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Abstract

In a previous study, we have explored how to decompose the global entropy of a

network into edge components using a graph-spectral decomposition technique.

Here, we develop this work in more depth to understand the role of edge entropy

as an efficient and effective tool in analysing network structure. We use the edge

entropy distribution as a network feature or characterisation and combine it with

linear discriminant analysis to distinguish different types of network model and

structure. Interpreting the normalised Laplacian matrix as the network Hamil-

tonian (or energy) operator, the network is assumed to be in thermodynamic

equilibrium with a heat bath where the energy states correspond to the nor-

malised Laplacian eigenvalues. To model the way in which particles occupy the

energy states, we explore the use of three different spin-dependent statistical

models to determine the thermodynamic entropy of the network. These are a)

the classical spinless Maxwell-Boltzmann distribution, and two models based

on quantum mechanical spin-statistics, namely b) the Bose-Einstein model for

particles with integer spin, and c) the Fermi-Dirac model for particles with half-

integer spin. By using the spectral decomposition of the Laplacian, we illustrate

how to project out the edge-entropy components from the global network en-

tropy. In this way, the detailed distribution of entropy across the edges of a
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network can be constructed. Compared to our previous study of the von Neu-

mann edge entropy, where the edge entropy just depends on the degrees of the

nodes forming an edge, in the case of the new statistical mechanical model,

there is a more subtle dependence of the edge entropy on the structure of a

network. We illustrate how this new edge entropy distribution can be used to

more effectively identify variations in network structure, in particular for edges

incorporating nodes of large degree. Numerical experiments on synthetic and

real-world data-sets are presented to evaluate the qualitative and quantitative

differences in performance.

Keywords: Network Edge Entropy, Spin Statistics, Partition Function

1. Introduction

Recently, network entropy has attracted increased attention because of its

capacity to distinguish the structural properties of different types of networks

[1, 2, 3]. Different varieties of entropy have been extensively used to characterise

the salient features of networks, not only in the static domain but also in the5

domain of time varying or dynamic networks, such as the biological, social and

financial networks [4, 5, 6]. One of the most sophisticated studies involves

the von Neumann entropy, which has been successfully used as an effective

characterisation to describe the structural properties of random, small-world and

scale-free networks [4, 7]. The von Neumann entropy derives from a quantum10

mechanical analogue where the network Laplacian matrix plays the role of the

density matrix in quantum physics [8].

In quantum mechanics, the density matrix describes the statistical state,

potentially either pure or mixed, of a system. The outcome probability for any

well-defined measurement upon this system can be calculated from the density15

matrix [9]. The density matrices for non-pure states are mixed states, and

can be represented as a convex combination of pure states. As a result, the

density matrices are helpful for dealing with statistical ensembles of different

possible preparations of a quantum system [10]. Describing a quantum state

2



by its density matrix is a fully general alternative formalism to describing a20

quantum state by its state vector or a mixture of state vectors. However, it is

the most convenient for calculations involving mixed states. Such states arise

when the observer does not know how the states of the system are excited, as

in the case of a system in thermal equilibrium at a temperature above absolute

zero. The density matrix is self-adjoint (or Hermitian), positive semi-definite25

and of trace one [11]. In simple terms, the desnity matrix is a complex valued

representation of a system being in a state or mixture of states, and provides a

means of calculating measurable quantities associated with this system.

Here, in our network description when the density matrix is related to the

Laplacian matrix (i.e. the diagonal degree matrix minus the adjacency matrix),30

it provides a connection between the network and quantum domains which al-

lows the von Neumann entropy to be computed using just the degrees of pairs

of nodes linked by edges in a network [4, 5]. The eigenvalues of the density

matrix reflect the energy states of a system, and the analogy provides a novel

way for mapping the heat bath in statistical physics to network structure [12].35

According to the heat bath analogy at a given temperature the energy states

are populated by particles which are in thermal equilibrium with the heat bath.

Such a method provides a convenient route for characterising network entropy.

When the energy states are populated with particles in thermal equilibrium with

the heat bath, it allows us to calculate the distribution of energy and entropy40

associated with different occupation statistics for the energy states at different

temperatures [13]. Thus, the network can be regarded as a heat bath with a cor-

responding temperature. The properties of this physical system are described

by a partition function (i.e. the sum of the probabilities of the different micro-

states of the system), where the micro-states of a network are viewed as the45

energy states resulting from choosing a suitable Hamiltonian operator [12, 14].

The Hamiltonian operator specifies the energy states in a network which

are occupied with particles in thermal equilibrium with the heat bath [15]. To

pursue the analysis of this system using the apparatus of statistical mechanics,

we require a model for the occupation statistics of the different energy levels [16].50
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Classically, when the only effects are the thermalisation of the energy states,

the Maxwell-Boltzmann statistics can be used to describe the dependence of

the energy state occupation upon temperature. According to this model, the

particles are weakly interacting and distinguishable [17, 13]. However, if we

admit quantum mechanical spin, then the particles become indistinguishable55

and the pattern of energy state occupation obeys the relevant spin-statistics.

Here, we must distinguish whether the particles are fermions or bosons, i.e.

whether they have half-integer or integer spin. In the case of fermions with

half-integer spin, the particles follow Fermi-Dirac statistics and obey the Pauli

exclusion principle. The Cayley tree and other types of geometric networks60

follow these statistics [18]. On the other hand, bosons do not obey the Pauli

exclusion principle and follow Bose-Einstein statistics. Bosons can aggregate

in the same energy state. In the low temperature limit, they condensate at

the lowest energy state giving rise to a so-called Bose-Einstein condensation

[19]. This interesting phenomenon has been extended to the study of network65

structure. For example, by mapping the network model to a Bose gas, Bose-

Einstein condensation has been shown to be closely related to phase transitions

in the network evolution [19].

Although different types of spin-statistics provide a sophisticated tool for

structural network analysis, they do not lend themself easily either to the char-70

acterisation of network entropy or to the decomposition of the global entropy

into edge or subnetwork structure. Our previous study shows that thermody-

namic characterisations of network entropy can be projected onto the edges of

a network using Maxwell-Boltzmann [20, 12], Bose-Einstein and Fermi-Dirac

statistics [21]. Here, we perform a novel systematic study of the resulting edge-75

entropy components, which provides the detailed distribution of entropy across

the edges of a network.

To this end, in this paper we aim to first consolidate our prior work which

has appeared in the fragmented form of several conference and workshop pa-

pers [20, 12, 21], and then to explore the analysis of edge entropy in greater80

depth. Firstly, we consolidate our theoretical results and present them in more
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detail. Secondly, we conduct more extensive experiments on both synthetic

and real-world data to explore both the effectiveness and the potential uses

of thermodynamic edge entropy in more depth. Specifically, we compare the

differences in thermodynamic edge entropy obtained with classical occupation85

statistics on the one hand and quantum occupation statistics on the other. We

further provide a more comprehensive analysis of the role of thermal parameters

in controlling the entropy. At high temperatures, the effects of quantum spin-

statistics are disrupted by thermalisation and behave identically to the classical

Maxwell-Boltzmann case. However, at low temperature, the Bose-Einstein sys-90

tem condenses into a state where the particles coalesce into the lowest energy

state. The Fermi-Dirac system, on the other hand, admits only one particle per

energy state. These two quantum spin models produce quite different entropic

characterisations of the network structure and are, therefore, appropriate for

characterising different types of network structure. By applying linear discrim-95

inant analysis to a vector of extracted edge entropies, it is possible to distin-

guish different network structure. This reveals that both classical and quantum

statistics determine different facets of the distribution of edge-entropy and how

entropy encodes the intrinsic differences in various types of network structure

[3].100

Although it draws on quite sophisticated concepts from statistical mechanics

and quantum physics, there are some simple intuitions underpinning our work.

The original von Neumann treatment of graph entropy leads to expressions

for the edge entropy which are determined purely by the number of nodes and

edges in a graph and the degrees of the nodes connected by the edge in question.105

By introducing the concept of a graph being in thermal equilibrium with a heat

bath, we have the possibility of allowing for thermal agitation of the edges which

can be controlled by a temperature parameter. The Hamiltonian of this thermal

system is the Laplacian of the graph, with the node degree matrix playing

the role of potential energy and the adjacency matrix determining the kinetic110

energy. The edge-structure of the graph (i.e., the kinetic energy) responds to

changes in temperature. An important aspect of our study is to explore how spin
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statistics control the types of edge-structure of a graph. We explore two different

cases where particles are allowed to occupy the energy states of the thermal

system (given by the eigenvalues of the Laplacian) according to Bose-Einstein115

and Fermi-Dirac statistics. In the former case the particles are bosons and at low

temperatures can condense into multiple occupancy of the lower energy states.

In the latter case the particles are fermions and only a single particle can occupy

each energy state. At low temperatures, in the Bose-Einstein case only the lower

eigenvalues of the Laplacian determine the entropy of individual edges, and this120

can be interpreted as being associated with cluster formation in the graph.

In the Fermi-Dirac case, on the other hand, more of the eigenvalue spectrum

participates and this means that the edge entropy is sensitive to the type of

network structure under study; specifically, it is capable of distinguishing small-

world, scale-free and random (Erdős-Rényi) networks. At high temperatures125

these different behaviours are destroyed by thermal agitation, and our thermal

system follows Maxwell-Boltzmann statistics.

2. Preliminaries

Let G(V,E) be a network with node set V and edge set E ⊆ V × V . The

total number of nodes is |V | with the adjacency matrix A being defined as130

A =











1 if (u, v) ∈ E

0 otherwise.

(1)

The degree matrix D has diagonal elements D(u, u) = du =
∑

v∈V Auv and zero

off diagonal elements.

The normalised Laplacian matrix L̃ is then defined as

L̃ = D− 1

2LD
1

2 = D− 1

2 (D −A)D
1

2 (2)

where L = D − A is the Laplacian matrix. The normalised Laplacian has

eigen-decomposition135

L̃ = ΦΛ̃ΦT (3)
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where Φ = (ϕ1, ϕ2, . . . , ϕ|V |) is the matrix with the ordered eigenvectors as

columns and Λ̃ = diag(λ1, λ2, . . . λ|V |) is the diagonal matrix with the ordered

eigenvalues as elements.

2.1. The Laplacian as a Density Matrix

The density matrix of a quantum system is defined as the sum of the prob-140

ability for its pure quantum states |ψi〉,

ρ =

|V |
∑

i=1

pi|ψi〉〈ψi| (4)

where the ”ket” |ψi〉 uses the Dirac notation to represent a pure quantum state

as a complex-valued column vector and pi is the probability for finding the

system in a statistical mixture of pure states |ψi〉.

This definition has been extended to the network domain by using the scaled145

normalised Laplacian matrix [8] as the network density matrix

ρ =
L̃

|V |
(5)

The density matrix is Hermitian with the properties that ρ = ρ† and ρ ≥

0,Tr[ρ] = 1. It is a quantum operator that measures the expected value of the

observable states of the network, i.e. its eigenvalues.

2.2. The von Neumann Entropy150

The interpretation of the normalised Laplacian as a density matrix opens

up the possibility of computing the von Neumann entropy of the network. In

terms of the density matrix, the von Neumann entropy is defined to be

S
V N

= −Tr[ρ logρ] (6)

which can be written in terms of the Shannon entropy of the density matrix

eigenvalues as155

S
V N

= −

|V |
∑

i=1

λ̂i
|V |

log
λ̂i
|V |

(7)
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However, the numerical computation of the Laplacian eigenvalues is in gen-

eral cubic in the number of nodes in the graph |V |. To overcome this bottleneck,

Han et al.[4] find an approximate expression for the von Neumann entropy and

in so doing reduce the computation to being quadratic in the number of nodes.

They make use of the approximation x log x ≈ x(1− x) to replace the Shannon

entropy λ̂i

|V | log
λ̂i

|V | by the quadratic approximation λ̂i

|V | (1 − λ̂i

|V | ). Expressing

the sums of the eigenvalues and the sum of their squares by Tr[L̂] and Tr[L̂2],

respectively, the final expression for the approximate von Neumann entropy is

S
V N

=
1

|V |
Tr[L̂]−

1

|V |2
Tr[L̂2] (8)

Furthermore, the traces of the normalised Laplacian and its square, i.e. Tr[L̂]

and Tr[L̂2], can be expressed in terms of the number of nodes in the graph and

the degrees of pairs of nodes connected by edges. As a result,

S
V N

= 1−
1

|V |
−

1

|V |
2

∑

(u,v)∈E

1

dudv
(9)

This approximation allows the von Neumann entropy to be computed without

explicitly solving the eigensystem for the normalised Laplacian. Thus, the von

Neumann entropy can be computed in quadratic time using the node-degrees

for pairs of nodes connected by edges. Moreover, the global network entropy is

just a sum of contributions from individual edges, and the entropy of the edge

connecting nodes u and v is

S
edge

V N
(u, v) =

1

|E|
−

1

|V ||E|
−

1

|E||V |
2

1

dudv
(10)

and the global network entropy is S
V N

=
∑

(u,v)∈E S
edge

V N
(u, v).

Therefore, Han et al’s approximation to the von Neumann entropy straight-

forwardly decomposes into contributions from the individual edges. In Eq.(10),

the edge entropy depends on the degrees of the nodes at both ends of an edge. A

high value of node degree gives a large value of the approximate von Neumann160

entropy, and a low degree a small value. The minimum and maximum values

of the entropy of each edge relates to the structure of network. For cycles or
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string-like network structures, each node has a fixed minimum value of degree.

The edge entropy for this kind of network structure is therefore a minimum

for possible connected structures. On the other hand, for the fully connected165

network, all of the nodes have the fixed maximum number of degrees. This type

of network structure has the maximum value of edge entropy for a connected

structure.

3. Thermodynamic Representation

3.1. Hamiltonian Operator170

This work on the efficient computation of von Neumann entropy provides

one route to the entropy of network edges [8], through an analogy with quan-

tum mechanics, and based on the density matrix. Another route is to use ideas

from statistical mechanics. This commences by defining a partition function

over the micro-states for a network, and then computing thermodynamic quan-175

tities from the partition function by appealing to a thermodynamic analogy in

which the network is in thermal equilibrium with a heat bath. From a quantum

perspective, this is equivalent to associating a Hamiltonian with the network.

The Hamiltonian operator contains two components, i.e., kinetic energy and

potential energy.180

According to this picture, the kinetic energy measures the state of internode

edge connection, which is equal to the negative value of elements in the adja-

cency matrix. The potential energy, on the other hand, is determined by the

diagonal elements of the degree matrix. The physical picture here is that the the

higher the degree of the nodes in a network, the larger their potential energydue185

to their propensity to connect to other vertices. Thus, the Laplacian matrix in

the network can be regarded as the Hamiltonian operator. Similarly, the nor-

malised form of Laplacian matrix is also give rise to an equivalent representation

since Ĥ = L̃.

Our assumption is that the network is in contact with a heat reservoir,190

and a set of particles can occupy the thermalised energy states defined by the
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Hamiltonian, i.e. the Laplacian eigenvalues. In other words, the particles occupy

the energy states subject to thermal agitation by the heat bath. The energy

states, i.e., the eigenvalues of the Hamiltonian operator are the solution of the

relevant Schrödinger equation. Thus, the energy states within the network {εi}195

are the eigenvalues of the normalised Laplacian matrix, and satisfy

Ĥ|ψi〉 = L̃|ψi〉 = Ei|ψi〉 (11)

where all eigenvalues are greater than or equal to zero, with the multiplicity of

zeros representing the number of connected components within the network.

3.2. Thermodynamic Quantities

The interpretation of von Neumann entropy opens up the possibility of di-200

rectly characterising network entropy by using spectral graph theory [7]. How-

ever, thermodynamic analogies of the sort outlined above also provide powerful

tools for network analysis [14]. The statistical mechanical basis of thermody-

namics combined with a graph spectral network characterisation of network

structure provides a microscopic perspective for viewing network network struc-205

ture [22].

In the heat bath analogy, where the network is viewed as a thermal system in

equilibrium with a heat reservoir, the statistical occupation of the microstates

of a network by particles is described by a partition function associated with

a suitably chosen Hamiltonian [14]. The corresponding entropy and average210

particle energy can be derived from the partition function for the network energy

microstates.

Here, we consider the thermal system with consisting of N particles which

occupy the energy states associated with a network in thermal equilibrium with

a heat bath at the temperature T . Let β = 1/kBT , where kB is the Boltzmann215

constant which we set to the unity. The partition function Z(β,N) can be used

to compute the following thermodynamic characteristics of the network system,

a) the average energy

U = Tr (ρH) = kBT
2

[

∂

∂T
logZ

]

N

(12)

10



b) the thermodynamic entropy

S = kB

[

∂

∂T
T logZ

]

N

(13)

c) the chemical potential220

µ = −kBT

[

∂

∂N
logZ

]

β

(14)

Both energy and entropy are weighted functions for the energy eigenvalues,

i.e. network normalised Laplacian. The particle occupation statistics for the

different energy states are governed by the partition function and the thermal

parameter of the system, i.e. temperature T . Here, we explore in detail the ther-

modynamic entropy and how it can be used to represent the intrinsic structure225

of networks.

4. Quantum Spin Statistics and Network Entropy

4.1. Maxwell-Boltzmann Entropy

Classically, for weakly interacting distinguishable particles, the probability of

finding a particle in the different energy states specified by the network Hamil-230

tonian is governed by Maxwell-Boltzmann statistics. The partition function

describing these occupation statistics is

Z
MB

= Tr

[

exp(−βL̃)N
]

=





|V |
∑

i=1

e−βλi





N

(15)

where β = 1/kBT is the reciprocal of temperature, kB is the Boltzmann con-

stant, N is the total number of particles and λi are the eigenvalues of normalised

Laplacian matrix.235

From Eq.(13), the corresponding entropy for the network is

S
MB

= logZ − β
∂ logZ

∂β
= −N

|V |
∑

i=1

e−βλi

∑|V |
i=1 e

−βλi

log
e−βλi

∑|V |
i=1 e

−βλi

(16)

For a single particle, the equivalent density matrix is

ρ
MB

=
e−βλi

∑|V |
i=1 e

−βλi

(17)
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Since the density matrix and Hamiltonian operator commute, the network is in

equilibrium and as a result the thermodynamic entropy is N times the corre-

sponding entropy for a single particle network.

4.2. Bose-Einstein Entropy240

Bose-Einstein statistics describe indistinguishable bosons, i.e. particles with

integer spin. The occupation number in each energy state is unlimited, and

as a result particles can aggregate in the same state. For a varying number of

particles, the chemical potential µ specifies the network Hamiltonian with the

partition function given by245

Z
BE

= det
(

I − eβµ exp[−βL̃]
)−1

=

|V |
∏

i=1

(

1

1− eβ(µ−λi)

)

(18)

From Eq.(13), the corresponding entropy is given by

S
BE

= −

|V |
∑

i=1

log
(

1− eβ(µ−λi)
)

− β

|V |
∑

i=1

(µ− λi)e
β(µ−λi)

1− eβ(µ−λi)
(19)

The thermodynamic variables depend on both the chemical potential that

controls the number of particles and the temperature appearing in the partition

function. At the reciprocal temperature β, the number of particles occupying

the energy state indexed i is,

ni =
1

exp[β(λi − µ)]− 1
(20)

and so the total number of particles in the network is

N =

|V |
∑

i=1

ni =

|V |
∑

i=1

1

exp[β(λi − µ)]− 1
= Tr

[

1

exp(−βµ) exp[βL̃]− I

]

(21)

The chemical potential must be less than the minimum value of the energy

of the state, i.e. µ < minλi to ensure that the occupation number for each state

is non-negative. The equivalent density matrix is given by

ρ
BE

=
1

Tr(ρ1) + Tr(ρ2)





ρ1 0

0 ρ2



 (22)
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where ρ1 = −
(

exp[β(L̃− µI)]− I
)−1

and ρ2 =
(

I − exp[−β(L̃− µI)]
)−1

.

The aggregation of particles into the lower energy states at low temperature

is strongly determined by the lower end of the Laplacian spectrum. As a result,

it is sensitive to the spectral gap and the number of connected components in250

the network.

4.3. Fermi-Dirac Entropy

Fermi-Dirac statistics describe the behaviour of fermions, i.e. indistinguish-

able particles with half integer spin which obey the Pauli exclusion principle.

The maximum number of particles that can occupy a single energy state is unity.255

The corresponding partition function is

Z
FD

= det
(

I + eβµ exp[−βL̃]
)

=

|V |
∏

i=1

(

1 + eβ(µ−λi)
)

(23)

From Eq.(13), the associated entropy can be achieved as

S
FD

=

|V |
∑

i=1

log
(

1 + eβ(µ−λi)
)

− β

|V |
∑

i=1

(µ− λi)e
β(µ−λi)

1 + eβ(µ−λi)
(24)

The occupation number at the ith energy state is

ni =
1

exp[β(λi − µ)] + 1
(25)

and the total number of particles is

N =

|V |
∑

i=1

ni =

|V |
∑

i=1

1

exp[β(λi − µ)] + 1
= Tr

[

1

exp(−βµ) exp[βL̃] + I

]

(26)

The chemical potential corresponds to the energy of the level in question,

i.e. µ = λn for a single particle per energy state. The equivalent density matrix

is

ρ
FD

=
1

Tr(ρ3) + Tr(ρ4)





ρ3 0

0 ρ4



 (27)

where ρ3 =
(

I + e−βµ exp[βL̃]
)−1

and ρ4 =
(

I + eβµ exp[−βL̃]
)−1

.

At low temperature, unlike bosons where multiple occupation of the same

energy state is permitted and the entropy is largely determined by the lowest260

13



few eigen-values, the entropy for Fermi-Dirac statistics is sensitive to a greater

portion of the Laplacian spectrum since the occupation of the same energy state

is limited to a single particle. This difference in energy state occupation can

reflect subtle differences in a network structure, as well as to distinguish different

network models.265

4.4. Edge Entropy Analysis

Rather than focussing on the global thermodynamic entropy for a network,

in this paper, we are interested in how the entropy is distributed across its

different edges, and how this distribution can be used to characterise and probe

network structure.270

We therefore adopt a spectral approach and decompose the global network

entropy into components residing on the individual edges. We conduct this by

decomposing the normalised Laplacian into eigenvalues and eigenvectors and

then projecting global entropy onto this basis [21]. The idea is as follows.

We make use of the eigen-decomposition of the Laplacian matrix to write the

edge-entropy matrix, i.e. the symmetric square matrix with edge entropies

as off-diagonal elements, as the matrix function S = ΦF (Λ)ΦT , where F (Λ)

is a diagonal matrix with elements σ(λ1), ....., λ|V |, and σ(λ) is a real-valued

function of λ. The entropy associated with the edge (u, v) ∈ E is then given by

the element indexed (uv) of the matrix S, i.e.

Su,v =

|V |
∑

i=1

σ(λi)ϕi(u)ϕi(v) (28)

With an appropriate choice of the function σ, we can compute edge-entropy

for each of the different set of occupation statistics. Specifically, for Maxwell-

Boltzmann statistics:

σ
MB

(λi) = −N
e−βλi

∑|V |
i=1 e

−βλi

log
e−βλi

∑|V |
i=1 e

−βλi

for Bose-Einstein statistics:

14



σ
BE

(λi) = −

|V |
∑

i=1

log
(

1− eβ(µ−λi)
)

− β

|V |
∑

i=1

(µ− λi)e
β(µ−λi)

1− eβ(µ−λi)

and for Fermi-Dirac statistics:

σ
FD

(λi) =

|V |
∑

i=1

log
(

1 + eβ(µ−λi)
)

− β

|V |
∑

i=1

(µ− λi)e
β(µ−λi)

1 + eβ(µ−λi)

As a result, the spectral projection of the global entropy allows the entropy

of individual edges to be computed. As we will demonstrate later it provides a

useful and relatively straightforward local entropic characterisation of network

structure.

4.5. Linear Discriminant Analysis275

Finally, we consider various network analysis problems involving samples

of networks on a fixed set of uniquely labelled nodes. If there are |V | node

labels, and each label refers to a single node in a graph, then there are at most

|V | × (|V | − 1) distinct edges between different nodes. Here, for each network,

we take the edge entropies as the ordered components of a feature vector for280

that network. This fixed ordinal arrangement places the edges connected to the

same pair of labelled nodes in the same element of the feature vector. Here,

we focus on the graph collections with the same number of vertices. For the

graph with inflexible number of nodes, the variance of vertices can work as a

salient feature, which is not a challenge issue to discriminate different network285

structures.

Let F = ΦΣΦT be symmetric square |V | × |V | matrix with the edge en-

tropies as elements. We vectorise this edge entropy matrix by concatenating the

columns of the upper triangle of F to form a vector of length 1/2|V |× (|V |−1),

which we denote by ~fi for the ith graph. Then, we can apply linear discriminant290

analysis to classify networks using their associated feature vector in a supervised

manner [23].

Suppose we have a sample of n networks, each of which is known to belong

to one of C different classes. Let Kc be the index-set of a set of networks with
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entropic edge features known to belong to class c, and let ~fi be the entropic

feature vector of the network indexed i. The mean entropic feature vector for

the class c is given by

µc =
1

|Kc|

∑

i∈Kc

~fi (29)

and the overall population mean is given by

µ =
1

n

n
∑

i=1

~fi (30)

Thus, the between class covariance matrix for the edge entropy feature vec-

tors is

B =
1

n

C
∑

c=1

(µc − µ)(µi − µ)T (31)

The within-class variance W , on the other hand, is given by

W =
1

n

C
∑

c=1

1

|Kc|
X̂cX̂

T
c (32)

where Xc is the matrix with the entropic feature vectors for class c as columns.

For jointly maximising the between-class covariance and minimising the

within-class variance, we use the joint criterion

J =
uTBu

uTWu
(33)

This separation criterion is maximised by the eigenvectors u of the matrixW−1B

when the separation criterion will be equal to the corresponding eigenvalue.295

If W−1B is diagonalizable, the variability between feature vectors will be

contained in the subspace spanned by the eigenvectors corresponding to the

C − 1 largest eigenvalues. These eigenvectors can be used in feature reduction,

as in principal component analysis (PCA). The eigenvectors corresponding to

the smaller eigenvalues will tend to be very sensitive to the exact choice of300

training data, and it is often necessary to use regularisation.

For network classification, we apply regularised linear discriminant analysis

(LDA) [24] to quantify the classification accuracy obtained with the features

extracted using edge entropy. These correspond to the eigenvectors associated
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with the eigenvalues falling into the top 10 percentile. The discriminant analysis305

model is based on the assumption that the edge features follow a multivariate

normal distribution with an identical covariance matrix for each class [25].

According to the Bayes theorem, the posterior probability that an entropic

network feature f in a class c is

P (c|f) =
P (f |c)P (c)

∑C
c=1 P (f |c)P (c)

(34)

where P (c) is the prior probability of class c, and p(f |c) is the probability density

function of the multivariate normal distribution for class c. The class density

function is assumed to follow the Gaussian distribution

P (f |c) =
1

√

2π|Σc|
exp

(

−
1

2
(f − µc)

TΣ−1
c (f − µc)

)

(35)

where µc is the mean feature vector for class c, Σ is the class covariance matrix

for class c and Σ−1
c is its inverse.

The classification strategy is to minimise the expected classification error

ŷ = argmin
y=1,2,..c

C
∑

c=1

E(y|c)P (c|f) (36)

where y is the network class label, C is the number of classes, P (c|f) is the310

posterior probability of class c for entropic feature vector f and E(y|c) is the

confusion probability of classifying a network as class y when its true class label

is c.

The expected confusion probability of a network misclassification E(y|c) is

given by

E(y|c) =

C
∑

k=1

P (k|f)E(c|k) (37)

where P (k|f) is the posterior probability of a network in the class k with entropic

feature vector f . E(c|k) is the misclassification error probability for assigning a315

network in class k when its true class label is c. Here E(c|k) = 1 if k = c, and

E(c|k) = 0, if k 6= c.
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5. Experimental Evaluation

In this section, we conduct experiments to demonstrate the application of

network entropy for analysing interregional connectivity. We first perform a320

qualitative analysis on the components of the quantum edge entropy and their

dependence on degree and temperature. We compare their performance with

the standard von Neumann entropy. Then, we conduct a quantitative analysis

on real-world networks, including protein interaction networks, financial net-

works and fMRI brain connectivity networks. We evaluate whether the edge-325

entropy decomposition can identify significant structural variance in samples of

networks. To simplify the calculations, we set the Boltzmann constant to be

unity.

5.1. Data-sets

In our experiments, we explore four different kinds of the dataset to evaluate330

the performance of the edge entropy in the networks. The first data-set consists

of synthetic networks generated using three typical complex network models

(Erdős-Rényi random graphs, Watts-Strogatz small world and Barabási-Albert

scale-free networks). The remaining three network datasets come from real-

world situations in different domains.335

Data-set 1: The synthetic data contains three different kinds of network

structure which are generated according to typical complex network models,

namely, a) the Erdős-Rényi random graph, b) the Watts-Strogatz small-world

network [1], and c) the Barabási-Albert scale-free network [2, 26]. All of these

networks have the same number of nodes, which is set to N = 100. The parame-340

ter in the random graphs, i.e., the probability of connection between two nodes,

is set to 0.5. Similarly, the parameter of rewiring probability in the small-world

network is 0.8, and the connecting parameter in the scale-free network is 10.

Data-set 2: The Protein-Protein Interactions (PPIs) dataset comes from

STRING-8.2 [27] involving networks of interaction between histidine kinase and345

other proteins. The total number of 173 PPIs come from 4 different kinds
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of bacteria, namely, a) 8 Aquifex and Thermotoga from Aquifex Aelicus and

Thermotoga Maritima separately, b) 40 Proteobacteria from Acidovorax Ave-

nae, c) 73 Cyanobacteria from Anabaena Variabilis, and d) 52 Gram-Positive

from Staphylococcus Aureus.350

Data-set 3: The time-evolving network dataset comes from the New York

Stock Exchange with the daily prices of 3,799 stocks. The trading period is

from January 1986 to February 2011 covering six thousand trading days. In the

network, each stock is represented as a node and the edges indicate the statistical

similarity between the stock closing price time series with a 20-day window [28].355

To obtain a network time series, we shift the time window of 20 days over the

closing price time series to compute the cross-correlation coefficients between

the windowed time series for each pair of stocks. An empirically determined

correlation threshold is set to 0.85 to identify the edges. This yields a stock

market network time series with a fixed number of 347 nodes and varying edge360

structure over 6,000 trading days.

Data-set 4: The fMRI data is supplied by the ADNI initiative [29]. The

fMRI images are scanned every two seconds and record the detail of the Blood-

Oxygenation-Level-Dependent(BOLD) signals with different anatomical brain

regions. Ninety-six anatomical regions are identified as regions of interest (ROIs)365

by aggregating the voxels in the fMRI images. The correlation between differ-

ent BOLD signals in the pairs of ROIs represents their functional connectivity

driven by neural activities [17]. There are four categories of patients according

to the degree of disease severity, i.e., a) full Alzheimer’s (AD), b) Late Mild

Cognitive Impairment (LMCI), c) Early Mild Cognitive Impairment (EMCI)370

and d) Normal Healthy Controls (HC). The dataset contains 53 AD, 83 LMCI,

119 EMCI, and 96 HC subjects.

5.2. Experiments on Synthetic Data

We first investigated how well the edge entropy performs as a network feature

to distinguish between synthetic networks from different models in Data-set 1.375

Here, we compare the edge entropy distribution for the three different network
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models. We also compare the distribution for the entropy resulting from the

three different types of occupation statistics (Maxwell-Boltzmann, Fermi-Dirac

and Bose-Einstein).
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Figure 1: Histograms of edge entropy for three different network models. (a) Maxwell-

Boltzmann statistics; (b) Bose-Einstein statistics; (c) Fermi-Dirac statistics; (d) von Neu-

mann entropy. The networks are generated with the number of nodes N = 100. The grey

area represents Erdős-Rényi random graphs with connection probability p = 0.5; the red area

is scale-free networks with edges m = 10 to attach at every step; the blue area is small-world

networks with the link rewiring probability p = 0.8. Temperature β = 0.1 and the number of

particles N = 10.

In Fig.1, each subfigure shows the histograms of the edge entropy from a380

different statistical occupation model. The coloured areas in red, grey and

blue correspond to the distribution of edge entropy value for the three network

models (random graph, small-world and scale-free). It is clear that, in each case,

the edge entropy for the Erdős-Rényi random graph model always has a lower

value compared to the alternative network models. Small-world networks, on385

the other hand, give much larger edge entropy. The random graph and scale-free

network edge entropy distribution are closer for all three types of occupation

statistics.

Taking this study one step further, we explore the relationship between edge

entropy and the edge degree configuration. To this end, we plot the three-390
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Figure 2: Distributions of edge entropies with corresponding node degree combinations for

the three statistical mechanical models: (a)-(c) Maxwell-Boltzmann statistics, (d)-(f) Bose-

Einstein statistics and (g)-(i) Fermi-Dirac statistics.

dimensional distribution of the edge entropy distribution versus the two-node

degrees defining the edge. As shown in Fig.2, the three network models exhibit

different shapes for the entropy-degree distribution. In the case of Bose–Einstein

statistics, the area of the non-overlapping distribution for the three network

models is more significant than that in the Maxwell-Boltzmann and Fermi-Dirac395

cases.

This is consistent with our intuition that the three different distributions

are related to the network spectra of the Laplacian matrix. For example, the

eigenvalues of Erdős-Rényi random graph follow a semicircular distribution, the

scale-free networks exhibit a triangular distribution and the small-world net-400

works present a more complex form determined by a parametric model. It is

known that the spectral gap between the lowest and the second-lowest eigen-

values is related to the cluster structure of the model. The edge entropy for

Bose-Einstein statistics is more sensitive to the spectral gap and better reflects

the strong community structure, since the particles preferentially sample the405

lower energy states (eigenvalues).
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The above results indicate that the edge entropy resulting from the three

different statistical models is a useful tool that reflects the network structure

for the synthetic data. In particular, the Bose-Einstein edge entropy is strongly

correlated with the edge degree configuration.410

5.3. Experiments on Real-world Data

5.3.1. PPI Network

Turning our attention to the real-world datasets, we first consider the Protein-

Protein Interactions (PPI) networks. We illustrate the difference between the

distribution of edge entropy for both the von Neumann and Maxwell-Boltzmann415

cases. The edge entropy distribution for two different PPIs, i.e., Anabaena Vari-

abilis and Aquifex Aelicus, are shown in Fig.3. In the Maxwell-Boltzmann case,
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Figure 3: The distribution of edge entropy for two different PPI networks (Aquifex and

Acidovorax) (a) Maxwell-Boltzmann entropy; (b) Von Neumann entropy; (c) Bose-Einstein

entropy; (d) Fermi-Dirac entropy
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Figure 4: 3D visualisation of LDA performance on PPI Networks. (a) Maxwell-Boltzmann

edge entropy, (b) Bose-Einstein edge entropy, (c) Fermi-Dirac edge entropy.

the histogram of edge entropy provides better discrimination between the two

PPIs. The reason is that it is more sensitive to edges with a high degree. This

discriminative power of edge entropy is evident in identifying network differ-420

ences. Compared to the von Neumann case, whose histogram is concentrated

at lower values with a single peak, the histogram of Maxwell-Boltzmann edge

entropy shows two separated peaks. This means that the von Neumann edge

entropy is not particularly effective as a tool to detect salient network structure

when compared to the Maxwell-Boltzmann edge entropy.425

Next, we perform LDA on the PPI data by concatenating the columns of

edge entropy matrix to construct a feature vector. With the known labels

for different groups of PPIs, we compute the within-class and between-class

covariance matrices, respectively. Then, we select the feature vectors for those

individual edge entropies associated with the largest variances. To do this,430

we apply Linear Discriminant Analysis as described in Section 4.5 to obtain

optimal projection axes for class separation. In Fig.4 the four groups of PPIs are

visualised using a 3D scatter plot of the three leading principle components for

each PPI network. Each of the entropies derived from either of three statistical
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models work well as features to separate the different PPI networks into four435

different clusters according to their structural characteristics. The four clusters

are overlapped in Maxwell-Boltzmann case. The Bose-Einstein statistics, on the

other hand, exhibit the clear and best performance of separation for different

the groups compared to the alternatives.
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Figure 5: The thermodynamic entropy associated with partition functions identifies critical

financial events in NYSE (N = 2 and β = 7).

5.3.2. Financial Network440

Next, we focus on analysing time-evolving networks. Here, we conduct ex-

periments on the financial networks extracted from the New York Stock Ex-

change data [28]. We aim to explore the entropic changes related to variations

in network structure.

Fig.5 plots the four different entropies coming from the different classical445

and quantum statistical models, together with the Estrada index. Each of these

entropies can detect the temporal anomalies in network structure related to the

occurrences of significant global financial events. The value of the entropy under-

goes significant fluctuations corresponding to the dramatic internal changes in

network structural change during the financial crises. By contrast, the Estrada450

index is not sensitive to the fluctuations in the stock markets. It only shows a

few peaks that indicate the whereabouts of the most critical financial events.
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Compared to the von Neumann entropy, the Maxwell-Boltzmann entropy is

more sensitive to the market fluctuations. For example, the Japanese Asset

Price Bubble in 1992 shows obvious differences in the behaviour of these two455

entropies.

Similarly, the variance in financial market network structure can also be

clearly observed in the entropy derived from quantum statistics. During the

financial crises, in each case, the value of entropy undergoes a sharp increase

corresponding to the dramatic fluctuation in network structure. In fact, the460

Bose-Einstein entropy exhibits the greatest variation during the crises. This

indicates that the critical network structure undergoing change is the cluster-

structure of the network (or modularity), and that this is undergoing profound

changes during these extreme financial episodes.

5.3.3. fMRI Brain Connectivity Network465

Finally, we explore the class structure of the fMRI brain activation networks

using the different edge entropies. We aim to identify those anatomical regions

that are crucial in the development of Alzheimer’s disease [29]. As shown in

Fig.6, two groups of patients, i.e., Alzheimer’s disease (AD) and the healthy

control group (Normal), exhibit a difference in the shape of the edge entropy470

distribution. It is clear that the distribution of von Neumann entropy cannot

distinguish the two groups of patients. By comparison, the statistical mechanical

methods are more adept at reflecting the details of the distribution in edge

entropy. In Fig.6(b), the Maxwell-Boltzmann edge entropy distribution for the

Alzheimer’s subjects peaks at a lower value compared to the normal control475

subgroup. This observation is more palpable in the cases of Bose-Einstein and

Fermi-Dirac distributions, as shown in Fig.6(c) and Fig.6(d) respectively. The

Bose-Einstein edge entropy has a better separation for the normal (healthy) and

Alzheimer’s groups. The non-overlapping entropic area is much larger than that

for the remaining statistical models.480

Furthermore, identifying the regions in the brain associated with Alzheimer’s

disease is also helpful to understand the development of the disease [30]. Neuro-
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(a) von Neumann Edge Entropy

(c) Bose-Einstein Edge Entropy (d) Fermi-Dirac Edge Entropy

(b) Maxwell-Boltzmann Edge Entropy

Figure 6: The edge entropy distribution between patients in Alzheimer’s disease (AD) and

healthy control (Normal). (a) von Neumann entropy, (b) Maxwell-Boltzmann entropy, (c)

Bose-Einstein entropy and (d) Fermi-Dirac entropy.

Figure 7: The disease regions in the brain. We apply the edge entropy to identify the

significant divergence between AD and HC groups.
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anatomical studies show that the anatomical structures in different brain regions

are important for understanding different brain disorders [31, 32]. Here, we use

the edge entropy to identify those brain regions that give rise to the most signif-485

icant differences in edge entropy for Alzheimer’s patients and normal samples.

Fig.7 lists the pairs of regions for edges associated with the largest difference

in edge-entropy between the AD and normal samples. Specifically, anatomi-

cal regions such as the Paracingulate Gyrus, Parahippocampal Gyrus, Inferior

Temporal Gyrus and Temporal Fusiform Cortex, are known to be associated490

with the loss of interconnection in the brain network structure for AD patients.

We explore whether LDA can be used to perform supervised classification of

subjects belonging to the different groups of patients based on the inter-region

edge entropies. To this end, we vectorise the edge entropy matrix by concate-

nating the columns of the upper triangle to form a vector. From the sample495

of vectors for different subjects, we compute a within class and between class

covariance matrices using the known class labels for the four classes of sub-

ject. To simplify the analysis we select only those edges connecting different

anatomical regions that are associated with the largest entropy variances. We

use 200 samples for training and 151 samples for testing. LDA is the applied500

to the within and between class covariance matrices computed from the train-

ing data to obtain optimal projection axes for class separation for the set of

training data. We then project the test data onto these axes and then per-

form classification for the four groups of patients. The corresponding projected

edge-entropy vectors are used classify subjects belonging to the different classes.505

Fig.8 plots the 3D visualisation of the leading three principle components for

the four groups of patients. The cluster-centre for each group is represented by

the principle eigenvectors in the Fisher discriminant analysis (LDA) [33]. These

results show that each of the edge entropies resulting from the three different

statistical mechanical models can be used to separate patients effectively. How-510

ever, the Bose-Einstein model exhibits the best overall performance compared

to the alternatives.
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Figure 8: 3D visualisation of LDA performance with principle components in AD, LMCI,

EMCI and HC. (a) Maxwell-Boltzmann edge entropy, (b) Bose-Einstein edge entropy, (c)

Fermi-Dirac edge entropy.

5.4. Evaluation of Thermal Parameters

We now investigate the thermal parameters and their effects on the perfor-

mance of the edge entropy distributions resulting from the different models. We515

first investigate how the parameters in the synthetic network model control the

distribution of thermal entropy. For the Erdős-Rényi random graph, we vary the

connection probability from 0.1 to 0.9; for the scale free network, we vary the

node attachment parameter from 1 to 15; and for the small-world network we

vary the average connection parameters from 2 to 30. For each different value520

of the parameter, we generate a single synthetic network and compute the total

network entropy. Fig.9 plots the thermodynamic entropy with different values

of parameters for three synthetic networks. All three statistical mechanical en-

tropies decrease as the network parameter is increased, and this corresponds to

an increasing edge density giving rise to denser patterns of connection in the525

network.

To explore the temperature dependence we study how the edge entropy

distribution depends on the degree distribution for the different models. Specif-

ically, we consider edges connecting nodes of large degree, median degree and
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Figure 9: The change of entropy with varying the parameters of three synthetic network

models.

small degree, and explore how the edge entropy depends on temperature.530

Fig.10(a), (b) and (c) respectively plot the Maxwell-Boltzmann, Bose-Einstein

and Fermi-Dirac edge entropies versus temperature. The three different curves

in the different plots are for edges connecting high, medium and low degree

vertices. For the Maxwell-Boltzmann case, the entropy always has a maximum

value at a temperature that depends on the node-degree of the edge. For the535

Bose-Einstein and Fermi-Dirac cases, the low temperature (high β) behaviour

depends on the node-degree configuration. In the case of the quantum en-

tropies, there is a local maximum of edge entropy at a particular temperature.

In the case of Bose-Einstein statistics, the entropy approaches limiting value

with increasing temperature, and this value increases with node degree. For540

Fermi-Dirac statistics, on the other hand, there is a similar pattern, but the

difference in edge entropy at low temperature is more marked.

Next, we explore the relationship between the von Neumann edge entropy

and the edge entropies resulting from the three different statistical mechanical

models. Fig.11 shows the scatter plots of the statistical mechanical edge entropy545

versus the corresponding von Neumann edge entropy for samples of edges drawn

from a network. The different colours are for different values of the tempera-

ture parameter. All three statistical mechanical entropies exhibit a transition

in behaviour with respect to the von Neumann entropy with temperature. For

instance, in the Maxwell-Boltzmann case, there is a roughly linear relationship550

between the Maxwell-Boltzmann edge entropy and the von Neumann edge en-

tropy at a high temperature. At low temperature though, the relationship is
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Figure 10: The temperature dependence of edge entropy with different degree configurations.

High-degree edge (in red); low-degree edge (in blue); and the median-degree edge (in black).

The value of high-degree is 300 and the value of low-degree is 30.

approximately inverse exponential. Whereas the Maxwell-Boltzmann edge en-

tropy increases monotonically with the von Neumann edge entropy. This pattern

is repeated for the Bose-Einstein and Fermi-Dirac edge entropies.555

The spread of the statistical mechanical edge entropy for a fixed value of the

von Neumann edge entropy reveals a number of interesting phenomena. Recall

that the von Neumann entropy is completely determined by the degrees of the

two nodes defining an edge. In the Bose-Einstein case, the spread is narrow,

while in the Fermi-Dirac case it exhibits a broader and more scattered pattern.560

This effect is more obvious at high temperature. The narrower the spread

of statistical mechanical edge entropies for a given von Neumann entropy, the

stronger the dependence on the node degree. At high temperature, the spread of

the edge entropy is small, which means it is strongly determined by the degree565

configuration. This is consistent with our expectation that thermalisation effects

disrupt the statistical occupation in the energy states. It is also interesting
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Figure 11: Scatter plot of edge entropies compared to von Neumann case varying with tem-

perature.

to note that the spread of the spin-dependent entropy is the greatest at low

values of the von Neumann entropy. This case corresponds to low degree edge

configurations which in turn are associated with the larger variations of entropy570

with the degree.

In conclusion, all of the statistical mechanical methods for computing edge

entropy can be used to effectively represent changes in network structure. The

Maxwell-Boltzmann edge entropy is particularly sensitive to structural variance

with node degree. The quantum Bose-Einstein and Fermi-Dirac edge entropies575

exhibit similar properties at high temperature. But at low temperature, the

Bose-Einstein edge entropy is more sensitive to the presence of strong commu-

nity structure in the edge connections, while the Fermi-Dirac edge entropy is

more sensitive to the details of the degree distribution.

6. Conclusion580

This paper has explored the thermodynamic characterisations of networks

using edge entropies computed with both classical Maxwell-Boltzmann statistics
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and quantum mechanical Bose-Einstein and Fermi-Dirac spin-statistics. Specif-

ically, we focus on the entropic analysis in both static and time-series network

data. This is achieved by decomposing the corresponding global network entropy585

into contributions for individual edges based on a spectral analysis technique.

Numerical simulations and real-world experiments reveal the comparison

between the quantum edge entropies and von Neumann case. Both of the en-

tropic characterisations resulting from Bose-Einstein and Fermi-Dirac statistics

effectively identify the detailed variations in network structure. Both of them590

outperform the traditional von Neumann entropy. Moreover, the corresponding

results demonstrate the efficiency of statistical edge entropies for temporal vari-

ations in the evolving network structures, and also in distinguishing different

network models.

There are a number of ways in which the work reported can be developed595

further. For instance, the network can be decomposed into motifs, which are

frequently recurring subgraphs. It would be interesting to apply our methodol-

ogy to motif structures, and determine the distribution of edge-entropy over the

motif structures. We also intend to explore whether the apparatus of statistical

mechanics can be deployed to compute ensemble entropies for individual motifs.600

One possible approach here would be to use the cluster expansion to compute

a motif based partition function and to derive the corresponding entropies.
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