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ABSTRACT 

Sparse representation and cooperative learning are two representative technologies in the field of 

multi-view spectral clustering. The former can effectively extract features of multiple views via removing 

redundant information contained in each view, whilst the latter can incorporate the diversity of each view. 

However, neither of them is adequate in preserving the internal geometric features of data. General 

approaches rarely consider the correlation between the similarities of the internal graph structures of 

individual views. To achieve the optimal global feature learning, a novel two-step multi-view spectral 

clustering strategy is proposed in this paper, where the sparse representation by adaptive graph learning is 

combined with the adaptive weighted cooperative learning. In the first step, matrix factorization by 

manifold regularization is proposed, which can strengthen the sparse features clustering discrimination of 

samples of each view. Specifically, the synchronization optimization method by introducing adaptive 

graph learning can better retain its complete internal structure of each view. This ensures the structural 

correlation between views through the usage of the sparse matrix and the optimal graph similarity matrix. 

In the second step, the adaptive weighted cooperative learning is performed on each view to get a global 

optimized matrix. In the meantime, the graph learning is also performed on the global matrix which 

ensures that the global matrix can be associated with various view features. Both of our experiment 
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results shown on several multi-view datasets and single-view datasets indicate that our proposed approach 

has achieved significantly better performance than the current algorithms. 

Keywords: Multi-view clustering, Sparse Representation (SR), Adaptive Graph Learning (AGL), 

Adaptive Weighted Cooperative Learning (AWCL), Global Optimized Matrix. 

1 INTRODUCTION 

Multi-view clustering (MVC) has become a hot topic due to the needs of analyzing the ever-rising 

ubiquitous multi-view data. MVC expresses an intuitive meaning for clustering from multiple angles and 

it fuses these angles to obtain a model that is more effective than single-view clustering. With its 

development, multi-view clustering can be regarded as using multiple features of samples extracted from 

different ways, such as local binary patterns (LBP) [1], 2D Gabor Wavelets (GABOR) [2] and histograms 

of oriented gradients (HOG) [3] etc. Features from different views take into account the characteristics of 

different angles of the same sample, which reflects its diversity. The diversity can then be used among 

these features to complement the information in order to better characterize the sample, hence MVC is 

currently one of the most used methods for tackling this problem. MVC can be divided into supervised 

MVC [4], semi-supervised MVC [5] and unsupervised MVC [6] according to the need of the associated 

class labels. Since unsupervised MVC does not need to annotate sample data, it is more convenient than 

other two types of clustering methods, therefore, it saves time and effort. The most representative 

unsupervised MVC methods are sparse representation (SR) [7], spectral clustering (SC) [8], graph 

learning (GL) [9] and consensus graph clustering [10]. Hybrid methods have also been used recently by 

combining multiple multi-view learning methods to obtain better results. Zhang et al [11] introduced an 

unsupervised clustering method which simultaneously learned fuzzy k-means and non-negative SC with 

side information. This method considers the internal structural information of each view and the diversity 

information between views. Preserving the structural information of each view and discriminating the 



3 

diversity between them is another important research topic in MVC task. In the early research of MVC 

algorithm, researchers paid much attention to this. Cai et al [12] proposed a SR method based on 

non-negative matrix factorization (NMF). By adding the manifold regularization (MR) to preserve the 

local structural features of the data, it can improve the properties of the clustering within the class and 

keep its structural integrity within the class. Unfortunately, due to the way NMF handles the original data, 

some useful negative information is discarded to some extent. Hence, NMF has some limitations in data 

processing, which is also one of the challenges our paper aims to tackle with.  

Further studies show that views are not independent and often inseparable in the process of MVC. 

Therefore, exploring the information connection between views has become another research hotspot. 

Feng et al [13] proposed an unsupervised multi-view link learning method, called adaptive unsupervised 

multi-view feature selection (AUMFS). This approach only considers the similarity learning among views 

on a cluster label matrix. Zhan et al [14] introduced a new method to leverage the problem of multi-view 

clusters by a joint approach which uses both adaptive structure concept factorization and optimization of 

the similarity matrix to deal with the data and the relationship information among views. Zhao et al [15] 

and Wang et al [16] suggested two models of adaptive similarity structure by using adaptive weighted 

decomposition of each view. In general, these methods simply weight each view to merge the various 

views without considering their complementarity and diversity comprehensively.  Consequently, these 

approaches lead to uncertainty in term of the useful information inevitably. As a matter of fact, each view 

can be trained collaboratively to get a global matrix in which the diversity information of each view is 

contained. Hence, it ensures the effectiveness of clustering and makes full use of the diversity information 

between views. This is our motivation employing cooperative learning (CL) to solve the multi-view 

fusion problem. 
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The MVC based on CL approach has become an important direction of research in this field recently. 

You et al [39] introduced a global discriminant analysis method to handle the differences between views. 

Kumar et al [17] proposed a method that utilizes manifold learning to preserve the local structural 

features of each view, and transformed each view into a global matrix through model learning. Although 

it used the idea of cooperative representation, they did not consider the redundancy of data, nor the 

diversity of similarity matrix between views during process. Consequently, the existence of noise in each 

view can easily cause misjudgment of information in the fusion process. To solve the problem of data 

redundancy and cooperative representation, Wen et al [40] used sparse matrix as the learning graph for 

adaptive cooperative graph learning (ACGL). The method has some robustness to the noise in each view, 

and in particular it is helpful for discovering the internal structure of the noisy data. Brbic et al [18] 

proposed a method through learning a joint subspace representation by constructing an affinity matrix 

shared between views and using the importance of low-rank and sparse constraints in affinity matrix 

construction. Even though this method embodied its robustness at a certain level, it failed to fully 

preserve the internal structural integrity of each view.  

To conclude, the MVC algorithms based on SR and CL have solved some problems that exist in 

features fusion. However, further study is still required into the usage of optimal extraction and fusion of 

specific information in the entire view. The issues associated with the existing methods detailed above can 

be summarized as follows: 

1. In the SR of the original data, NMF requires non-negative input data and non-negative 

constraints on the basis matrix, which causes some useful information contained in negative 

input data being filtered out during decomposition.  
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2. It lacks effective methods to extract view-specific information. Existing methods have 

difficulties to obtain the optimal internal structural features, as the data often contains some 

redundant noise.  

3. The diversity of views and the globality among view cannot be fully considered by 

independently using SR, AGL or CL. 

In order to address these three issues, we propose an adaptive multi-view spectral clustering (MVSC) 

method. As shown in Fig. 1, the proposed method can be divided into two steps: 1) sparse representation 

with adaptive graph learning (SRAGL); 2) adaptive weighted cooperative learning (AWCL). Fig. 1 also 

illustrates the specific operation process of each step. The purpose of the first step (SRAGL) is to extract 

the optimal sparse matrix by SR and AGL. Redundant information from the original matrix is removed 

and the geometry of each view is preserved to the maximum possible extent. Additionally, the first step 

solves issues (1) and (2). The objective of the second step (AWCL) is to merge the diversity of views with 

the globality between views. In this step, it is crucial that the view with specific structure is effectively 

fused to make it more discriminative between different clusters. As shown in the right-hand side of Fig.1, 

step 2 will provide more discriminative representation. This is because AWCL fully considers the 

different advantages of each view, and then obtains an optimal global matrix. The above two steps closely 

link with SR, AGL and CL to form a final solution to tackle issue (3).  

The main contributions of this paper can be summarized as follows: 

(1) A unique sparse matrix decomposition method is proposed to relax the non-negative constraint of 

the NMF basis matrix, so that the sparse matrix obtained by matrix decomposition contains more useful 

information. 
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(2) A direct derivative method is introduced to efficiently optimize the basis matrix and the sparse 

matrix. Consequently, it increases the similarity discrimination between samples, in the meantime, a 

quadratic processing is proposed for the coefficient matrix of the SR.  

(3) A new two-steps algorithm is proposed to solve view specific information learning and fusion 

simultaneously. Firstly, we applied AGL to optimize the similarity matrix and preserve the internal 

structural features of each view by combining manifold learning. The integration of AGL and SR can 

extract the specific information of each view. After that, an AWCL fusion method is proposed to 

effectively fuse the view’s diversity information. The specific information for different views is obtained 

by using adaptive weighted method to learn a global matrix for fusion. In order to make a complete global 

matrix data structure, a manifold learning is further applied to the global matrix.  

The remaining sections of the paper are organized as follows: related works will be introduced in 

Section 2; the proposed method based on the adaptive SR and AWCL method is introduced in Section 3; 

the proposed optimization process is outlined in Section 4; Section 5 details the experimental results and 

analysis; and finally, Section 6 concludes the paper with prospective future work. 

2 RELATED WORKS 

2.1 Graph Learning 

Many GL based methods are used to improve MVC algorithms [38] for MVC [20]. Among these 

methods, the similarity matrix to evaluate the similarity between samples can often be solved by applying 

simplest distance metric. However, it is sensitive to the initial graph input and therefore, the initialization 

process can critically impact the entire MVC performance. Assuming all the elements in the similarity 

matrix 𝑆 ∈ 𝑅!×! are non-negative, we can get the relevant property of the Laplacian matrix 𝐿 as 

follows [21][22].  
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𝐓𝐡𝐞𝐨𝐫𝐞𝐦	𝟏: The multiplicity 𝑐 of 0 as an eigenvalue of the Laplacian matrix 𝐿 is equal to the number 

of components in the similarity matrix 𝑆 ∈ 𝑅!×!. 

A very important constraint on the similarity measure matrix can be obtained from Theorem 1. If the 

constraint condition rank(𝐿) = 𝑛 − 𝑐  is satisfied, then the similarity matrix 𝑆  is a key neighbor 

assignment and the data points have been split into 𝑐 clusters [23]. According to the relevant theoretical 

proof, a conclusion can be drawn - when the sum of the first 𝑐 top smallest eigenvalues of the Laplacian 

matrix 𝐿 is equal to 0 and the constraint on rank(𝐿) = 𝑛 − 𝑐 is satisfied. Hence, ∑ 𝜆#$
#%& = 0, where 

the parameter 𝜆# is the 𝑖-th smallest eigenvalue of Laplacian matrix 𝐿. Therefore, according to Fan’s 

theorem [24], we can get: 

∑ 𝜆# = min
'
𝑡𝑟(𝐹(𝐿𝐹)$

#%&                                     

s. t. 𝐹 ∈ 𝑅!×$ , 𝐹(𝐹 = 𝐼                                 (1) 

where (∙)(denotes the matrix transpose, I represents the identity matrix and 𝐹( = [𝑓&, 𝑓), ⋯ , 𝑓!] is the 

eigenvector matrix of the Laplacian matrix 𝐿( 𝐿 = 𝐷 − [(𝑆( + 𝑆) 2⁄ ], where 𝐷 = ∑ (𝑆( + 𝑆)## 2⁄!
#%& ). 

The theoretical proof of Eq. (1) can be derived from [25] and [26]. However, Zhan [20] found that it had a 

trivial solution of 𝑆, so Eq. (1) saw previous improvements. He added 𝐿)&-norm regularization to 

smooth the elements of the similarity matrix 𝑆 ∈ 𝑅!×! as well as the constraint that the sum of each 

column of the similarity matrix 𝑆 ∈ 𝑅!×! was one. This GL model can be expressed as follows: 

min
*,'

∑ O𝑓# − 𝑓,O)
)!

#,,%& 𝑠#, + 𝛽‖𝑆‖')                                

s. t. ∀	j, 𝟏(𝑠, = 1, 𝑠, ≥ 0                                    (2) 

where the parameter 𝛽 is the regularization parameter of 𝑆, 𝟏( is the transpose of unit row vector and 

𝑠, is the 𝑗-th column of 𝑆. 𝑓# is the	𝑖-th eigenvector of the Laplacian matrix 𝐿. It can be seen that this 

model is superior in terms of retaining local features. 
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2.2 Graph Regularized Non-negative Matrix Factorization  

Cai et al [12] proposed a method to combine NMF and MR. This method can decompose the data 

matrix into two non-negative basis matrix and a sparse matrix using NMF. In general, we use spectral 

non-negative sparse matrices for SC to achieve SR for the data matrix. By adding MR, this may preserve 

its internal structural features during the process of NMF. The NMF base on MR is the following 

objective function: 

min
-,.

‖𝑋 − 𝑈𝑉‖') +𝜆𝑡𝑟(𝑉(𝐿𝑉) 

s. t. 𝑈 ≥ 0, 𝑉 ≥ 0                                   (3) 

where 𝑋 = [𝑥&, 𝑥), ⋯ , 𝑥!] ∈ 𝑅/×! is the data matrix, 𝑈 = 𝑢#, ∈ 𝑅/×! is the basis matrix, 𝑉 ∈ 𝑅!×! 

is the coefficient matrix, and 𝜆 is the regularization parameter controlling the smoothness of the SR.  

3 THE PROPOSED METHOD 

  In this section, the related symbols of this paper will firstly be briefed. For multi-view data, we can 

represent the input dataset as 𝑋 = #𝑋("), 𝑋($), ⋯ , 𝑋(%), ⋯ , 𝑋(&!)&, where	𝑛𝑣 is the number of input data views, 

𝑋(1) donates the 𝑣-th view data, and 𝑋(1) ∈ 𝑅/×!, where 𝑚 and 𝑛 represent the number of features 

in each sample data and the number of samples, respectively. 𝑋(1) ∈ 𝑅/×! has the same data dimension 

for all 𝑛% views. 𝑊(1) ∈ 𝑅/×! is used to represent the 𝑣-th view basis matrix of the SR, and 𝑉(1) ∈

𝑅!×! is the 𝑣-th view coefficient matrix of the SR. We use 𝐿(1) ∈ 𝑅!×! to donate the 𝑣-th view 

Laplacian matrix for the coefficient matrix of SR, and 𝐿(1) = 𝐷(1) − 𝑆(1),	𝑆(1) = (𝑆(1) + (𝑆(1))() 2⁄ , 

𝐷(1) = ∑ 𝑠##
(1)!

# , 𝑆(1) is the 𝑣-th view similarity graph matrix. 𝐿∗ is the Laplacian matrix of the global 

matrix 𝑉∗ in AWCL. 
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Figure 1: The flow chart of the proposed algorithm. The algorithm consists of a two-step strategy. The 

box on the left illustrates the first step (SRAGL), which can obtain the sparse features of each view. The 

box on the right illustrates the second step (AWCL), which results in a global matrix integrating all the 

view information. 

3.1 Sparse Representation by Adaptive Graph Learning  

The redundant data features existed in the original data can be reduced via SR by introducing MR to 

smooth the decomposed data. Cai et al [12] proposed a method to regulate the graph by using NMF for 

the data representation. This method not only reduces the dimensionality of the data but also preserves the 

local structural features of the sparse data. On the other hand, NMF is sensitive to the input dataset, which 

have to be non-negative. In order to solve this problem, we remove the non-negative constraint on the 

basis matrix. The improved model can be represented as follows:  

min
.(()

∑ O𝑋(1) −𝑊(1)𝑉(1)O
'
)!(

1%& + 𝜆(1)𝑡𝑟((𝑉(1))(𝐿(1)𝑉(1))                     

s. t.		𝑉(1) ≥ 0                                             (4) 

where 𝜆(1) is the 𝑣-th view regularization parameter. The greater 𝜆(1) is, the more important the second 

part of this model. The first part of this model represents the SR. By using the idea of least squares, the 

original data is decomposed into two matrices, one of which is the basis matrix and the other is the sparse 

matrix. This model can remove the redundant information by SR. Notably, the MR is used in the second 
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part of the objective function (4). 𝑡𝑟(`𝑉(1))(𝐿(1)𝑉(1)a ≡ ∑ c𝑣#
(1) − 𝑣,

(1)c
)

)
!
#,,%& 𝑠#,

(1)  is the manifold 

learning of each view, which preserves the internal structural features. More details can be found in [12]. 

In most MVC algorithms, the similarity matrix often remains unchanged during the whole process. 

Thus, this will affect the performance of the cluster to some extent. Since the internal structural features 

between different views and the sparse matrix obtained by SR of the original data should be optimized 

each time, we obtain an optimal sparse matrix through a continuous optimization process. The redundant 

information of the original data matrix can be minimized significantly, and at the same time an optimal 

similarity matrix can be obtained to preserve the local geometric features of the original data. 

Consequently, we have to adaptively learn the optimal similarity matrix as the follows: 

min
4((),.(()*(()

∑ O𝑋(1) −𝑊(1)𝑉(1)O
'
)!(

1 + 𝜆(1)𝑡𝑟((𝑉(1))(𝐿(1)𝑉(1))           

+∑ ∑ c𝑓#
(1) − 𝑓,

(1)c
)

)
!
#,,%&

!(
1%& 𝑠#,

(1) + 𝜆(1)O𝑆(1)O
'
)                  (5) 

   s. t. ∀j	𝟏(𝑠,
(1) = 1, 𝑠,

(1) ≥ 0, 𝑉(1) ≥ 0                             

where 𝑠#,
(1) is the (𝑖, 𝑗)	-th element of 𝑆(1), 𝑓#

(1) is the 𝑖-th eigenvector of the Laplacian matrix 𝐿(1) 

for the v-th view. 𝜆(1) denotes the regularization parameter of each similarity matrix and MR. The third 

and fourth parts of the objective function represent the adaptive learning of the similarity matrices. The 

structural information of the view is preserved by learning the internal structures accordingly. 

3.2 Adaptive Weighted Cooperative Learning  

For MVC to exhibit high quality performance, not only its structural characteristics of each view’s 

data features but also its fusion characteristics need to be considered. Therefore, the full use of the 

diversity information between views needs to be implemented and effective integration of the 

complementary information of each view needs to be enabled to improve the clustering performance. 

Considering the independent nature between the views, the advantage of the diversity between various 

views can be integrated via the idea of CL. The GL is simultaneously used to smooth the global matrix 
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and preserve the structural characteristics of the global matrix. According to Fan’s theorem [24], we can 

use the following objective function to represent this model: 

min
5)
((),1)

∗,6
∑ c𝑣,∗ −∑ 𝑤,

(1)𝑣,
(1)!(

1%& c!
,%& '

)
+ 𝜂𝑡𝑟(𝑌(𝐿∗𝑌)                  

s. t. 𝟏(𝑣,∗ = 1,∑ 𝑤,
(1) = 1, 𝑌 ∈ 𝑅!×$!(

1%& , 𝑌(𝑌 = 𝐼                    (6) 

where 𝑣,∗ = [𝑣&,∗ , 𝑣),∗ , ⋯ 𝑣!,∗ ]( , 𝜂  is the trade-off parameter for MR, 	𝑌( = [𝑦&, 𝑦), ⋯ , 𝑦!]  is the 

eigenvector matrix of the Laplacian matrix 𝐿∗  for the global matrix. In addition, the matrix 

normalization constraints can be added to the fusion matrix to make the global matrix smoother. Hence, 

Eq. (6) can be rewritten as follows: 

min
5)
((),1)

∗,6
∑ c𝑣,∗ −∑ 𝑤,

(1)𝑣,
(1)!(

1%& c
'

)
!
,%& +𝜂∑ O𝑦# − 𝑦,O'

)!
#,,%& 𝑣#,∗              

s. t. 𝟏(𝑣,∗ = 1,∑ 𝑤,
(1) = 1, 𝑌 ∈ 𝑅!×$!(

1%& , 𝑌(𝑌 = 𝐼                   (7) 

From Eq. (7), we can find out that the model displays the ability to learn the internal structures of the 

global matrix and partially contribute to the improvement of the clustering performance. 

4 OPTIMIZATION 

In this section effective iterative methods to solve Eqs. (5) and (7) are proposed, including specific 

details of the optimization of these two parts.  

4.1 Graph Learning Optimization 

In this optimization sub-module, four parameters in Eq. (5) need to be updated, i.e. 

𝑆(1),	𝑉(1),𝑊(1),	𝑓#
(1). The augmented Lagrange multiplier method is used to optimize this objective 

function. More details are provided as below. 

1) The first part involves updating each single view similarity graph 𝑆(1) by fixing other three variables. 

Thus, the following objective function can be obtained: 
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min
7+)
(()
∑ ∑ c𝑓#

(1) − 𝑓,
(1)c

)

)
!
#,,%&

!(
1%& 𝑠#,

(1) + 𝜆(1)O𝑆(1)O
'
)     

s. t. ∀j	𝟏(𝑠,
(1) = 1, 𝑠,

(1) ≥ 0                               (8) 

let 𝑔#,
(1) = c𝑓#

(1) − 𝑓,
(1)c

)

)
, then Eq. (8) will become: 

min
7+)
(()
∑ ∑ 𝑔#,

(1) ∗!
#%&

!(
1%& 𝑠#,

(1) + 𝜆(1) ∑ (𝑠#,
(1)))!

#%&   

s. t. ∀j	𝟏(𝑠,
(1) = 1, 𝑠,

(1) ≥ 0                              (9) 

Eq. (9) can be further simplified as: 

min
7)
(()
c𝑠,

(1) + &
)8(()

𝑔,
(1)c

)

)
                             

s. t. ∀j	𝟏(𝑠,
(1) = 1, 𝑠,

(1) ≥ 0                     (10) 

where j𝑔&,
(1), 𝑔),

(1), ⋯ , 𝑔!,
(1)k

(
 is denoted by 𝑔,

(1). This objective function’s Lagrangian function is then 

presented as the follows: 

Lm𝑠,
(1), 𝛼, 𝜌p = c𝑠,

(1) + &
)8(()

𝑔,
(1)c

)

)
− 𝛼m(𝑠,

(1))(𝟏 − 1p − 𝜌𝑠,
(1)            (11) 

where 𝛼 and 𝜌 are the Lagrangian multipliers. 

According to Karush-Kuhn-Tucker (KKT) condition [27], we can easily get the optimal solution of 

Eq. (11):  

𝑠,
(1) = (−

9)
(()

)8(()
+ 𝛼):                                 (12) 

where the symbol + denotes greater than 0. 

2) The second updating parameter 𝑓#
(1) is obtained by fixing the other three variables. We can optimize 

the variable 𝐹(1), and (𝐹(1))( = (𝑓#
(1), 𝑓)

(1), ⋯ , 𝑓!
(1)), and then Eq. (5) can be expressed as: 

min
'(()

𝑡𝑟((𝐹(1))(𝐿(1)𝐹(1)) 

s. t. 𝐹(1) ∈ 𝑅!×$ , (𝐹(1))(𝐹(1) = 𝐼.                         (13) 

This objective function can be solved by calculating the eigenvectors of 𝐿(1). 
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3) The third updating parameter is each single view 𝑉(1) by fixing other three variables. Therefore, we 

can get the following objective function: 

min
.(()

O𝑋(1) −𝑊(1)𝑉(1)O
'
)
+𝜆(1)𝑡𝑟((𝑉(1))(𝐿(1)𝑉(1)) 

s. t.		𝑉(1) ≥ 0.                                             (14) 

Eq (14) demonstrates that a simple quadratic function can be easily achieved. Hence, we can solve it 

by applying the derivation directly. 

𝑉(1) = 4(();(():8(()*(().(()

(4(()),4(().(():8(()<(().(()
.                          (15) 

There is a constraint in Eq. (5) that is 𝑉(1) ≥ 0. To ensure the effectiveness of this constraint, we add 

the square to variable 𝑉(1). Firstly, the sparse matrix 𝑉(1) can be interpreted as similarity measurement 

matrix between data samples. The absolute values of coefficient matrix elements represent the similarity 

between samples. Besides, the square has the effect of polarization, increasing the value of the number 

greater than 1 and decreasing the value of the number smaller than 1. This shows that two samples within 

the same category have larger weights and the sample weights between different classes will be smaller. 

To a certain extent, it can play a role in preserving the characteristics of the global structure. Therefore, 

the update of 𝑉(1) can be further expressed as follows: 

𝑉(1) ∶= (𝑉(1)))                                   (16) 

4) By fixing the other three parameters, the fourth updating parameter 𝑊(1) is obtained in each single 

view. We can use the direct derivation method to optimize this variable. Thus, we get the following 

solution: 

𝑊(1) = 𝑋(1) ∗ 𝑖𝑛𝑣`𝑉(1)a.                               (17) 

The optimization process of the SR and AGL model is illustrated in Algorithm 1.  

Algorithm 1 Update parameters of SRAGL, 𝑉(%), 𝑆(%),𝑊(%), 𝐹(%). 
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1: Input: Dataset 𝑋 = #𝑋("), 𝑋($), ⋯ , 𝑋(%), ⋯ , 𝑋(&!)& and cluster number 𝑐. 
2: Output: the SR of each view, 𝑉(%), 𝑣 ∈ [1, 𝑛%]. 
3: Initialize: Each view graph 𝑆(%) is initialized with Eq. (8) by substituting 𝑋(%) into 𝑓, and using 
each initial graph 𝑆(%) to obtain the initial 𝐹(%) by Eq. (11). 𝑉(%) = 𝐼&×&,𝑊(%) = 𝐼.×&. 
4: for 𝑣 ∈ [1, 𝑛%] do 
5:    while 𝑡<= inter（inter=30 in our experiments） 

6:       update 𝑠/
(%) by using Eq. (12). 

7:       update 𝐹(%) by using Eq. (13). 
8:       update 𝑉(%) by using Eqs. (15) and (16). 
9:       update 𝑊(%) by using Eq. (17). 
10:    end while 
11: end for 

4.2 Adaptive Weighted Cooperative Learning Optimization 

By learning SRAGL, we firstly obtain sparse matrices for individual views. Next, we get a global 

matrix with complementary information between the views via fusing the sparse matrix of each view. 

Finally, the objective function of the optimization model in Eq. (7) will be expressed as follows: 

Lm𝑤,
(1), 𝑣,∗, 𝑦,p = 𝑎𝑟𝑔	𝑚𝑖𝑛∑ c𝑣,∗ − ∑ 𝑤,

(1)𝑣,
(1)!(

1%& c
'

)
!
,%& +𝜂∑ O𝑦# − 𝑦,O'

)𝑣#,∗!
#,,%&              

s. t. 𝟏(𝑣,∗ = 1,∑ 𝑤,
(1) = 1, 𝑌 ∈ 𝑅!×$!(

1%& , 𝑌(𝑌 = 𝐼.                       (18) 

There are three main variables in Eq. (18), namely,	𝑤,
(1) ,	𝑣,∗ ,	𝑦, , which need to be optimized 

separately. 

1) Update 𝑣,∗: when optimizing the variable 𝑣,∗, we fix 𝑤,
(1), 𝑦,, and Eq. (18) can be rewritten as 

follows: 

min
1)
∗ ∑ c𝑣,∗ − ∑ 𝑤,

(1)𝑣,
(1)!(

1%& c
'

)
!
,%& +𝜂∑ O𝑦# − 𝑦,O'

)𝑣#,∗!
#,,%&                     

s. t. 𝟏𝑻𝑣,∗ = 1.                                        (19) 

According to [20], different columns of 𝑣∗ are independent, therefore, each column can be solved 

separately. Hence, the objective function is represented by the following equation:  

min
1)
∗ ∑ c𝑣,∗ − ∑ 𝑤,

(1)𝑣,
(1)!(

1%& c
'

)
!
,%& +𝜂∑ O𝑦# − 𝑦,O'

)𝑣#,∗!
#,,%& + 𝛾(𝟏(𝑣,∗ − 1))   (20) 

where γ is the Lagrangian multiplier. 
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Since the variable 𝑦# is fixed, denote O𝑦# − 𝑦,O'
)  as ℎ#,. Finally, Eq. (20) can be simplified as 

follows: 

min
1)
∗ c𝑣,∗ − (

>
)
ℎ, − ∑ 𝑤,

(1)𝑣,
(1)!(

1%& )c
)

)
+ 𝛾(𝟏(𝑣,∗ − 1))           (21) 

where ℎ, = [ℎ&, , ℎ), , ⋯ , ℎ!,] and the process of solving Eq. (19) is similar to that of Eq. (14). The 

variable 𝑣,∗ can be optimized as follows: 

𝑣,∗ = ∑ 𝑤,
(1)𝑣,

(1)!(
#%& − >

)
ℎ, + 𝛾                            (22) 

2) Update 𝑦#: we must fix 𝑤,
(1)

 and 𝑣,
(1),  the objective function becomes 

min
6
𝑡𝑟(𝑌(𝐿∗Y) 	                                          

 s. t. 𝑌 ∈ 𝑅!×$ , 𝑌(𝑌 = 𝐼                               (23) 

the solution of Eq. (23) is the same as Eq. (11). It calculates the eigenvectors of 𝐿∗. 

3) Update 𝑤,
(1): this sub-problem involves fixing 𝑣,∗ and Y. Consequently Eq. (18) becomes 

min
5)
(()
∑ c𝑣,∗ − ∑ 𝑤,

(1)!(
1%& 𝑣,

(1)c
'

)
!
,%&                             

s. t. ∑ 𝑤,
(1)!(

1%& = 1                                   (24) 

According to [20], Eq. (24) can be simplified as follows: 

min
5)
(()
∑ c𝑣,∗ − ∑ 𝑤,

(1)!(
1%& 𝑣,

(1)c
'

)
!
,%& = min

4)
∑ 𝑊,(𝑍,(𝑍,𝑊,!
,%& ,              (25) 

where 𝑍, = j𝑧,
(&), 𝑧,

()), ⋯ , 𝑧,
(!()k , 𝑧,

(1) = 𝑣,∗ − 𝑣,
(1),𝑊, = j𝑤,

(&), 𝑤,
()), ⋯ , 𝑤,

(!()k . Then, the Lagrangian 

function of Eq. (24) is given by 

𝐿`𝑊, , ∅a = ∑ 𝑊,(𝑍,(𝑍,𝑊,!
,%& − ∅(1 − 𝑤,(𝟏)                    (26) 

where ∅ is the Lagrangian multiplier. 

The direct derivation is used to solve Eq. (26) by setting its derivative as 0. We can get the following 

equation: 
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?@(4),∅)
?4)

= 𝑍,(𝑍,𝑊, − ∅𝟏 = 0.                              (27) 

By combining constraint 𝑊,(𝟏 = 1 with Eq. (27), we can get the final solution 𝑊, as 

𝑊, =
(B)
,B))01𝟏

𝟏𝑻(B)
,B))01𝟏

.                                     (28) 

The above steps stop when the difference between the two iterations is smaller than a threshold, or 

the maximum number of iterations INTER is reached. The optimization process of the AWCL model is 

summarized as in Algorithm 2. 

Algorithm 2：Update parameters iterative algorithm of AWCL, 𝑣/∗, 𝑤/
(%). 

1: Input: different view sparse matrix 𝑉/ = 8𝑣/
("), 𝑣/

($), ⋯ , 𝑣/
(&!)9. 

2: Output: a global matrix 𝑉∗. 
3: Initialize: Each element of 𝑊/ , ∀𝑗, is set to 1 𝑛%⁄ , eps=0.001, and let 𝑉∗ = ∑ 𝑉(%)&!

%3" 𝑛%,⁄  𝑉∗ =
𝑉∗ −∑ 𝑉44∗&

43" . 
4: while abs((obj_new - obj_old)/obj_old) > eps do 
5:   for 𝑖<=INTER（INTER=30 in our experiments） 
6:     update 𝑣/∗ 

by solving Eq. (22). 
7:     update 𝑌 by solving Eq. (23). 
8:     update 𝑊/ 

by solving Eq. (28). 
9:     obj_old = obj_new; 

10:    obj_new = sum(sum(𝑉∗- sum(∑ ∑ (𝑤/
(%) ∗ 𝑣/

(%)&
/

&!
%3" )))2); 

11:   end for 
12: end while 

In summary, we individually optimize SRAGL and AWCL modules. Through the optimization 

process, the raw data of each view is sparsely represented, which is then fed to the AWCL as input. A 

global matrix with complementary information is then obtained, which is used as the final input to the SC. 

The overall flow of the algorithm is given in Algorithm 3. 

 

Algorithm 3: The overall flow of the algorithm SRAGL-AWCL. 
1: Input: Data matrix 𝑋 = #𝑋("), 𝑋($), ⋯ , 𝑋(%), ⋯ , 𝑋(&!)&, 𝜆(%). 
2: Initialization: Each view graph 𝑆(%) is initialized with Eq. (2) by substituting 𝑋(%) into 𝑓, and 

using each initial graph 𝑆(%) to obtain initial 𝐹(%) by Eq. (11). Let 	𝑉(%) = 𝐼&×&,𝑊(%) = 𝐼.×&, 
𝑉∗ = ∑ 𝑉(%)&!

%3" 𝑛%⁄ , 𝑉∗ = 𝑉∗ − ∑ 𝑉44∗&
43" , 𝜆(%) = 0.01. 

3: Output: The features of data points to c clusters 
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4: for 𝑖<=INTER 
5:   update 𝑉(%) by using Eqs. (15) and (16). 
6: end for 
7: while not converge do 
8:   update 𝑣/∗ 

by solving Eq. (22). 
9:   update 𝑊/ 

by solving Eq. (28). 
10:  if 𝑖	> INTER 
11:     break. 
12:  end if 
13: end while 
14: 𝑍 = |𝑉∗ + (𝑉∗)5| 2⁄ .  
15: Apply SC to the affinity matrix 𝑍. 

5 EXPERIMENTS RESULTS AND ANALYSIS 

5.1 Experimental Setting 

5.1.1 Multi-view Datasets 

1) UCI_Digits:1 It includes ten classes of handwritten numbers in this dataset, which consists of ten 

numbers from 0 to 9. In this experiment, five views are used for each point: the first view is the 216-D 

profile-correlation feature; the second is the 76-D Fourier-coefficient feature; the third is 64-D 

Karhunen-Loeve-coefficient feature; the fourth is 240-D intensity-averaged feature in windows; and the 

last view is 47-D morphological feature. 

2) ORL_mtv dataset:2 This is a generic dataset used by many multi-view algorithms. There are 10 

different gray scale facial images of 40 distinct subjects, which are taken under different conditions, such 

as: different illuminations; different facial expressions; and facial details. In this experiment, three 

recognized views are used to evaluate the algorithm. 

3) Notting-Hill:3 This dataset is an image dataset extracted from a movie called ‘Notting Hill’, which 

contains 4660 images in 76 tracks [28][29]. Since the images in each track are very similar, we consider 

each track as a class. In this experiment, the first 20 tracks of the dataset are selected for a total of 1206 

 
1  http://archive.ics.uci.edu/ml/datasets/Multiple+Features. 
2 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html. 
3 https://bitbucket.org/chengjuzhou/constrained-multi-view-video-face-clustering/src/master/CX_VFC/data/NH/. 
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samples. Here three views features are used to represent each facial image: the first view is the 6750-D 

Gabor feature; the second view is 3304-D LBP feature; and the third view is the 2000-D gray feature.  

4) Caltech-101:4 The image dataset includes 101 categories of images [30]. We choose the six general 

categories of objects and obtain 1439 images. These six objects include the following: faces, motorbikes, 

dollar bill, Garfield, stop sign, and Windsor chair. We also use three views features to represent each 

image: the first view is 160-D Gabor feature; the second view is 324-D hog feature; and the third view is 

236-D LBP feature. 

5.1.2 Single-view Datasets 

1) COIL-20: This dataset is a globally used dataset by single view clustering algorithms. It has 32x32 

gray scale images of 20 objects viewed from various angles. In total, there are 1440 object image samples 

in the dataset [31]. 

2) USPS: This is also a commonly used digital image dataset by single view clustering algorithms. This 

dataset contains a large number of samples, with 9298 digital image samples, and its size is 16x16, which 

contains numbers from 0 to 9. The information of all the datasets is summarized in Table 1. 

Tabel 1: Statistic of the Datasets 

Datasets Instance View Class 
UCI_Digits 2000 5 10 
ORL_mtv 400 3 40 

Notting-Hill 1206 3 20 
Caltech-101 1439 3 6 

COIL-20 1440 1 20 
USPS 9298 1 10 

ORL_32x32 400 1 40 
Yale_32x32 165 1 15 

5.2 Compared Methods 

 
4 http://www.vision.caltech.edu/Image_Datasets/Caltech101/. 
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5.2.1 Multi-view Compared Methods 

RMKMC: This is a multi-view method of k-means clustering for big data [32]. The algorithm adds 

𝐿)&-norm into sparse factorization to obtain robust result. According to the authors’ suggestion, the 

parameter 𝑙𝑜𝑔&D𝛾 is adjusted in the range of [0.1, 2] with interval 0.2 in order to obtain the best result. 

CRSC: This is a classical MVC method [17] of which its main contribution is to carry out the local 

structure reservation of each view and the implementation of the global view via co-regularizing the 

clustering hypotheses. For the key parameter 𝜆 as recommended in the paper, we set it as 0.01.  

AMGL: The highlight of this approach is the use of automatic weighted multi-view GL [19]. It obtains a 

new representation of each data point by summing up different Laplacian matrices from different views.  

MVGL: This is MVC with GL [20]. It involves automatic adjustment of the similarity matrix of each 

view to get a good result as well as cooperative learning to obtain a global similarity matrix. 

MVCF: This is adaptive structure concept factorization for MVC [14]. The contribution of this algorithm 

is to use concept decomposition for the original data, which is different from NMF. The similarity matrix 

in this algorithm is updated according to the algorithm optimization. The default parameter values are 

used for this algorithm. 

MVNMF：This is MVC involving the jointing of NMF [37]. The main idea is to sparse represent the row 

dataset by fusing each view sparse matrix into a global matrix by NMF and related constraints. According 

to the requirements of the paper, we set 𝜆=0.01. 

KPMLRSSC: Kernel pairwise multi-view low-rank sparse subspace clustering [18] uses linear 

decomposition to achieve sparse matrices. The addition of the nuclear norm and 𝐿&-norm constraint to a 

sparse matrix makes the process more robust. The parameters are set to the default values according to the 

paper. 
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KCMLRSSC: Kernel centroid-based multi-view low-rank sparse subspace clustering [18] is an 

algorithm model that is the same as KPMLRSSC in terms of sparse decomposition and related constraints. 

However, this method also obtains a global sparse matrix via computing between views. 

5.2.2 Single-view Compared Methods 

GRNMF: This method is about data representation based on graph regularized NMF [12]. This paper is 

the first one to combine NMF with manifold learning to preserve the local structural features of the data. 

DSRMR: This robust unsupervised feature selection method includes dual self-representation and MR 

[33]. It uses 𝐿)&-norm for robust outliers. Likewise for the similarity matrix, the dual update method is 

used to optimize the variable.  

GSR_SFS: This is a method based on factor self-representation for sparse feature selection [34]. The 

difference between GSR_SFS and DSRMR is that a traditional fixed similarity matrix is used to solve the 

model. 

GLOSS: This is a sparse subspace learning feature selection method based on local structural feature 

preservation [35]. It can simultaneously realize feature selection and subspace learning. 

RSR: This is an unsupervised feature selection method performed by regularized self-representation [36], 

which uses the 𝐿)&-norm to characterize the representation coefficient matrix.  

5.3 Evaluation Matrices and Complexity Analysis 

5.3.1 Evaluation Matrices 

In order to evaluate the experimental results, several globally adopted evaluation criteria are applied, 

including accuracy (ACC), normalized mutual information (NMI), F1-score, precision, and adjusted Rand 

index (ARI). F1-score and precision can be defined as: 

Precision = (E
(E:'E

	,	                                   (29) 
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Recall = (E
(E:'F

                                       (30) 

F1-score = 2 EGH$#7#I!∙KH$LMM
EGH$#7#I!:KH$LMM

                            (31) 

where true positive (TP) is the number of item pairs that are in the same cluster and belong to the same 

class. False positive (FP) is the number of item pairs that are in the same cluster but belong to different 

classes and false negative (FN) is the number of item pairs that are in different clusters but belong to the 

same class. Another complex index is ARI, which can be defined as follows: 

             ARI =
∑ O

!+)
) PQ[	∑ OL+) P∑ OT)

)
P	)+ ]/O!)P+)

1
6W	∑ OL+) P:∑ OT)

)
P	)+ XQ[	∑ OL+) P ∑ OT)

)
P	)+ ]/O!)P

                      (32) 

where 𝑛#, represents the number of classes belonging to both class 𝑖 and cluster 𝑗, 𝑎# and 𝑏, are the 

numbers of class 𝑖 and cluster 𝑗, respectively. 

5.3.2 Complexity Analysis 

In this section, we theoretically analyze the computational complexity of the proposed 

SRAGL-AWCL to evaluate the computational efficiency. Our approach can be divided into two steps, 

namely the SRAGL and AWCL. The first step is to calculate the complexity of the objective function (5). 

According to [20] and the derivative of a square function, we know the complexity of SRAGL is 

𝑂(𝑡&𝑛1(3𝑛) + 𝑐𝑛))), where 𝑡&,	𝑛1, 𝑐 and 𝑛 are the number of iterations in SRAGL , number of views, 

number of clusters and number of samples, respectively. Since the highest power is 2 and has some 

constant terms in it, the complexity of SRAGL can be simplified to 𝑂(𝑡&𝑛1𝑛)). The second step is to 

calculate the complexity of AWCL. According to [20], we can get the complexity of AWCL as 

𝑂(𝑡)(𝑛1)𝑛 + 𝑛1Y + 𝑐𝑛1)𝑛), where 𝑡) is the number of iterations of AWCL. According to the analysis of 

the complexity of SRAGL and AWCL, the complexity of SRAGL-AWCL can be expressed as 

𝑂(𝑡&𝑛1𝑛) + 𝑡)(𝑛1)𝑛 + 𝑛1Y + 𝑐𝑛1)𝑛) . Since normally 𝑛1 ≪ 𝑛	 and 𝑐 ≪ 𝑛 , the complexity of 

SRAGL-AWCL is 𝑂(𝑡𝑛1)𝑛)), where 𝑡 is the number of the total iterations. We can also find out the 
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algorithmic complexity of RMKMC [32], MVGL [20], MVCF [14], and MVNMF [37] as 𝑂(𝑡𝑛1𝑛), 

𝑂(𝑡𝑛1𝑛)), 𝑂(𝑡𝑛1𝑛)), and 𝑂(𝑡𝑛1𝑚𝑛), respectively, where m denotes the size of each sample. By 

comparing the complexity of these algorithms, the lowest algorithmic complexity is a linear polynomial, 

whilst the most algorithmic complexity is a quadratic polynomial of 𝑛. The computation times of each 

algorithm are listed in Tables 2-6 (the last column) for different datasets. It can be seen that the time 

consumption of the algorithms with relatively lower algorithmic complexity is greater in some cases, for 

example, the time consumption of RMKMC in multi-view dataset ORL-mtv and Notting-Hill. This is 

because the number of iterations, 𝑡, can determine the time consumption of the whole algorithm to a 

certain extent. Besides, the time consumption of the same algorithm may vary on different datasets, 

mainly due to the different number of iterations (such as MVGL in datasets COIL20 and UCI_Digits) 

needed in the process. On the other hand, the size of the sample data also determines the running time of 

the algorithms (such as MVNMF in datasets ORL_mtv and UCI_Digits). Overall, the time consumed by 

our proposed algorithm is relatively low compared to other algorithms, which shows the good efficiency 

of our algorithm. 

5.4 Clustering Results 

In this section we will evaluate the clustering performance of our algorithms from two aspects,  

multi-view and single view clustering. It is worth noting that all datasets are sampled in the same 

processing mode during comparison experiments, including dimensions of input data, number of samples, 

number of views and pre-processing operations. Since the proposed method is based on an unsupervised 

SC algorithm, it does not require labeled or annotated training data. We use the existing implementations 

published by the corresponding references and the results of the MVC algorithm which are shown in 

Tables 2-5. The results of single view clustering are shown in Table 6 and Fig. 2. Some results of the 

comparison methods are taken directly from the corresponding references listed in the table.  
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For multi-view datasets, the proposed method is superior to all similar comparison methods in some 

evaluation matrices, i.e. ACC, F1-score, precision and ARI. Notably, the most obvious improvement is 

observed on the ORL_mtv dataset. Compared to the second-best experimental result (KPMLRSSC), we 

can find out that there is an increase about 6%, 3%, 7%, 5% and 7% in each of the evaluation indexes, i.e. 

ACC, NMI, F1-score, precision and ARI. On the contrary, the result of the RMKMC algorithm is the 

worst in the ORL_mtv dataset. ACC is around 20% and precision is only 9%. By comparing 

SRAGL-AWCL to KPMLRSSC and RMKMC, we can conclude that our proposed method has the 

advantage of using the SR method with AGL for each view. More specifically, the strategy utilized in the 

first-step of our method is not only better at removing redundant information, but also enhances the 

discrimination between samples and continuously optimizes the graph structure features of each view. 

Finally, we can obtain each view feature matrix with a complete internal feature structure.  

Our algorithm also obtains great improvement on dataset Notting-Hill. Especially, the evaluation 

indicators of ACC and precision are improved by 4% and 5% from the second-best results, respectively. 

Furthermore, as shown in Table 4, the experimental results of some compared methods are unsatisfactory 

in some evaluation indicators, such as the second-best result MVGL in NMI (20.63%) and ARI (27.03%). 

From the experimental results obtained by the methods AMGL and MVGL, it is observed that the 

proposed SRAGL-AWCL method with a novel matrix decomposition outperforms all other comparison 

algorithms, which further justifies our two-step strategy. Additionally, the AWCL module also adaptively 

weights each view and makes good use of complementary information between views to merge into 

global feature information - this improves classification performance. In order to prove the generality of 

our proposed algorithm compared with other algorithms, we conducted some simple processing of the 

Catech-101 dataset, using the feature extraction algorithms (GABOR, HOG and LBP) of the images in 

this dataset. Our algorithm has slightly lower NMI (0.22%) than MVGL shown in Table 5. The reason is 
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that the dataset UCI_Digits is simply a handwritten digital picture, which only contains fewer feature 

points. Additionally, the constraint of the original SR model ( that all values of the sparse subspace matrix 

are greater than zero ) will filter out some information during matrix decomposition. It could significantly 

affect the final performance of the cluster for dataset with a small number of characteristics in the sample, 

such as UCI_digit. On the other hand, MVGL directly integrates various view features from similarity 

measures without the SR processing through each view, which allows it to preserve complete feature 

information. 

For single-view results, the experimental results on COIL20, USPS, Yale_32x32 and ORL_32x32 

datasets are shown in Table 6 and Fig. 2. These results emphasize that our algorithm has generally better 

clustering effect on single-view datasets than baseline methods. The multi-view comparison methods are 

shown in Table 6, and the single-view comparison methods in Fig. 2. From the results shown in Table 6, 

important details can be extracted: SRAGL and SRAGL-AWCL demonstrate the same results in the 

single-view dataset COIL20. In another word, AWCL is not essential when it comes to the single-view 

dataset. In terms of the evaluation index NMI, the proposed method is very close to the second-best 

comparison method MVGL – it is only 0.41% higher. The reason is because most samples in COIL20 are 

with some simple structures and the required features for clustering are relatively simple. On the other 

hand, after the newly proposed SR model for feature extraction is used, the information content of each 

view feature becomes simpler. Fig. 2 provides the summary of the additional experiment results to 

compare our method with other single-view benchmark datasets, i.e. Yale_32x32, ORL_32x32, USPS and 

COIL20. It can be seen that our method has tremendously improved the performance against indexes of 

ACC and NMI. For example, our method has shown great improvement (ACC is 83%, NMI is 87%) 

compared to other algorithms results on the USPS dataset. Better results have been also achieved on 

Yale_32x32 (ACC is 51%, NMI is 59%) and ORL_32x32 (ACC is 62%, NMI is 81%) datasets.  
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Table 2: Results on ORL_mtv dataset (the best result is bolded)  
Method ACC(%) NMI(%) F1-score(%) Precision(%) ARI(%) Time(second) 

RMKMC 20.00±0.00 53.43±0.00 16.22±0.00 9.72±0.00 12.94±0.00 11.65±0.25 
CRSC 72.07±2.52 86.50±1.78 63.75±3.55 59.17±3.44 62.85±3.64 6.54±0.21 
AMGL 74.15±0.98 89.62±0.89 59.59±3.32 47.37±3.66 58.40±3.44 3.39±0.28 
MVGL 75.25±0.00 88.82±0.00 48.72±0.00 34.76±0.00 47.05±0.00 3.62±0.22 
MVCF 67.00±0.00 81.08±0.00 50.79±0.00 43.59±0.00 49.46±0.00 8.74±0.14 

MVNMF 72.70±0.40 89.10±0.10 66.00±0.44 57.90±0.65 65.00±0.46 73.56±0.24 
KPMLRSSC 76.70±2.83 89.46±1.46 70.30±3.41 66.17±3.93 69.57±3.49 2.04±0.36 
KCMLRSSC 74.13±4.41 88.56±1.72 67.88±4.56 63.10±5.21 67.08±4.69 1.39±0.23 

SRAGL 79.30±2.03 90.76±0.52 70.87±1.85 63.89±2.75 70.12±1.91 1.21±0.12 
SRAGL-AWCL 82.50±1.57 92.78±0.78 77.00±2.63 71.85±3.76 76.43±2.71 3.44±1.25 

 
Table 3: Results on Notting-Hill dataset (the best result is bolded) 

Method ACC(%) NMI(%) F1-score(%) Precision(%) ARI(%) Time(second) 
RMKMC 39.39±0.00 51.70±0.00 23.21±0.00 13.25±0.00 12.08±0.00 53.00±0.27 

CRSC 60.94±0.85 76.94±1.24 52.60±1.80 59.36±1.82 49.36±1.90 23.88±0.52 
AMGL 75.75±2.18 87.23±0.83 62.48±1.30 47.82±1.12 58.57±1.43 41.70±0.46 
MVGL 81.76±0.00 88.83±0.00 71.76±0.00 64.81±0.00 69.31±0.00 39.35±0.47 
MVCF 66.50±0.00 78.37±0.00 56.77±0.00 59.94±0.00 53.60±0.00 55.63±1.24 

MVNMF 73.72±1.68 82.11±1.03 54.68±1.80 47.09±5.33 50.47±2.30 355.93±0.84 
KPMLRSSC 63.84±2.98 78.49±1.58 56.04±2.70 63.26±2.18 53.04±2.82 110.25±1.58 
KCMLRSSC 62.87±3.76 77.82±1.61 54.56±2.59 62.07±3.44 51.48±2.75 38.93±0.25 

SRAGL 77.88±2.97 86.35±1.35 70.15±2.79 68.50±2.63 67.77±2.95 8.91±0.12 
SRAGL-AWCL 85.57±4.61 89.18±1.79 76.27±4.50 73.50±4.71 74.35±4.86 32.56±0.34 

 
Table 4: Results on Caltech-101 dataset (the best result is bolded) 

Method ACC(%) NMI(%) F1-score(%) Precision(%) ARI(%) Time(second) 
RMKMC 52.33±0.00 14.05±0.00 56.27±0.00 50.58±0.00 20.59±0.00 3.41±0.39 

CRSC 28.07±0.65 12.70±1.34 30.04±0.79 48.62±0.88 6.81±0.79 9.76±0.06 
AMGL 55.46±0.10 8.37±0.98 59.37±0.53 43.11±0.83 12.72±1.86 65.71±0.37 
MVGL 55.46±0.00 20.63±0.00 62.40±0.00 51.02±0.00 27.03±0.00 48.73±0.56 
MVCF 37.46±0.00 17.84±0.00 36.92±0.00 52.41±0.00 11.84±0.00 43.97±0.05 

MVNMF 55.52±0.00 16.91±0.31 57.78±0.00 40.64±0.00 24.55±0.50 59.25±0.16 
KPMLRSSC 20.08±1.39 11.01±1.32 19.95±1.57 46.15±3.20 3.02±1.72 53.47±1.29 
KCMLRSSC 20.08±0.59 10.16±0.92 20.00±1.18 46.04±1.72 2.99±0.96 53.78±1.56 

SRAGL 55.79±0.28 47.67±0.45 62.97±0.45 80.08±4.21 39.81±4.09 8.57±0.25 
SRAGL-AWCL 56.29±0.23 49.04±1.84 63.14±0.38 83.08±4.21 41.71±0.22 9.96±0.14 

 
Table 5: Results on UCI_Digits dataset (the best result is bolded) 

Method ACC(%) NMI(%) F1-score(%) Precision(%) ARI(%) Time(second) 
RMKMC 47.05±0.00 55.95±0.00 45.32±0.00 35.18±0.00 37.28±0.00 42.85±0.37 

CRSC 75.23±3.87 72.79±2.64 68.21±3.47 66.45±3.74 64.58±3.90 278.68±0.46 
AMGL 81.51±5.02 87.84±2.12 80.68±3.98 74.00±4.70 78.32±4.51 182.54±0.28 
MVGL 85.35±0.00 90.31±0.00 84.69±0.00 78.66±0.00 82.85±0.00 341.60±1.28 
MVCF 85.03±0.00 77.90±0.00 74.12±0.00 72.86±0.00 71.20±0.00 290.47±1.23 
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MVNMF 71.88±1.81 73.62±1.16 65.77±1.37 62.29±1.11 61.75±1.51 54.96±0.56 
KPMLRSSC 78.35±5.16 76.98±1.73 72.08±3.16 70.43±4.68 68.90±3.61 181.02±1.25 
KCMLRSSC 80.31±3.56 77.42±1.41 72.90±2.72 71.74±3.96 69.84±3.10 179.44±1.58 

SRAGL 81.01±3.19 86.69±1.67 81.01±2.79 75.99±3.21 78.75±3.14 77.31±0.21 
SRAGL-AWCL 86.90±2.48 90.09±2.02 85.28±1.77 79.21±2.57 83.51±2.02 208.21±0.50 

 
Table 6: Results on COIL20 dataset (the best result is bolded) 

Method ACC(%) NMI(%) F1-score(%) Precision(%) ARI(%) Time(second) 
RMKMC 27.64±0.00 55.32±0.00 29.75±0.00 18.55±0.00 23.71±0.00 7.62±0.52 

CRSC 64.00±0.96 76.87±0.35 60.29±0.76 59.91±0.99 58.13±0.81 10.76±0.26 
AMGL 80.12±4.30 91.72±2.38 77.54±3.15 67.12±4.39 76.18±3.38 21.23±0.11 
MVGL 87.08±0.00 95.95±0.00 84.84±0.00 75.57±0.00 83.96±0.00 4.50±0.48 
MVCF 61.88±0.00 74.19±0.00 55.58±0.00 50.46±0.00 53.03±0.00 18.46±0.27 

MVNMF 78.04±3.40 88.83±1.56 74.60±2.78 69.55±4.43 73.18±2.97 6.44±0.06 
KPMLRSSC 62.88±3.36 75.75±1.68 58.76±2.72 56.24±3.06 56.62±2.88 15.48±0.51 
KCMLRSSC 63.16±4.68 76.35±2.25 59.63±3.82 57.21±4.18 57.44±4.05 9.74±0.25 

SRAGL 90.76±0.00 96.38±0.00 89.60±0.00 85.44±0.00 89.04±0.00 6.35±0.25 
SRAGL-AWCL 90.76±0.00 96.38±0.00 89.60±0.00 85.44±0.00 89.04±0.00 9.54±0.47 

 

      

Figure 2：The comparison clustering results achieved by our method and other benchmark ones on 

single-view datasets.  

5.5 Parameters λ and η Analysis 

In the proposed model, we use SC of sparse matrices to obtain the final evaluation value. There are 

mainly two parameters 𝜆 and 𝜂 in the two models SRAGL and SRAGL-AWCL that are affecting the 

performance. The 𝜆 is a regularization parameter for data smoothing and similarity matrix learning for 

sparse matrix in each view, and λ = λ(1) in all views. The 𝜂 is a regularization parameter for learning 
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the global Laplacian matrix 𝐿∗. In our experiments, an initial value of 𝜂 is assigned to 1. After that, we 

update 𝜂 by the following regulation: if the sum of the top 𝑐 smallest eigenvalues of the global 

Laplacian matrix 𝐿∗ equals to zero, we set 𝜂 = 1; if the sum of the top 𝑐 smallest eigenvalues of the 

global Laplacian matrix 𝐿∗ is smaller than zero, we increase 𝜂; and if the sum of the top 𝑐 smallest 

eigenvalues of the global Laplacian matrix 𝐿∗ is greater than zero, we decrease 𝜂. An important fact that 

the parameter 𝜆 has a large influence on the initial value has been proved by our experiments. The 

specific details of this parameter are shown in Fig. 3. Three most representative datasets are selected from 

the multi-view dataset and the single-view dataset in order to show the effect of the initial value of the 

parameters 𝜆 on the clustering results. From Fig. 3, we can find out that when the value of 𝜆 is assigned 

to 0.01 or 0.001, it produces the best results. Thus, the initial value of parameter 𝜆 is set to 0.01 in the 

majority of the datasets except one single-view dataset USPS whose parameter 𝜆 is set to 0.001 in order 

to get the best results. However, the second best result can be achieved when setting 𝜆 to 0.01 for the 

dataset USPS in Fig. 3. Therefore, 𝜆 = 0.01 is normally chosen as the initial value of the parameter. 

    

Figure 3: The effect of the initial value of the parameter λ on the overall clustering result. The abscissa 

represents the logarithm of the parameter (ln(𝜆)). The left is the clustering indicator ACC, and right is 

the clustering indicator NMI. 
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5.6 Convergence Analysis 

The convergence of Algorithm 3 can be proved theoretically by following [5]. To demonstrate the 

performance of the convergence with respect to SRAGL-AWCL, we use some examples illustrated in Fig. 

4. In order to clearly show the convergent results, only the convergence graphs of the four real datasets 

are given. For other datasets, the algorithm has converged after one or two iterations. In Fig. 4, the x-axis 

and the y-axis are used to denote the number of iterations and the corresponding objective function cost 

respectively. As the number of iterations increases, the value of the objective function constantly 

decreases as shown in Fig 4 and the value of the objective function is also trending to be stable after 

several iterations. This result demonstrates the effectiveness of SRAGL-AWCL convergence. To ensure 

the generality, the maximum number of iterations is set to 30.  

    

(a) ORL_mtv                         (b) UCI_Digits 
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                      (c)Notting-Hill                          (d) COIL20 

Figure 4: The convergent results of Algorithm 3 on the datasets ORL_mtv, UCI_Digits, Notting-Hill and 

COIL20.  

6 CONCLUSION 

In this paper, a novel method has been proposed to integrate SR with CL adaptively for MVSC. Both 

theoretical derivations and the pseudocode of algorithms have been given in detail. The convergence of 

the proposed method has also been theoretically proved. 

The performance of the proposed algorithm has been tested on a wide range of benchmark datasets 

including both multi-view datasets and single-view datasets against evaluation index ACC, NMI, 

F1-score, precision, ARI and computational time. The results have shown that our algorithm performed 

much better than others on all different datasets. Specifically, our algorithm outperformed all the current 

multi-view methods and single-view methods on the ORL dataset, with increases at about 6%, 3%, 7%, 

5% and 7% in the multi-view ORL_mtv dataset on each evaluation index. This is attributed to the 

preservation of the internal structural features and the fusion of complementary information between the 

views in global matrix. The performance in the dataset Notting-Hill, especially the evaluation indicators 

ACC and precision, has shown significant improvement by 4% and 5% compared to the second best 

results,. It is also worth noting that the specification parameters in the model are relatively stable in all 

experiments. 

Our research will focus on the generalization of the algorithms in the near future by taking into 

account wider ranges of parameter adaptation, incomplete image recovery, the overall spatial structure 

and the information extraction of high dimensional data. Finally, the computational complexity of our 

algorithms is currently relatively high compared to the best results, and we are aiming to tackle in the 

future in order to improve our algorithm’s time efficiency. 
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