reduce the computational complexity and enhances the representative

ability of the proposed block based on a query-independent formulation.

Inspired by the effectiveness of the global context in GCNet and the huge

success of the Transformer achieved in NLP and CV, we propose a Multi-

Aspect non-local network for irregular Scene TExt Recognition (MASTER)

to target an efficient and accurate scene text recognition for both regular and
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irregular text. Our main contributions are highlighted as follows:

• We propose a novel multi-aspect non-local block and fuse it into the

conventional CNN backbone, which enables the feature extracter to

model a global context. The proposed multi-aspect non-local block can

learn different aspects of spatial 2D attention, which can be viewed as

a multi-head self-attention module. Different types of attention focus

on different aspects of spatial feature dependencies, which is another

form of different syntactic dependency types.

• In the inference stage, we introduce a memory-cache based decoding

strategy to speed up the decoding procedure. The primary means are to

remove unnecessary computation and cache some intermediate results

of previous decoding times.

• Besides of its high efficiency, our method achieves the state of the art

performance on both regular and irregular scene text benchmarks. Es-

pecially, our method achieves the best case-sensitive performance on

the COCO-Text dataset.

2. Related Works

In academia, scene text recognition can be divided into two categories:

regular and irregular texts. In this section, we will give a brief review of

related works in both areas. A more detailed review for scene text detection

and recognition can be found in [23, 24, 25, 26].

Regular text recognition attracts most of the early research attention.

Mishra et al. [27] use a traditional sliding window-based method to describe
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bottom-up cues and use vocabulary prior to model top-down cues. These

cues are combined to minimize the character combination’s energy. Shi et

al. [5] propose an end-to-end trainable character annotation-free network,

called CRNN. CRNN extracts a 1D feature sequence using CNN and then

encodes the sequence encoding using RNN. Finally, a CTC loss is calculated.

CTC loss only needs word-level annotation instead of character-level annota-

tion. Su et al.[28] also proposed a method performing word-level recognition

without character segmentation using a recurrent neural network. Bigorda

et al. [29] design a text-specific selective search algorithm to generates a

hierarchy of word hypotheses for word spotting in the wild. Gao et al. [30]

integrates an attention module into the residual block to amplify the response

of the foreground and suppress the response of the background. However, the

attention module cannot encode global dependencies between pixels. Cheng

et al. [31] observe that attention may drift due to the complex scenes or

low-quality images, which is a weakness of the vanilla 2D-attention network.

To address the misalignment between the input sequence and the target, Bai

et al. [6] employs an attention-based encoder-decoder architecture, and esti-

mate the edit probability of a text conditioned on the output sequence. Edit

probability is to target the issue of character missing and superfluous. Zhang

et al. [32] adopts an unsupervised fixed-length domain adaptation method-

ology to a variable-length scene text recognition area and the model is also

based on attentional encoder-decoder architecture.

Irregular text recognition is more challenging than regular text recog-

nition, nevertheless, it appeals to most of researchers’ endeavour. Shi et

al. [33, 7] attempt to address the multi-type irregular text recognition prob-
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lem in one framework via Spatial Transformer Network (STN) [34]. In [35],

Zhan et al. propose to iteratively rectify text images to be fronto-parallel

to further improve the recognition performance. The proposed line-fitting

transformation estimates the pose of the text line by learning a middle line

of the text line and L line segments that are required by Thin-Plate Spline.

However, the rectification-based methods are often constrained by the char-

acters’ geometric features and the background noise could be exaggerated

unexpectedly. To overcome this, Luo et al. [36] propose a multi-object rec-

tified attention network which is more flexible than direct affine transfor-

mation estimation. Unlike the rectification-based approaches, Show-Attend-

Read (SAR) proposed by Li [8] uses a 2D-attention mechanism to guide the

encoder-decoder recognition module to focus on the corresponding character

region. This method is free to complex spatial transformation.

While 2D attention can represent the relationship between target output

and input image feature, the global context between pixels and the latent

dependency between characters is ignored. In [20], Hu et al. proposes an ob-

ject relation module to simultaneously model a set of object relations through

their visual features. After the success of Transformer [15], Wang et al. [21]

incorporate a self-attention block into non-local network. Cao et al. [19]

further simplify and improve the non-local network, and propose a novel

global context network (GCNet). Recently, Sheng et al. [37] propose a purely

Transformer-based scene text recognizer that can learn the self-attention of

encoder and decoder. It extracts a 1D sequence feature using a simple CNN

module and inputs it into a Transformer to decode target outputs. Neverthe-

less, the self-attention module of the Transformer consists of multiple fully
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connected layers, which largely increases the number of parameters. Lee et

al. [38], use the self-attention mechanism to capture two-dimensional (2D)

spatial dependencies of characters. A locality-aware feedforward layer is in-

troduced in their encoder. Wang et al. [39] directly abandon the encoder

of the original Transformer and only retain the CNN feature extractor and

decoder to conduct an irregular scene text recognizer. However, it cannot

encode the global context of pixels in the feature map. The network proposed

in this paper learns not only the 2D attention between the input feature and

output target but also the self-attention inside the feature extractor and de-

coder. The multi-aspect non-local block can encode different types of spatial

feature dependencies with lower computational cost and a compact model.

3. Methodology

MASTER model, as shown in Figure 2c, consists of two key modules, a

Multi-Aspect Global Context Attention (GCAttention) based encoder and a

Transformer based decoder. In MASTER, an image with fixed size is input

into the network, and the output is a sequence of predicted characters.

3.1. Encoder

Encoder, in our MASTER model, encodes an input image into a feature

tensor. For instance, we can obtain a 6 × 40× 512 tensor when inputting a

48×160× 1 image into the encoder of MASTER. One of our key contribution

in this paper is that we introduce a Multi-Aspect Global Context Attention

(GCAttention) in the encoder part. In this subsection, we will review the

definition of the Global Context Block [19], and then introduce the proposed
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(a) Global Context(GC) block

(b) Multi-Aspect GCAttention (c) The architecture of MASTER model

Figure 2: (a) representing the architecture of a standard Global Context(GC) block. (b)

representing the proposed Multi-Aspect GCAttention. (c) representing the whole archi-

tecture of MASTER model, consisting of two main parts: a Multi-Aspect Global Context

Attention(GCAttention) based encoder for feature representation and a transformer based

decoder model. C×H ×W denotes a feature map with channel number C, height H and

width W. h, r, and C/r denotes the number of Multi-Aspect Context, bottleneck ratio and

hidden representation dimension of the bottleneck, respectively. ⊗ denotes matrix multi-

plication, ⊕ denotes broadcast element-wise addition. in ch/out ch donates input/output

dimensions.
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Multi-Aspect Global Context Attention (GCAttention), and finally describe

the architecture of the encoder in detail.

3.1.1. Global Context Block

A standard global context block was firstly introduced in [19]. The mod-

ule structure is shown as Figure 2a. From Figure 2a, the input feature map of

global context block is x = {xi}H×Wi=1 ∈ RC×H×W (C = dmodel), where C, W ,

and H indicate the number of channel, width and height of the feature map

individually. dmodel indicates the dimension of the output of the encoder.

In global context block, three operations are performed on the feature map

x, including (a) global attention pooling for context modeling, (b) bottle-

neck transform to capture channel-wise dependencies, and (c) broadcasting

element-wise addition for feature fusion. The global context block can be

expressed as

yi = xi + wv2ReLU

(
LN

(
wv1

∑
∀j

ewkxj∑
∀m
ewkxm

xj

))
, (1)

where x and y denote the input and the output of the global context block,

respectively. They have the same dimensions. i is the index of query posi-

tions, j and m enumerates positions of all pixels. wv1, wv2 and wk denote

linear transformations to be learned via a 1 × 1 convolution. LN(·) denotes

layer normalization as [40]. For simplification, we denote αj = ewkxj∑
m ewkxm

as the weight for context modeling, and δ(·) = wv2ReLU(LN(wv1(·))) as

the bottleneck transform. “+” operation denotes broadcast element-wise

addition.

In the Global Context Block, as shown in Figure 2a, the softmax operation

follows behind a 1x1 Conv and flatten operation, in which the feature map
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will be converted from (C, H, W) to (1, H*W). The generated vector (1,

H*W) is a channel-agnostic feature and it captures spatial information of

feature map. Besides, the softmax operation depicts a long-range dependency

between pixels in the feature map.

3.1.2. Multi-Aspect GCAttention

Instead of performing a single attention function in original global context

block, we found it beneficial to multiple attention function. Here, we call

it as Multi-Apsect GCAttention (MAGC). The structure of the MAGC is

illustrated in Figure 2b, and we can formulate MAGC as

y = x + δ(MAGC(x)) ,

MAGC(x) = Concat(gc1, gc2, . . . , gch) ,

gci =
L∑

j=1

αjxj ,

α = softmax

(
wkx1√
dh

,
wkx2√
dh

, . . . ,
wkxL√
dh

)
,

(2)

where h is the number of Multi-Aspect Context, gci denotes the i-th global

context, L is the number of positions of all pixels in the feature map (L =

W × H), Concat(·) is a concatenation function. MAGC(·) denotes multi-

aspect global context attention operation.
√
dh is a scale factor to counteract

the effect of different variance in MAGC. It can be calculated as dh = dmodel

h
.

3.1.3. Encoder Structure

The detailed architecture of Multi-Aspect GCAttention based Encoder is

shown in the left half of Figure 2c. The backbone of the encoder, following

the design of ResNet31 [41] and the setting protocol in [8], is presented in

Table 1. The encoder has four fundamental blocks shown in blue color in
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Figure 2c, each fundamental block consists of a residual block, a MAGC, and

a convolution block, and max pooling that is not included in the last two

fundamental blocks. In the residual block, if the input and output dimensions

are different we use the projection shortcut, otherwise, we use the identity

shortcut. After the residual block, a Multi-Aspect GCAttention is plugged

into network architectures to learn new feature representation from multi-

aspect. All the convolutional kernel size is 3 × 3 . Besides two 2 × 2 max-

pooling layers, we also use a 1 × 2 max-pooling layer, which reserves more

information along the horizontal axis and benefits the recognition of narrow

shaped characters.

3.2. Decoder

As shown in the right halves of Figure 2c, the decoder contains a stack of

N = 3 fundamental blocks as shown in purple color. Each fundamental block

contains three core modules, a Masked Multi-Head Attention, a Multi-Head

Attention, and a Feed-Forward Network (FFN). In the following, we intro-

duce these three key modules in detail, then discuss the loss function used in

this paper, and finally introduce memory-cache based inference mechanism.

3.2.1. Scaled Multi-Head Dot-Product Attention

A scaled multi-head dot product attention is firstly introduced in [10].

The inputs of the scaled dot-product attention consist of a query qT
i ∈ Rd, i ∈

[1, t′], (where d = dmodel is the dimension of embedding output and t′ is the

number of queries), and a set of key-value pairs of d-dimensional vectors

{(kj,vj)}j∈[1,t] , kT
j ∈ Rd, vT

j ∈ Rd (where t is the number of key-value

pairs). The formulation of scaled dot-product attention can be expressed as
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follows 

Atten(Q,K,V) = [a1,a2, . . . ,at′ ]
T ∈ Rt′×d ,

ai = Atten (qi,K,V) ,

Atten(qi,K,V) =

t∑
j=1

αjv
T
j ∈ Rd ,

α = softmax

(〈
qi,k

T
1

〉
√
d

,

〈
qi,k

T
2

〉
√
d

, . . . ,

〈
qi,k

T
t

〉
√
d

)
,

(3)

where α is the attention weights, and K = [k1;k2; . . . ;kt] ∈ Rt×d, V = [v1;v2; . . . ;vt] ∈

Rt×d. Q = [q1;q2; . . . ;qt′ ] ∈ Rt′×d is a set of queries.

The above scaled dot-product attention can be repeated multiple times (multi-

head) with different linear transformations on Q, K and V, followed by a concate-

nation and linear transformation operation:

MHA(Q,K,V) = [head1, . . . ,headH ]Wo ∈ Rt′×d , (4)

where headi = Atten
(
QWq

i ,KWk
i ,VWv

i

)
∈ Rt′× d

H , MHA(·) denotes multi-

head attention operation. The parameters are Wq
i ∈ R

d× d
H ,Wk

i ∈ Rd× d
H ,Wv

i ∈

Rd× d
H and Wo ∈ Rd×d. H denotes the number of multi-head attention.

3.2.2. Masked Multi-Head Attention

This module is identical to the decoder of Transformer [15]. Masked multi-head

attention is an effective mechanism to promise that, in the decoder, the prediction

of one time step t can only access the output information of its previous time

steps. In the training stage, by creating a lower triangle mask matrix, the decoder

can output predictions for all time steps simultaneously instead of one by one

sequentially. This makes the training process highly parallel.

3.2.3. Position-wise Feed-Forward Network

Point-wise Feed-Forward Network (FFN) consists of two fully connected layers.

Between these two layers, there is one ReLU activation function. FFN is defined

13



as

FFN(x) = max (0,xW1 + b1)W2 + b2, (5)

where the weights are W1 ∈ Rd×dff , and W2 ∈ Rdff×d , and the bias are b1 ∈

Rdff and b2 ∈ Rd, dff is the inner-dimension of the two linear transformations.

The aim of this module is to bring in more non-linearity to the network.

3.2.4. Loss Function

A linear transformation followed by a softmax function is used to compute the

prediction probability over all classes. Then, we use the standard cross-entropy to

calculate the loss between the predicted probabilities w.r.t. the ground truth, at

each decoding position. In this paper, we use 66 symbol classes except for COCO-

Text which uses 104 symbol classes. These 66 symbols are 10 digits, 52 case-

sensitive letters, and 4 special punctuation characters. These 4 special punctuation

characters are “<SOS>”, “<EOS>”, “<PAD>”, and “<UNK>” which indicate

the start of the sequence, the end of the sequence, padding symbol and unknown

characters (that are neither digit nor character), respectively. The parameters of

the classification layer are shared over all decoding positions.

3.3. Memory-Cache based Inference Mechanism

The inference stage is different from the training stage. In the training stage, by

constructing a lower triangular mask matrix, the decoder can predict out all-time

steps simultaneously. This process is highly parallel and efficient, where parallel

means the batch mechanism. However, the decoder in the inference stage can

only predict each character one by one sequentially until the decoder predicts out

the “EOS” token or the length of the decoder sequence reaches to the maximum

length. In the inference stage, the output of the later step is dependent on the

outputs of its previous time steps because the outputs of its previous time steps

will be used as part of the input to decode itself.
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Algorithm 1: Memory-Cache based Inference. B is the number

of blocks. F is the addition of the CNN feature and the position

embedding feature. T is the max decoder length. M and W are the

parameters of the masked multi-head and multi-head attention. Xb
k,

Xb
v, keys memory, values memory are the cached variables.

Input : CNN feature: F

Output : outputs

1 for b in range(B) do

2 Xb
k, X

b
v = W b

k ∗ F,W b
v ∗ F ;

3 keys memory[b], values memory[b] = [ ], [ ];

4 end

5 t← 0;

6 outputs = [ ];

7 pt ←<SOS>;

8 while pt 6=<EOS> and t ≤ T do

9 q = Embedding (pt) + PositionEmbedding (t);

10 for b in range(B) do

11 keys memory[b].append(M b
k ∗ q);

12 values memory[b].append(M b
v ∗ q);

13 q ← MaskedMHA(M b
q ∗ q, keys memory[b], values memory[b]);

14 q ← MHA(W b
q ∗ q, Xb

k, X
b
v);

15 q ← FeedForward(q);

16 end

17 t← t+ 1;

18 pt ← Argmax(LinearSoftmax(q));

19 outputs.append(pt)

20 end
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To speed up the decoding process, we introduce a new decoding mechanism

named memory-cache based decoding inspired by XLNet [17]. The memory-cache

based decoding strategy is described in Algorithm 1 in pseudo-code. The primary

approaches are to cache some intermediate results of previous decoding times in

Lines 2 and 11-12, and to remove unnecessary computation in Lines 13-14 of

Algorithm 1. In each decoding step, q is always a 1D vector instead of a 2D

matrix in traditional decoding framework.

4. Experiments

We conduct extensive experiments on several benchmarks to verify the effec-

tiveness of our method and compare it with the state-of-the-art methods. In Sec-

tion 4.1, we give an introduction to the used training and testing datasets. Then in

Section 4.2, we present our implementation details. In Section 4.3, we make a de-

tailed comparison between our method and the state-of-the-art methods. Finally,

we conduct an ablation study in Section 4.4.

4.1. Datasets

In this paper, we train our MASTER model only on three synthetic datasets

without any finetuning on other real datasets. We evaluate our model on eight

standard benchmarks that contain four regular scene text datasets and four irreg-

ular scene text datasets.

The training datasets consist of the following datasets.

Synth90k (MJSynth) is the synthetic text dataset proposed in [42]. The

dataset has 9 million images generated from a set of 90k common English words.

Every image in Synth90k is annotated with a word-level ground-truth. All of the

images in this dataset are used for training.
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Table 1: A ResNet-based CNN network architecture for robust text feature representation.

Residual blocks are shown in brackets, and Multi-Aspect GCAttention is highlighted with

gray background. “3× 3, 1× 1, 1× 1, 128” denotes the kernel size, the stride, the padding,

and the output channel of a convolution layer respectively. The “Output” column means

the spatial shape height× width of the output.

Layer Configuration Output

conv1 x

3× 3, 1× 1, 1× 1, 64 48× 160

3× 3, 1× 1, 1× 1, 128 48× 160

max pool: 2× 2, 2× 2, 0× 0 24× 80

conv2 x

 3× 3, 256

3× 3, 256

× 1 24× 80

multi-aspect gcattention 24× 80

3× 3, 1× 1, 1× 1, 256 24× 80

max pool: 2× 2, 2× 2, 0× 0 12× 40

conv3 x

 3× 3, 512

3× 3, 512

× 2 12× 40

multi-aspect gcattention 12× 40

3× 3, 1× 1, 1× 1, 512 12× 40

max pool: 2× 1, 2× 1, 0× 0 6× 40

conv4 x

 3× 3, 512

3× 3, 512

× 5 6× 40

multi-aspect gcattention 6× 40

3× 3, 1× 1, 1× 1, 512 6× 40

conv5 x

 3× 3, 512

3× 3, 512

× 3 6× 40

multi-aspect gcattention 6× 40

3× 3, 1× 1, 1× 1, 512 6× 40
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SynthText [43] is a synthetic text dataset originally introduced for text de-

tection. The generating procedure is similar to [42], but different from [42], words

are rendered onto a full image with a large resolution instead of a text line. 800

thousand full images are used as background images, and usually, each rendered

image contains around 10 text lines. Recently, It is also widely used for scene text

recognition. We obtain 7 millions of text lines from this dataset for training.

SynthAdd is the synthetic text dataset proposed in [8]. The dataset contains

1.6 million word images using the synthetic engine proposed by [42] to compensate

for the lack of special characters like punctuations. All of the images in this dataset

are used for training.

The test datasets consist of the following datasets.

IIIT5K-Words (IIIT5K) [44] has 3,000 test images collected from the web.

Each image contains a short, 50-word lexicon and a long, 1,000-word lexicon. A

lexicon includes the ground truth word and other stochastic words.

Street View Text (SVT) [45] is collected from the Google Street View. The

test set includes 647 images of cropped words. Many images in SVT are severely

corrupted by noise and blur or have low resolution. Each image contains a 50-word

lexicon.

ICDAR 2003 (IC03) [46] contains 866 images of the cropped word because we

discard images that contain non-alphanumeric characters or have less than three

characters for a fair comparison. Each image contains a 50-word lexicon defined.

ICDAR 2013 (IC13) [47] contains 1,095 images for evaluation and 848 cropped

image patches for training. We filter words that contain non-alphanumeric char-

acters for a fair comparison, which results in 1,015 test words. No lexicon is

provided.

ICDAR 2015 (IC15) has 4,468 cropped words for training and 2,077 cropped

words for evaluation, which are capture by Google Glasses without careful posi-

18



tioning and focusing. The dataset contains many of irregular text.

SVT-Perspective (SVTP) consists of 645 cropped images for testing [48]. Im-

ages are generated from side-view angle snapshots in Google Street View. There-

fore, most images are perspective distorted. Each image contains a 50-word lexicon

and a full lexicon.

CUTE80 (CUTE) contains 288 images [49]. It is a challenging dataset since

there are plenty of images with curved text. No lexicon is provided.

COCO-Text (COCO-T) was firstly introduced in the Robust Reading Chal-

lenge of ICDAR 2017. It contains 62,351 image patches cropped from the famous

Microsoft COCO dataset. The COCO-T dataset is extremely challenging because

the text lines are mixed up with printed, scanned, and handwritten texts, and the

shapes of text lines vary a lot. For this dataset, 42,618, 9,896, and 9,837 images

are used for training, validation, and testing individually.

4.2. Network Structure and Implementation Details

4.2.1. Networks

The network structure of the Encoder part is listed in Table 1. The input

size of our model is 48× 160. When the ratio between width and height is larger

than 160
48 , we directly resize the input image into 48× 160, otherwise, we resize the

height to 48 while keeping the aspect ratio and then pad the resized image into

to 48 × 160. In MASTER, the embedded dimension d is 512, the dimension of

the output of the encoder dmodel is 512 too, and the number H of the multi-head

attention is 8. dff in the feed-forward module is set to be 2048, and the identical

layers N is 3. We use 0.2 dropout on the embedding module, feed-forward module,

and the output layer of the linear transformation in the decoder part. The number

h of Multi-Aspect Context is 8 and the bottleneck ratio r is 16.
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Table 2: Performance of our model and other state-of-the-art methods on public datasets.

All values are reported as a percentage (%). “None” means no lexicon. * indicates

using both word-level and character-level annotations to train the model. ** denotes the

performance of SAR trained only on the synthetic text datasets. In each column, the best

performance result is shown in bold font, and the second-best result is shown with an

underline. Our model achieves competitive performance on most of the public datasets,

and the distance between us and the first place [50] is very small on IIIT5k and SVT

datasets.

Method
IIIT5K SVT IC03 IC13 IC15 SVTP CUTE

None None None None None None None

Jaderberg et al. [34] - 80.7 93.1 90.8 - - -

Shi et al. [33] 81.9 81.9 90.1 88.6 - 71.8 59.2

STAR-Net [51] 83.3 83.6 - 89.1 - 73.5 -

Wang and Hu [52] 80.8 81.5 - - - - -

CRNN [5] 81.2 82.7 91.9 89.6 - - -

Focusing Attention [31]* 87.4 85.9 94.2 93.3 70.6 - -

SqueezedText [53]* 87.0 - - 92.9 - - -

Char-Net [54]* 92.0 85.5 - 91.1 74.2 78.9 -

Edit Probability [6]* 88.3 87.5 94.6 94.4 73.9 - -

ASTER [7] 93.4 89.5 94.5 91.8 76.1 78.5 79.5

NRTR [37] 86.5 88.3 95.4 94.7 - - -

SAR** [8] 91.5 84.5 - 91.0 69.2 76.4 83.3

ESIR [35] 93.3 90.2 - 91.3 76.9 79.6 83.3

MORAN [36] 91.2 88.3 95.0 92.4 68.8 76.1 77.4

Wang et al. [39] 93.3 88.1 - 91.3 74.0 80.2 85.1

Mask TextSpotter [50]* 95.3 91.8 95.2 95.3 78.2 83.6 88.5

MASTER (Ours) 95.0 90.6 96.4 95.3 79.4 84.5 87.5

20



4.2.2. Implementation Details

Our model is only trained on three synthetic datasets without any finetune

on any real data except for COCO-T dataset. These three synthetic datasets are

SynText [43] with 7 millions of text images, Synth90K [42] with 9 millions of text

images and SynthAdd [8] with 1.6 millions of text images.

Our model is implemented in PyTorch. The model is trained on four NVIDIA

Tesla V100 GPUs with 16×4 GB memory. We train the model from scratch using

Adam [55] optimizer and cross-entropy loss with a batch size of 128 × 4. The

learning rate is set to be 4× 10−4 over the whole training phase. We observe that

the learning rate should be associated with the number of GPUs. For one GPU,

1 × 10−4 is a good choice. Our model is trained for 12 epochs, each epoch takes

about 3 hours.

Only for COCO-Text, we further finetune the above model with around 9K

real images collected from IC13, IC15, and IIIT5K, and the training and validation

images of COCO-Text. At the test stage, for the image with its height larger than

width, we rotate the images 90 degrees clockwise and anti-clockwise. We feed the

original image and two rotated images into the model and choose the output result

with the maximum output probability. No lexicon is used in this paper. Different

from SAR [8], ASTER [7], and NRTR [37], we do not use beam search.

4.3. Comparisons with State-of-the-arts

In this section, we measure the proposed method on several regular and ir-

regular text benchmarks and analyze the performance with other state-of-the-art

methods. We also report results on the online COCO-Text datasets test server2

to show the performance of our model.

2https://rrc.cvc.uab.es/?ch=5&com=evaluation&task=2
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Table 3: Leaderboard of various methods on the online COCO-Text test server. In each

column, Bold represent the best performance.

Method

Case Sensitive Case Insensitive

Total Edit

Distance

Correctly

Recognised

Words (%)

Total Edit

Distance

Correctly

Recognised

Words (%)

SogouMM 3,496.3121 44.64 1,037.2197 77.97

SenseTime-CKD 4,054.8236 41.52 824.6449 77.22

HIK OCR 3,661.5785 41.72 899.1009 76.11

Tencent-DPPR Team 4,022.1224 36.91 1,233.4609 70.83

CLOVA-AI [56] 3,594.4842 47.35 1,583.7724 69.27

SAR [8] 4,002.3563 41.27 1,528.7396 66.85

HKU-VisionLab [54] 3,921.9388 40.17 1,903.3725 59.29

MASTER (single model) 3,527.3165 45.96 1,528.7526 67.41

MASTER (Ours) 3,272.0810 49.09 1,203.4201 71.33

As shown in Table 2, our method achieves superior performance on both regular

and irregular datasets compared to the state-of-the-art methods. On the regular

datasets including IIIT-5K, IC03, and IC13, our approach largely improves SAR [8]

which is based on LSTM with 2D attention and ASTER [7] which is based on

Seq2Seq model with attention after a text rectification module. Specifically, our

approach improves SAR by 3.5% and 6.1% on IIIT-5K and SVT individually.

On the irregular datasets, our method achieves the best performance on SVTP

and IC15 datasets. This fully demonstrates the multi-aspect mechanism used in

MASTER is highly effective in irregular scene text. Note that all these results are

not with lexicon and beam search. The method in [50] uses extra character-level

data.

Furthermore, seen from Table 3, we also use online evaluation tools on COCO-

Text datasets to verify our competitive performance. As we can see, our model

outperforms the compared method by a large margin in case sensitive metrics,
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demonstrating the powerful network. Specifically, our model gets correctly recog-

nised word accuracy increases of 1.74% (from 47.35% to 49.09%) under case sen-

sitive conditions. In the case of case-insensitive metrics, our model also gets the

fourth place on the leaderboard and the performance is much better than SAR.

Note that, the first place method of case-insensitive uses a tailored 2D-attention

module and the second and third place method of case-insensitive leaderboard use

model ensemble. Our results are based on ensemble of four models obtained in

different time steps of the same round of training process. The prediction with the

maximum probability in four models is selected as the final prediction.

Seen from Figure 3, Our method possesses more robust performance on scene

text recognition than SAR [8], although the input image quality is blurry and

the shape is curved or the text is badly distorted. The reason is that our model

not only learns the input-output attention but also learns self-attention which

encodes feature-feature and target-target relationships inside the encoder and de-

coder. This makes the intermediate representations more robust to spatial distor-

tion. Besides, in our approach, the problem of attention drifting is significantly

eased. As shown in Figure 3, the attention driftings lead to errors (“FOOTBALL”

and “TIMMS” are misrecognized as “FOOTBAL” and “TIMMMS” individually.)

in SAR, but MASTER successfully recognizes these words.

4.4. Ablation Studies

4.4.1. Influence of Key Hyperparameters

we perform a series of ablation studies to analyze the impact of different hyper-

parameters on the recognition performance. All models are trained from scratch

on three synthetic datasets (Synth90K, SynthText, and SynthAdd). Results are

reported on seven standard benchmarks without using a lexicon. Here, we study

two key hyperparameters, the number h of Multi-Aspect Context in the encoder
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Input Images Ours By SAR [8] GT

ANDA AMDA ANDA

GOOD GCOD GOOD

wacom waccom wacom

BONNIE BONIE BONNIE

SERV LEAD SERV

actaea actara actaea

FOOTBALL FOOTBAL FOOTBALL

Timms Timmms Timms

Figure 3: Samples of recognition results of our MASTER and SAR. Green characters mean

correct predictions and red characters mean wrong predictions.

part, and the number N of fundamental blocks in the decoder part. The results

are shown in Table 4.

There are two groups of experimental comparisons in Table 4. Fix N = 3,

we vary h ranging in [0, 1, 2, 4, 8, 16], where h = 0 means no MAGC is used in the

model. We observe that using the MAGC module consistently improves the perfor-

mance compared to that without using MAGC (h = 0). Compared to h = 0, h = 8

obtains performance improvement on all datasets, especially significant improve-

ment on CUTE, IC15, and SVTP. These three datasets are difficult and irregular.

We believe this phenomenon is due to the introduced MAGC module that can

well capture different aspects of spatial 2D attention which is very important for

irregular and hard text images. We also evaluate different settings N = [1, 3, 6]

of the number of fundamental blocks in the decoder part. N = 3 gets the best

performance, and the performance of N=6 decreases a lot compared to N = 3. We

reckon that too deep decoder layers may bring in convergence problems. Therefore,

in our experiment, we use N = 3, h = 8 in default.
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Table 4: Under different parameter settings our model recognition accuracy: h, N de-

notes the numbers of Multi-Aspect Context in the encoder and identical layers in the

decoder, respectively. Standard Setting uses h = 8 and N = 3. When h or N changes,

all other parameters keep the same as the Standard Setting. All values are reported as a

percentage(%).

Methods IIIT5k SVT CUTE IC03 IC13 IC15 SVTP

Standard Setting:

h = 8, N = 3
95.0 90.6 87.5 96.4 95.3 79.4 84.5

h = 0 94.6 90.1 86.2 95.9 95.0 78.4 82.3

h = 1 94.9 91.5 87.6 96.9 95.7 79.4 83.8

h = 2 94.93 90.7 88.54 96.6 95.4 79.5 84.0

h = 4 94.7 90.9 86.8 96.1 95.1 79.6 83.7

h = 16 95.1 91.3 85.4 96.0 95.3 79.4 84.1

N = 1 94.3 90.4 85.4 95.3 94.1 78.9 83.1

N = 6 91.3 87.4 76.7 94.3 91.6 72.9 75.7

Table 5: Speed comparison between MASTER (Ours) and SAR. MASTER is faster and

more accurate than the SAR method. All timing information is on an NVIDIA Tesla V100

GPU.

Method Input Accuracy Inference Time (ms) Training Time (h)

SAR [8] 48× 160 91.5 16.1 51

MASTER (original) 48× 160 95.0 9.2 36

MASTER (improved) 48× 160 95.0 4.3 36

4.4.2. Comparison of Evaluation Speed

We conduct a comparison of test speed on a server using an NVIDIA Tesla

V100 GPU with Intel Xeon Gold 6130@ 2.10 GHz CPU. The results are averaged

on 3,000 test images from IIIT-5K, the input image size is 48 × 160. The results

of SAR is based on our implementation in PyTorch with the same setting as [8].

We observe from Table 5 that, MASTER not only achieves better performance

but also runs faster than SAR. By stacking multiple test images together and
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inputting the stacked batch in one time, we can obtain a speedup. The test time

speed of our MASTER is 9.2 ms per image compared to 16.1 ms of SAR. By

using a new memory-cache based inference mechanism, the decoder can speed

up to 4.3 ms from 9.2 ms. Besides, we also compare the training speed between

MASTER and SAR. As shown in the last column of Table 5. The results show

that MASTER has faster training speed because of the parallel training.

4.4.3. Model stability

We show the evaluation accuracies of MASTER and SAR along with train-

ing steps in Figure 4. We find that from Figure 4, the MASTER model achieves

more stable recognition performance than SAR although SAR converges faster.

We reckon the reason is the MASTER requires calculating global attention which

is slower but SAR only needs to compute local attention. We can see that the per-

formance of the MASTER model is very stable when it hits the best performance,

it will not decrease a lot. However, the performance of SAR often decreases a little

more when it reaches the best performance.

Figure 4: The model stability comparison between MASTER (Ours) and SAR [8].
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5. Conclusions

In this work, we propose a novel approach MASTER: multi-aspect non-local

network for scene text recognition. The MASTER consists of a Multi-Aspect

Global Context Attention (GCAttention) based encoder module and a transformer-

based decoder module. The proposed MASTER owns three advantages: (1) The

model can both learn input-output attention and self-attention which encodes

feature-feature and target-target relationships inside the encoder and the decoder.

(2) Experiments demonstrate that the proposed method is more robust to spatial

distortions. (3) The training process of the proposed method is highly parallel and

efficient, and the inference speed is fast because of the proposed novel memory-

cached decoding mechanism. Experiments on standard benchmarks demonstrate it

can achieve state-of-the-art performances regarding both efficiency and recognition

accuracy.
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