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Abstract 
Convolutional Neural Networks (CNNs) such as ResNet-
50, DenseNet-40 and ResNeXt-56 are severely over-
parameterized, necessitating a consequent increase in the 
computational resources required for model training which 
scales exponentially for increments in model depth. In this 
paper, we propose an Entropy-Based Convolutional Layer 
Estimation (EBCLE) heuristic which is robust and simple, 
yet effective in resolving the problem of over-
parameterization with regards to network depth of CNN 
model. The EBCLE heuristic employs a priori knowledge 
of the entropic data distribution of input datasets to 
determine an upper bound for convolutional network depth, 
beyond which identity transformations are prevalent 
offering insignificant contributions for enhancing model 
performance. Restricting depth redundancies by forcing 
feature compression and abstraction restricts over-
parameterization while decreasing training time by 
24.99% - 78.59% without degradation in model 
performance. We present empirical evidence to emphasize 
the relative effectiveness of broader, yet shallower models 
trained using the EBCLE heuristic, which maintains or 
outperforms baseline classification accuracies of narrower 
yet deeper models. The EBCLE heuristic is architecturally 
agnostic and EBCLE based CNN models restrict depth 
redundancies resulting in enhanced utilization of the 
available computational resources. The proposed EBCLE 
heuristic is a compelling technique for researchers to 
analytically justify their HyperParameter (HP) choices for 
CNNs. Empirical validation of the EBCLE heuristic in 
training CNN models was established on five 
benchmarking datasets (ImageNet32, CIFAR-10/100, STL-
10, MNIST) and four network architectures (DenseNet, 
ResNet, ResNeXt and EfficientNet B0-B2) with appropriate 
statistical tests employed to infer any conclusive claims 
presented in this paper.  
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1. INTRODUCTION 
A key challenge in designing CNN models is estimating 
their appropriate size (depth & breadth) since these 
parameters are critical in establishing a CNN’s 
representational capacity [1]. Initially, designing a CNN 
model seems trivial as there exists mathematical proof, that 
any decision boundary can be approximated with a single 
sufficiently broad hidden layer [2]. Training a CNN model 
with a single broad layer is difficult, introducing afflictions 
like over-fitting [3] or under-fitting, increased 
susceptibility to spatial variances in the input data [4] and 
ineffective feature extractions [5].  

Training deeper CNN models with stacked hidden layers 
can help mitigate training afflictions and improve model 
performance since deeper layers learn more complex 
feature representations. In the worst-case deeper layers can 
resolve into identity transformations [7] without incurring 
any performance penalties. Although training very deep 
CNNs with up to a thousand layers can be achieved, 
utilizing current computational hardware, practical 
limitations such as time and cost for training such very deep 
CNN models become prohibitively expensive relative to 
shallower models.  

Furthermore, training very deep, yet narrow CNN models 
present similar training afflictions when compared to a 
shallow, yet very broad CNN model [6]. Training 
inefficiencies also become especially apparent when 
empirically shallower models learn the same functional 
representations and characteristics as deeper models [8]. 
Diminishing returns for the ResNet architecture with an 
exponential increase in layer depth results in marginal gains 
of accuracy as indicated in [10] where a nominal increase 
in classification accuracy of 1.1% is achieved from an 
additional 117 convolutional layers.  

While deeper CNNs are extensively employed for 
computer vision problems like image classification, 
efficient CNN architectures optimizing CNN depth [9], 
breadth [10] or both [12] are gaining prominence, with 
some architectures achieving good results even with limited 
computing infrastructures [13]. New and emerging 
research trends are focussing on compression and pruning 
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of very deep CNNs to reduce the associated computational 
overheads arising in training excessively deep models [14].  

Diminishing model performance with exponential 
increases in the total number of model parameters can be 
witnessed in all CNN architectures employing skip 
connections as these shortcut paths essentially produce an 
ensemble of shallower networks [11]. Therefore, 
experimental data suggests there might be an upper bound 
to model depth beyond which there is an insignificant 
contribution of feature abstraction from the additional 
layers and could even be detrimental to model performance 
as these additional layers might induce over-fitting. The 
absence of a general framework to effectively determine a 
CNN model’s size stems from an incomplete understanding 
of the underlying mechanisms of action.  

The lack of a thorough understanding of the internal 
workings of CNNs have led to conjecture and opinionated 
postulations of re- searchers in justifying architecture 
selections. The rapid progress in the domain of computer 
vision has also created hurdles for performance evaluations 
of broader and deeper residual networks. A conclusive 
determination of optimal CNN HyperParameters (HPs) 
cannot be ascertained due to the inherent immense 
complexity and variability involved in computer vision 
tasks. HP optimization is currently dominated by 
practitioners knowledge on the subject matter, the 
computer vision task at hand and available computational 
resources. Scientific evaluations of model performance 
with regards to network depth suggests, diminishing returns 
in model performance for excessive network depths [9] and 
as such, more investigation is needed to regulate CNN 
model depth.  

Contemporary compression and pruning techniques 
sacrifice classification accuracy for decreasing model 
training times. Forcing feature abstraction and compression 
by constraining model depth to the entropic data 
distribution of the input dataset should prove be a targeted 
solution since critical feature information is retained 
compared to stochastic methods of pruning or compression.  

In this paper, we highlight CNN model training 
inefficiencies in deep CNNs and propose an Entropy-Based 
Convolutional Layer Estimation (EBCLE) heuristic to 
eliminate residual depth redundancies improving feature 
compression. Adequate feature compression enhances 
hierarchical feature abstraction and reduce model training 
time. The proposed EBCLE heuristic provides an upper 
bound value for model depth in CNN architectures based 
on the a priori knowledge of the entropic data distribution 
of the input dataset.  

A heuristic is justified since it is well understood that 
optimality in terms of hidden layers cannot be accurately 
determined for CNN models [7]. Furthermore, using 
entropy-based approaches for effective feature extraction is 
well grounded in literature [15]. However, the problem 
with using entropy measures is that, there are numerous 
entropy measurements for digital data and it is imperative 
that a suitable entropy measure is utilized.  

Shannon’s Entropy (SE) [16] is a measure used primarily 
in digital communication to improve the latency between 
information transmission through compression. We 

hypothesize that, feature compressibility and abstraction in 
CNNs can only ever meet but not exceed the SE measure, 
since it is the theoretic limit of digital data compressibility. 
Thus, a function of SE is justified for estimating the upper 
bound of convolutional depth in CNNs as these layers are 
principally involved in feature extraction/information pro- 
cessing.  

As CNNs disregard the spatial orientation of the features in 
an image [17], utilizing SE measures for information 
measurement is warranted since SE measures are 
independent of spatial variances  

in the data. The inherent problem in limiting network depth 
of CNNs is that, it invariably restricts the information 
extraction capability i.e. decreases learning capacity of the 
network since representational power of a CNN is 
proportional to its size (i.e. depth × breadth).  

CNN models using simplistic datasets (MNIST) do not 
suffer significantly from a decrease in learning capacity due 
to severe model over-parameterization but, a more 
pronounced effect can be witnessed for complex natural 
image datasets such as CIFAR- 100 or ImageNet due to 
their associated feature complexities. In order to alleviate 
the decrease in learning capacity from constraining network 
depth, a subsequent increase in convolutional breadth is 
necessary as discussed in Section 2. In our experimentation, 
shallower yet broader CNN models are shown to maintain 
or even outperform baseline test-set classification 
accuracies for all the five benchmarking datasets (MNIST, 
CIFAR-10, CIFAR-100, STL-10 and ImageNet32), while 
model training time decreased by 45.22% on average across 
three different CNN architectures (ResNet [7], DenseNet 
[18] and ResNeXt [19]). Furthermore, our proposed 
EBCLE heuristic outperforms dynamically scaling 
approaches utilizing depth and breadth coefficients [12].  

The contributions of this paper are as follows:  

• We propose an accurate heuristic to determine an 
upper bound to convolutional depth using Shannon’s 
entropy measure for forced feature compression and 
abstraction.  

• We provide empirical evidence to demonstrate that 
EBCLE- based shallow neural networks can learn 
similar high-level feature maps compared to deeper 
models, as presented in Fig. 3.  

• Our proposed entropy-based heuristic reduces CNN 
model training times by 24.99%-78.59% across three 
different CNN architectures and five benchmarking 
datasets without compromising model performance.  

• We show that competitive results can be achieved 
using shallow yet broader CNN models relative to 
baseline models.  

• Our experiments empirically validate and support the 
findings presented in [9] that, deep CNN models 
behave as a collection of ensemble networks and the 
conclusions found in [20] that, wider yet shallower 
CNN models can learn the same functional 
representations as deeper yet narrower CNN models 
with a reduction in the associated trade-off of relative 
model training time.  
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The impact of contributions made in this paper are 
apparent, EBCLE-based CNN models substantially reduce 
CNN model training time, democratizing research in the 
domain of computer vision to researchers or practitioners 
with limited compute capabilities. Accelerated research 
outputs with the opportunity to test hypotheses rapidly can 
be achieved through our proposed EBCLE-based heuristic. 
Furthermore, researchers or practitioners can analytically 
justify their HyperParameter (HP) choices rather than 
arbitrarily selecting HP configurations. In general, all Deep 
Neural Networks (DNNs) exhibiting asymmetries in 
generalization ∆𝐺 and complexity ∆𝐶 (discussed in Section 
2.2) should greatly benefit from feature compression to 
reduce model training time, regardless of the associated 
task such as image classification or segmentation. 
  

2. BACKGROUND  
Consider the task of classifying high-dimensional 
interpolated data such as images, which can be represented 
by an under- lying function say, 𝑓(𝑿) from a collection of 
n number of d-dimensional input image vectors, 𝐗 =
{𝒙!, 𝒙",···, 𝒙#} where 𝐱$ = ⟨𝑥!,···, 𝑥%⟩|𝑖, 𝑑	 ∈ 	ℤ > 0; 
𝑓(𝑿) ∈ ℝ. All the images in X have an associated class 
label denoted as, 𝑌 = {𝑦!, 𝑦",···, 𝑦#} such that, (𝒙$ , 𝑦$) ∈
𝑿 × 𝑌 . The goal of image classification is to learn the 
underlying functional representation of X using the n 
number of input images such that, all images in X can be 
linearly separated. Traditional statistical techniques will 
fail in some classification tasks if the data is represented in 
high-dimensional vector space and as such alternate 
methods are needed for accurate classification.  

A typical deep CNN model comprises of a convolutional 
block containing stacked convolutional layers, followed by 
a pooling layer which is followed by a classification block 
consisting of multiple fully connected layers with an 
ultimate softmax activated classification layer. The 
softmax layer converts all real vector values into class 
posterior probabilities which sum to 1. Convolutional 
Neural Networks (CNNs) approximate the underlying 
functional representation of X denoted as 𝑓>(𝑿) by 
projecting the higher-dimensional input vectors of X into a 
lower-dimensional vector space say, 𝜙(𝑿) =
{𝜙(𝒙!), 𝜙(𝒙"),···, 𝜙(𝒙#)}. A simple regression vector θ at 
the final classification layer (predominantly softmax 
activated) can be utilized for linear separation of images in 
X. The lower-dimensional feature map vector 𝜗 produced 
from 𝜙 are critical for classifying higher-dimensional 
interpolated data [1]. Functions 𝑓 and 𝑓> outputs continuous 
scalar values in the set of rational numbers ℝ i.e. class 
posterior probability values provided each input vector in 
X has an associated single class label in Y.  

As output values of 𝑓>(𝑿) are continuous scalar values, they 
need to be discretized into a single class from all available 
classes i.e. the number of classes 𝐾 for the input dataset. 
Discretization can be achieved using a softmax layer which 
takes an in- put vector α and outputs a vector of same size 
𝛽, where 𝛽$ = 𝑒&!  / ∑ 𝑒'!(

$)! |𝛼$; 𝛽$ ∈ 𝛼; 𝛽. The output 
vector β for the input vector 𝛼 is normalized such that the 
logits are in the interval of [0,1] and sum to 1. Consider a 
binary classification example, lets say for an input image 𝑥$ 

the softmax outputs are ([0.8,0.2]) i.e. an 80% confidence 
that the input image belongs to class one and a 20% 
confidence that the image belongs to class two. A threshold 
function can encode the logits into a one-hot vector such 
that, 𝑦$ = [1,0]. Model performance is dependent on an 
accurate dimensional reduction of the input X denoted as 
𝜙(𝐗) as this is challenging for traditional statistical or 
function mapping techniques, alternatives need to be 
explored.  

Computing 𝜙(𝐗) could be achieved through feature 
extraction rather than mapping the underlying function of 
X. CNNs are state-of-the-art for feature extraction as they 
utilize convolutional kernels/channels/units/filters which 
are scanned across the input image in X producing feature 
maps. The number of convolutional 
kernels/channels/units/filters can be denoted as χ′|	χ′  ∈
ℤ*+ . The χ′ number of convolutional kernels have an 
associated weight vector 𝑾 = {𝜔!,··· 𝜔,"|𝑾 ∈ ℝ} extract 
lower-dimensional feature information for the input vectors 
in X to produce a feature map vector 𝜙(𝐗) =
N∑ 𝜙-(𝑿𝒊),···, 𝜙,"(𝑿𝒊)#

$)! O, illustrated in Fig. 2. Closer 
approximations to 𝑓(𝑿) can be accomplished by adjusting 
the weight vector 𝑾 of the 𝜒/ number of conv. kernels until 
𝑓>(𝑿) can approximate a one-dimensional projection of 
𝑓(𝑿). A full-linear separation of 𝑓(𝑿) can be achieved for 
the regression vector 𝜗 given an optimal weight selection 
for W where, |𝜙| = 𝑑/ is much larger than the d-
dimensional input vector |X| = d i.e. 1 ≤ 𝑑 ≪ 𝑑/.  

Assuming a constant 𝑓(𝑿) for 𝑿, computing 𝑓>(𝑿) is given 
by Eq. 1 [5],  

𝑓>(𝑿) = 〈𝜙(𝚾),𝐖〉 =X𝜙(𝚾), 𝜔- .
,"

-)!

 (1) 

W is the weight vector for which the regression vector 𝜗 is 
optimized utilizing the n number of training images in X 
and 𝜙(𝐗) is the feature map vector computed using the 
feature vector 𝜙(𝐗) for an input vector 𝒙$ ∈ 𝑿. 
Theoretically, deeper CNNs have an increased capacity to 
compute a much closer approximation to 𝑓(𝑿) compared 
to shallower CNNs, since deeper networks can abstract 
more complex feature maps. This is the reason why the 
enumeration of the feature map vector 𝜙(𝑋) exponentially 
grows for a given underlying function 𝑓(𝐗) for a given 
dataset. A larger feature map vector 𝜙(𝑋) can also be 
achieved using a shallower yet broader model since they 
are functionally equivalent to a deeper yet narrower model 
in terms of generating feature maps shown, discussed later 
in this paper and illustrated in Fig. 3.  

It is worth emphasizing that the dimensionality of feature 
map vector |𝜙| = 𝑑/ can only be reduced by increasing the 
convolutional depth, validating the arguments made for 
using ever deeper CNN models [7]. An oversight to this 
argument is that, reductions in dimensionality increasingly 
deviate the computed 𝑓>(𝑿)	from the ideal functional 
representation since activation functions apply 
approximations at each layer and residual models behave 
as an ensemble of smaller networks [9] thus increasing 
redundant feature extractions.  
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In Section 3, we mathematically deduce that increasing 
convolutional depth beyond Shannon’s entropy measure 
adds to redundancies, which is consistent with the findings 
presented in [9]. Furthermore, in Eq. 1, the problems of 
using deeper networks become especially apparent as 𝜒′ 
plays a parallel role to 𝜙(𝐗), which conforms to the 
conclusions presented in the previous work of [9] and is the 
reason why wider residual networks [20] perform better 
than a thousand layer deep network. The dimension of the 
feature map vector, |𝜙(𝑿)| = 𝑑/ is often why CNN models 
over-fit or under-fit to the input data.  
 
2.1. Convolutional neural network architectures  

2.1.1. Residual network (ResNet) 
Residual Network (ResNet) [7] using skip connections was 
proposed to solve the degradation problem existing in deep 
CNNs. The ResNet architecture is a deployment of residual 
learning-oriented blocks. The goal of using these blocks is 
to integrate nonlinear convolutions into residual operations, 
which greatly reduce the difficulty of linear separation in 
pattern classifications.  

Research into shortcut paths to address the problems of 
vanishing/exploding gradients has been undertaken since 
the days of Multi-Layer Perceptrons (MLPs) but, offered 
little improvements. Variations on the shortcut connection 
paths have since been used in state-of-the-art CNN models 
[21] such as ResNets with skip connections between hidden 
layers to allow for retention of the initial features. ResNet 
follows the function of error minimization for the input 
training data X given in Eq. 2  

𝑓>(𝑿) = 〈	𝜙(𝚾) 	+ 𝚾,𝐖	〉 (2) 

2.1.2. Densely connected convolutional network 
(DenseNet)  
Densely connected convolutional network (DenseNet) 
[18], was conceived from a simple idea that the output of 
any hidden layer ℎ$|ℎ$ 	 ∈ 	𝐻; 𝑖	 ≥ 	2 where, 𝐻 is the depth, 
should include the con- catenation of all preceding feature 
maps produced from ℎ$ − 1 layers. DenseNet also obeys 
the error minimization function given in Eq. 3, which 
requires the computation of a lower dimensional feature 
vector from the input data X.  

𝑓>(𝐗) = 〈𝜙([𝒙𝒊(1), …		 , 𝒙𝒏(ℎ𝒊 	− 1)]),𝑾	〉 (3) 

Growth rate is a critical parameter in DenseNet, viewed as 
the total amount of feature information contributed by an 
individual layer to the entire network. DenseNets with 
similar capacity can have varying classification 
performance by adjusting the growth rate HyperParameter.  
 
2.1.3. Aggregated residual transformations (ResNeXt)  
A neuron can be thought of as an aggregation of signal 
transformations from all the input data. The principle of 
ResNeXt [19] is to replace the computation of 𝜑(𝐗) with 
the transformation of input X as 𝜏(𝐗). ResNeXt, i.e., 
aggregated residual transformations, can be represented by 
the error minimization function given in Eq. 4.  

  

𝑓>(𝑿) = 	 〈X𝜏(𝐗#1 ),𝐖
1

$)!

〉 , 𝑛, 𝐿 ∈ ℤ*+	 (4) 

Cardinality L is the fixed size of aggregated 
transformations. Cardinality is an important 
HyperParameter affecting model capacity similar to 
network depth.  
 
2.2. CNN Optimization  

2.2.1. Parameter compression and pruning  
Compressing CNN models either through spatial or 
channel de- composition [22] is extensively adopted in 
practice to increase training efficiency by removing depth 
redundancies. While channel [23] and spatial [24] pruning 
show significant reduction in model training time, they 
inevitably offer lower classification performance compared 
to a deeper un-pruned CNN models. In Section 2.2.3, the 
ineffectiveness of spatial compression is discussed. In 
Section 3, the variances in convolutional outputs from 
channel pruning are highlighted. CNN parameter pruning 
is also challenged, as broader models with greater numbers 
of trainable parameters outperform narrower yet deeper 
models with lower numbers of trainable parameters in 
terms of training time as they can be more efficiently 
computed in parallel.  
 
2.2.2. Efficient convolutional neural network 
(EfficientNet)  
The premise behind EfficientNet is that, CNN models are 
developed with a fixed resource budget and are then scaled 
up to improve model performance. A uniform compound 
co-efficient is introduced as an alternative to single-
dimension scaling [12]. The authors argue that compound 
scaling is warranted for increasing the receptive field 
important to capture fine-grained patterns in large images. 
In this paper, in Section 5, we present empirical evidence 
to support targeted depth scaling (utilizing Shannon’s 
entropy measure) and manual width scaling constrained 
only by computational resource budgets offers similar or 
even enhanced model performance compared to uniform 
scaling approaches while significantly decreasing training 
time.  
 
2.2.3. Information theory and entropy  
Information theory has wide-ranging applications in 
interdisciplinary domains such as communication systems 
and complexity theory. Information theory is a derivative 
of probability theory where the probability measures of 
particular events are used to determine the complexity of 
information contained in events [25]. The equation to 
determine the total amount of information contained in an 
input X for a given event E is presented in Eq. 5.  

𝐼(𝐗) = 𝑙𝑛(1/𝑝2) = −𝑙𝑛(𝑝2) (5) 

Where, 𝐼(𝑿) is the total amount of information contained 
in the event for the input dimensional vector 𝑿. The number 
of states or independent symbols that a single element for a 
single instance of X, denoted as 𝐱$

-, where 𝑖, 𝑗	 ∈ 	ℤ*+ can 
exist in is denoted by a for an event 𝜀 with the natural log 
𝑙𝑛(·) representing the probability 𝑝. As a natural log is 
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used, the unit of measurement is NAT-ural units (nats). A 
natural log with base 𝑒 = 2.7182... is appropriate in this 
context as selecting any other logarithm base would restrict 
the true measurement of representational power. According 
to [16], the total amount of information contained in any 
given data is expressed through its entropy (𝐸), which can 
be calculated using Eq. 6.  

𝐸(𝐗) = −''	𝑝!	𝑙𝑛	𝑝!

"

#$%

&

'

=''	𝑝!	𝐼(𝒙#),
"

#$%

&

'

	𝑛, 𝑎	 ∈ 	ℤ(% 

(6) 

In Eq. 6, E is the Shannon’s Entropy (SE) measure in 
NATu-ral units (nats), 	𝑝) the probability of choice for a 
distinct independent symbols and n is the number of 
training data/images. Eq. 6 also implies that the entropy 
measure is dependent on the total amount of information in 
an event and the probability of its stochastic source. In other 
words, if new events yield no new information, the entropy 
would be zero. In digital images, the a value for a grayscale 
image would be 256 for 8-bit images, i.e. 28 = 256 or 0 to 
255 distinct gray values. 	𝑝) is the probability of a pixel 
possessing the gray value a.  

As determining probability and relative probability 
measures for digital images is impractical due to the high-
dimensional interpolated nature of images, 
histograms/frequency of pixel intensities are computed 
instead to calculate close approximations to actual 
probabilities utilizing the open-source scikit-image library 
written in python. The same process can be applied for 
color images but probability measures are computed for 
every color channel i.e. Red(R), Green(G) and Blue(B) 
color channels.  

It is worth highlighting that images with different spatial 
configurations have the same entropy measures. The loss of 
account- ability in measuring spatial configurations is a 
drawback of CNNs in general [17]. SE calculations also 
disregard spatial variations during measurement and as 
such, the SE measure is a perfect metric for quantifying the 
amount of information I(X) in an image.  

Using the skikit-image library, we calculate the entropy 
measures for all the training images present in the MNIST, 
CIFAR- 10/100, STL-10 and ImageNet32 datasets, 
described further in Section 4.1. The SE measures of all the 
training images are then averaged (as the CNN should be 
able to generalize between all classes of images) across the 
entire training set and rounded to two digits. The averaged 
entropy measures are MNIST: 2.14, CIFAR- 10 and STL-
10: 5.03, CIFAR-100: 4.97 and ImageNet32: 4.97. As 
most of the natural image datasets contain images from 
much of the same classes, it is not surprising that they have 
similar entropy measures.  
 

3. ENTROPY-BASED LAYER 
ESTIMATION  
There are multiple methods proposed to estimate 
layer/neural configurations of networks as discussed in 
Sections 3.0.1 and 3.0.2. In this paper, we primarily focus 
on feature extraction, abstraction and compression to 
determine the upper and lower bounds for the input vector 

and a heuristic upper bound to estimate the number of 
hidden layers required in a CNN. As computation of 𝜙(𝐗) 
is predicated upon the information extracted within the 
hidden layers of a CNN, discussions around information 
theory and its principles are warranted and most 
appropriate. 
  
3.1. Mutual information neural estimation (MINE)  
Authors in [26] empirically demonstrate that Shannon’s 
entropy-based measures to determine mutual information 
of images (𝐱$ , 𝑦$) ∈ 𝑿 × 𝑌 decreases the uncertainty in 
approximating the underlying function 𝑓(𝑿) given the 
computation of conditional entropy. The equation to 
determine mutual information between two vectors X and 
Z is given in Eq. 7,  

𝐼(𝑿; 𝑍) ≔ 𝐸(𝑿) − 𝐸(𝑿|𝑍)  (7) 

Where, E is Shannon’s entropy measure and 𝐸(𝐗|𝑍) is the 
conditional entropy of X given Z. Theoretic proofs of 
MINE exhibit strong consistency for multi-variate 
information estimation while capturing non-linear 
dependencies. Furthermore, MINE has been empirically 
validated to outperform non-parametric estimation in [27]. 
MINE performs well for adversarial networks and proves 
tractable for applications utilizing the principle of 
Information Bottleneck (IB) but, no evidence is presented 
in terms of its ap- plications in Deep Neural Networks 
(DNNs). Furthermore, MINE is used as an objective 
function in adversarial setting to maximize I(X;Z). IB has 
shown to approximate optimal representations of X with 
respect to Y in a discrete setting and with the addition of a 
small noise in a stochastic setting for both adversarial net- 
works and DNNs [28]. Therefore, MINE’s application is 
limited for DNNs but offers strong empirical evidence that 
SE can be utilized as a quantitative metric for information 
compression in neural net- works outperforming other 
estimation methods. 
  
3.2. Mutual information of layers in deep neural networks  
According to the authors in [28], the commonly used 
Stochastic Gradient Descent (SGD) optimizer in DNNs 
behaves in two different and distinct phases, Empirical 
erroR Minimization (ERM) and representation 
compression, with the phases characterized by variations in 
the gradients Signal to Noise (SNR) ratios of individual 
layers. The ERM phase results in a rapid increase of the 
mutual information 𝐼(𝑿; 𝑌) with respect to the class label Y 
and the com- pression phase (the majority of model training 
is utilized in this phase) is marked by a slow compression 
of the feature representation of X. Furthermore, the authors 
in [28] empirically demonstrate that the optimized layers 
approach the optimal IB bound which plays a pivotal role 
for computational and accuracy trade-offs.  

In a multi-class classification problem a single-objective 
optimization 𝑇3 of the hidden network layers (𝐻/) between 
1	 ≤ 	𝜖	 ≤ 	𝐻′ is dependent on a multi-objective 
optimization of 𝐼𝑿 = 𝐼(𝑿; 𝑇3) and 𝐼5 = 𝐼(𝑇3; 𝑌). The ERM 
phase of model training minimizes the cross-entropy loss 
characterized by 𝐼5 while the compression phase optimizes 
𝐼𝐗 which can be represented as 𝐼𝑿 = 𝐸(𝑿) − 𝐸(𝑋|𝑇3), If 
the input entropy 𝐸(𝐗) is invariant, optimizing 𝐸(𝑋|𝑇3) is 
sufficient, also known as stochastic relaxation. As CNNs 
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are fundamentally differentiated by their convolutional 
operations to extract feature representations from input X, 
authors in [28] assert the entropy growth ∆𝐸 for 
convolutions is logarithmic in the number of time steps 
i.e. ∆𝐸		𝛼		𝑙𝑜𝑔(𝒟7) where, 𝒟 is the underlying data 
distribution from which the independent input samples X 
are obtained.  

There is an exponential decrease in model training time 
with reduced network depths due to stochastic relaxation. 
In other words, the IB bound is greatly responsible in 
optimizing 𝐼(𝑿; 𝑇3) and since shallower networks have 
fewer number of hidden layers the representation of 𝐼(𝐗) is 
subsequently constrained and thus will train faster given 
identical computational resources relative to deeper 
networks. The decrease in representational capacity and 
methods of mitigating representational losses for shallower 
networks are explored in Section 3.1.  

A search on the information plane (illustrated as Fig. 1) i.e. 
𝐼𝐗 and 𝐼5 could yield an upper bound for convolutional 
layer estimation but, this method involves a pre-training 
step which is both computationally and time sensitive. In 
other words, a trial-and- error approach could be adopted to 
get an ideal curve for 𝑌w  to minimize ∆𝐶 and ∆𝐺 by 
evaluating R and varying 𝐷89 but, this is time consuming 
and requires additional computational resources.  

We propose a logical upper bound and heuristic 
convolutional depth in Section 3.3 using only the a priori 
knowledge of the SE measure of X i.e. E(X) without pre-
training.  
 
3.3. Entropy and convolutional depth  
As discussed in Section 3.0.2, authors in [28] assert that 
exponential decreases in model training times are achieved 
with a reduction in network depth since the majority of 
model training time is dedicated to feature compression. 
However, as discussed in Section 2.2.1, compression or 
pruning inevitably results in adverse model performance 
due to the associated loss in model learning capacity. The 
characteristic nature of deep Convolutional Neural 
Networks (CNNs) using skip connections (such as the 
ResNet, DenseNet and ResNeXt architectures discussed in 
Section 2.1) resolve into an ensemble of shallower 
networks [11] suggesting limiting convolutional depth to 
enhance feature compression could potentially decrease 
training time without a significant impact on model 
performance.  

Limiting convolutional depth will invariably constrain the 
formation of ensembles of shallower networks and a 
corresponding expansion of the convolutional breadth (i.e. 
the number of convolutional kernels/channels/filters/units 
in a hidden layer) should counteract the problem of 
decreased model learning capacity. While limiting 
convolutional depth is in stark contrast to the work done by 
authors in [24] proposing convolutional channel pruning, 
there is empirical evidence [8] supporting the fact that 
shallower networks can learn similar complex feature 
representations as deep networks, primarily because 
majority of model training is dedicated to feature 
compression [28] during which redundant information is 
compressed and only the most important features 
improving model performance are retained.  

An ideal determination of network depth is impractical due 
to the fact that residual connections propagate information 
non- sequentially between layers and they can always learn 
identity transformations allowing for training of very deep 
CNNs with up to and beyond a thousand layers [7]. 
Heuristic optimization of the network depth is desirable 
since lowering architectural complexity decreases the 
generalization gap but increases the informational 
complexity gap, as illustrated in Fig. 1 i.e. allows for a 
broader representation of X in the information plane, 𝐼𝐗 and 
𝐼5. Ideally, the level of abstraction within a CNN should be 
equal to the infor- mational complexity of the input dataset. 
Although this would be ideal, there are no methods of 
estimating when this level of abstraction is achieved.  

The abstraction capability of CNNs is reliant on the 
representational power of the model, which refers to the 
ability of the network to accurately extract and represent 
information in feature maps. Increasing the 
representational capacity in CNNs acts as a compensation 
mechanism for the loss of spatial information during the 
abstraction process. The representational capacity of CNN 
models discussed in Section 2.1 is increased with each 
additional convolutional layer. Note that however, although 
each additional convolutional layer increases the 
representational capacity of a CNN, these additional layers 
might be performing identity transformations which do not 
contribute in enhancing model performance. Furthermore, 
the compression phase of model training for deep CNN 
models require an exponential increase in computational re- 
sources and training time.  

3.3.1. Input compression bound  
Authors in [28] proposed a new input compression bound 
presented as Eq. 9, to replace the generalization bounds 
defined by classic learning theory presented as Eq. 8.  

𝜖" 	< 	
𝑙𝑜𝑔|ℋ3| + 	𝑙𝑜𝑔1/𝛿

2𝑛  (8) 

Where, 𝜖 is the difference in errors between training ∆𝐶 and 
generalization ∆𝐺 as illustrated in Fig. 1. ℋ3 is the 𝜖-cover 
for a depth hypothesis assuming the size |ℋ3| ∼ (1/𝜖)% . 𝑑, 
the dimensionality of n number of input samples in X. δ, 
the confidence interval of 𝑌w  is between [0,1].  

|ℋ3| ∼ 2|𝐗| → 2;# (9) 

Where, the size of input vector X is E(X) given X is large. 
𝑇3 is the single-objective optimization as an 𝜖-partition of 
the input vector X of size 22<𝑿=𝑇3>, assuming 2;# is the 
cardinality for a depth hypothesis 𝐻3|𝑇3 	 ∈ 	1	 ≤ 	𝜖	 ≤ 	𝐻′. 
Furthermore, |𝑇3| ∼

"$(𝐗)

"$(𝑿)𝑇3* = 28<;#;𝑿>, discussed in 

Section 3.0.2. Simplifying Eq. 9, the input compression 
bound can be presented as Eq. 10,  

𝜖" 	< 	
28(;#;-)A	CDE!/G

2𝑛  (10) 

Assuming an absolute confidence and a finite number of 
samples images (in-bound disregarding out-of-bound 
distortions), the compression bound in Eq. 9 is dependent 
on 𝐼(𝑇3;I), therefore maximizing 𝐼(𝑇3;I)	should be 
sufficient for enhanced feature compression.  
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Stochastic relaxation: As discussed in Section 3.0.2, 
Layer com- pression can be computed as ∆𝐸$ = 𝐼(𝑿; 𝑇$) −
𝐼(𝑿; 𝑇$J!) for a given hidden layer ℎ$ ∈ 𝐻/. Implying an 
exponential decrease in training time for decrements in the 
number of hidden layers. Our hypothesis is that redundant 
information in the input vector X can be compressed as 𝑋2 
for which the resultant feature maps generated by the 
hidden layers of a CNN cannot exceed Shannon’s Entropy 
measure 𝐸(𝑿). In other words, limiting convolutional 
depth (𝐻/) with a corresponding increase in convolutional 
breadth (𝜒/) for a CNN should exponentially decrease 
training time without compromising model performance. 
The progressive increase in spatial convolutions is 
exponential for 𝐻/ × 𝜒/ and is in the order of 2K"," [5] i.e. 
2K"," ≤ 𝐼(𝑿2) ≤ 𝐸(𝑿), the CNN compressed feature 
vector cannot exceed the theoretical limit compression of 
the input vector. Furthermore, the representational capacity 
of a CNN is proportional to its size (depth × breadth) and 
its size is 2;# (from Eq. 9) i.e. 𝐼(𝑿2; 𝐻/) ≤ 22(𝐗), the 
information contained in a 𝐻/ deep CNN is distributed 
among all of the convolutional kernels which is its 
representational capacity obtained after the compression 
phase of model training.  
 
3.3.2. Upper bound of convolutional depth  
Determining an adequate convolutional depth for which the 
model provides sufficient dimensionality reductions 
without introducing inefficiencies or redundancies is a 
challenging problem. Assume the d-dimensional input 
vector X has no redundancies i.e. stochastic noise, in this 
instance there are no practical ways to apply stochastic 
relaxation without compromising model performance. This 
can be considered the lower-limit for hidden layer 
compression where a convolutional depth estimation is 
impossible since additional layers will increase model 
performance significantly.  

As most information captured in the real-world has some 
redundancy, the n samples in input X can be compressed up 
to the theoretical limit i.e. Shannon’s Entropy (SE) measure 
E (computed using Eq. 6). Lets denote the compressed 
input vector as 𝑿2|𝑿2 	≤ 	𝑿. Increasing the number of 
input samples will in effect reduce the suboptimal IB 
bifurcations as illustrated in Fig. 1. As discussed in Section 
3.0.2, in instances of stochastic relaxation, optimizing 𝐼𝐗, 
specifically 𝐸(𝑿|𝑇3) is adequate for exponential decreases 
in model training times. We know that entropy growth ∆𝐸 
is logarithmic, particularly ln (From Eqs. 5 and 6) and 
∆𝐸$ = 𝐼(𝑿; 𝑇$) − 𝐼(𝑿; 𝑇$J!) (From Section 3.1.1).  

The final convolutional layer output for a CNN model of 
depth 𝐻/ is dependent on the previous layer 𝐻/ − 1 and the 
output for layer 𝐻/ − 1 is determined by the output from its 
previous 𝐻/ − 2 layer and so on until the first input layer. 
Therefore, entropy growth ∆𝐸 can be rewritten for the 
entire convolutional depth of a CNN as Eq.11,  

∆𝐸 = 𝑙𝑛3'𝐼(𝑿; ℎ#) − 𝐼(𝑿; ℎ#*')
+!

#$,

7 (11) 

A unique characteristic of information propagation in the 
hidden layers is that 𝐼(𝐗; ℎ$) ≤ 𝐼(𝐗; ℎ$J!) ≤ 𝐼(𝐗2) ≤
𝐼(𝐗). In other words, any information lost in the initial 
layer/s cannot be recovered in deeper layers [30]. 
Furthermore, for any 𝑖	 ≥ 	𝑗, 𝐼(𝑌; 𝐗) ≥ 𝐼(𝑌; 𝐗2) ≥
𝐼~𝑌; ℎ-� ≥ 𝐼(𝑌; ℎ$) ≥ 𝐼~𝑌; 𝑌w� holds true. 𝐼~𝑌; 𝑌w� 
quantifies the predictive features in X for Y , determining 
𝐼(𝐗;𝐻/) i.e. the final convolutional layer should yield an 
upper bound for depth estimation.  

The feature map outputs of any convolutional layer is 
governed by the non-linear activation function 𝜌(·), most 
commonly the Rectified Linear Unit (ReLU), 𝜌(𝑍) =
𝑚𝑎𝑥(0, 𝑍) for some vector input Z [31]. The activation 
function essentially bottlenecks information propagation 

 
Fig. 1. Information plane with a hypothesized layer path in a DNN for finite set of samples in X. �C is the complexity gap and �G is the 
generalization gap, DIB is the optimal achievable IB limit for samples in X, R = I(X;Xˆ) and UB is the upper bound on the out-of-sample 
IB distortion. Figure reproduced from [29].  
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within the hidden layers, such that, 𝐸(𝐗) ≥ 𝐸(𝐗2) and 
𝐼~𝑌w; 𝐗2� ≤ 𝜌~𝐼(𝐗2)�. The final layer output for a 
convolutional depth 𝐻′ requires as an input the compressed 
vector 𝐗2 (because only the first convolutional layer can 
accept the uncompressed input vector 𝐗, all other layers 
have the feature map output from the first layer as an input) 
and is constrained by the activation function i.e. 
𝜌~𝐼(𝐗2; 𝐻/)�.  

Eq. 11 can be rewritten and reduced as Eq. 12, 

∆𝐸 = 𝑙𝑛 �𝜌~𝐼(𝐗2; 𝐻/)�� (12) 

𝐼(𝐗2) = 2K"," and 𝐼(𝐗2; 𝐻/) ≤ 22(𝐗) (from Section 3.1.1 
applying stochastic relaxation). The activation function 
ensures to maximize 𝐼(𝐗2; 𝐻/) and equality is achieved if 
and only if 𝐗� 	= 	𝐗. Therefore, the relationship is invariant 
for 𝐼(𝐗2; 𝐻/) i.e. 𝜌~𝐼(𝑿2; 𝐻/)� ≤ 22(𝐗). In other words, the 
final compressed feature vector cannot exceed the 
theoretical compressibility of the input vector X and 
equality is achieved in the best case when 𝐗� 	= 	𝐗. 
Therefore, Eq. 12 can be rewritten as an upper bound of 
convolutional depth (which is the Entropy-Based 
Convolutional Layer Estimation or EBCLE equation) as 
Eq. 13  

∆𝐸 = 𝑙𝑛~22(𝐗)� (13) 

Where,	∆𝐸 ∈ ℝ!A	is the objective function for maximizing 
feature compression within the hidden layers of a CNN, 
given the Shannon’s Entropy measure 𝐸(𝐗) for an input 
dataset X. The complexity of X determined by its entropy 
measure E, indicates higher degree of data complexity 
requires CNN models with corresponding complexity for 
dimensionality reduction and linear separation.  

Note that since the EBCLE heuristic for feature 
compression belongs to ℝ!A	 , upper and lower bound values 
are mandatory. It is safe to assume that the upper bound 
should be used, as using the lower bound might lead to 
premature feature complexity growth. Utilizing Eq. 13, we 
can determine the upper bound heuristic for the selected 
input datasets CIFAR-10/100, STL-10 and ImageNet32 
as 4 and the MNIST dataset as 2.  
 
3.3.3. Using EBCLE for CNN architectures  
The EBCLE heuristic or ∆𝐸 offers a way to maximize 
feature compression by utilizing minimal number of hidden 
convolutional layers and as such this upper bound measure 
behaves differently for various static CNN architectures 
due to their architectural constraints. All the CNN 
architectures employed in this paper have residual learning 
blocks with stacked convolutional layers, these stacked 
convolutional layers should not degrade model 
performance since they can always perform identity 
transformations [7]. Since stacked convolutions reduce 
dimensions exponentially, shortcut paths are introduced 
after each learning block to ensure model performance 
(feature learning capacity) is not impeded. Therefore, an 
architectural design lower-bound is placed on model depth.  

The design limitations proposed by the authors are, ResNet 
v1: Depth	 = 	𝑁 × 6 + 2 [7]; DenseNet: Depth	 = 	𝑁 ×
3 + 4 [18] and ResNeXt: Depth = N × 9 + 2 [19]. 𝑁|𝑁*!A 

is the EBCLE value derived earlier in Section 3.2, i.e. 4 for 
CIFAR-10/100, STL-10, ImageNet32 and 2 for MNIST. As 
such, the lower bound for model depth that can be 
employed for these architectures are, ResNet v1: 8, 
DenseNet: 7 and ResNeXt: 11.  
 

4. EXPERIMENTAL DESIGN  
To validate EBCLE as a heuristic, we employ a quantitative 
approach using five well-known benchmarking datasets, 
MNIST [32], CIFAR-10/100 [33], STL-10 [34] and 
ImageNet32 [35]. The selected comparison criteria are, 
test-set classification accuracy and the model training time. 
We test the efficacy of EBCLE against deeper ResNet-50, 
ResNeXt-56 and DenseNet-28 models (deeper, broader 
models could not be evaluated due to memory constraints), 
while keeping other HPs such as learning rate and batch 
size constant with no data excluded or pre-processing steps 
applied to images in the datasets for three independent 
evaluation runs. Learning rate and batch size were selected 
based on configurations by the original authors of the 
proposed architectural models.  

The current consensus is that, using a trial and error 
methodology to vary HP configurations and using expert 
domain knowledge, fine-tuning of deep CNN models yield 
enhanced model performance [7]. Our primary objective 
for this study is to investigate the relative classification 
performance of deeper yet narrower and shallower yet 
broader CNN models with an emphasis placed on training 
time.  
 
4.1. Datasets  
The MNIST dataset includes 28 × 28 pixel resolution black 
and white handwritten digits. MNIST consists of 60,000 
training and 10,000 test images split equally into ten classes 
for each numeric digit. The CIFAR-10/100 datasets 
includes 50,000 training and 10,000 testing natural color 
images with a 32 × 32 pixel resolution, split equally into 
ten/hundred classes for CIFAR-10/100 respectively, which 
include pictures of airplanes, automobiles, birds and other 
such natural image classes. The STL-10 dataset includes 
500 training and 800 test natural color images split into 
much of the same classes of natural images but in a higher 
96 × 96 pixel resolution, derived from the ImageNet dataset 
[36]. The Ima- geNet32 dataset is a downsampled (32 × 32 
pixel resolution) version of the original ImageNet dataset 
[36], consisting of a thousand natural image classes.  
 
4.2. Experimental setup  
The first set of experiments presented in Table 1 were 
conducted using a single Nvidia 2080ti GPU with an AMD 
Thread- ripper 1920x CPU and 32GB of RAM, generously 
provided by InfuseAI Limited (New Zealand). The second 
set of experiments presented in Table 2 and evaluation of 
the transfer learning performance were conducted using a 
single 3070 GPU with a AMD Ryzen R5 2600 CPU with 
64GB of RAM, yet again generously provided by InfuseAI 
Limited (New Zealand). The training-validation split for 
every model was kept constant at 80%-20% across all 
datasets. There were no modifications made to the CNN 
architectures and to ensure reproducibility, no image 
augmentation techniques were used. HP configuration  



 
9 

included using the Adam optimizer with a batch size of 128 
and a constant learning rate of 0.001 for 100 epochs. Where 
possible, official Github repositories were cloned (to 
preserve anonymity, appropriate acknowledgments/credits 
will be included in the camera-ready paper) for the four 
CNN architectures built on the target software platform 
(Keras with a tensor- flow backend) utilized in this paper.  

All the models were trained from scratch on the specified 
hardware utilizing the same source code and libraries. Only 
the model depth (𝐻/) and breadth (𝜒′), presented in Table 
1 had to be modified for baseline comparisons against 
EBCLE models. In other words, the baseline ResNet-50 
model had 50 hidden layers (𝐻/) with 16 convolutional 
units for the first hidden layer (𝜒/) whereas, EBCLE-
models had 26 hidden layers with 24 convolutional units.  
 

5. OUR RESULTS  
The first set of experiments in this paper is to examine 
model performance for static CNN architectures with an 
emphasis on training time with respect to EBCLE-based 
models, presented as Table 1.  

The second set of experiments focused around examining 
model performance for dynamically scaling CNN 
architectures such as EfficientNet (EN). The HP 
configuration used was similar to the settings proposed in 
[37]; an RMSprop optimizer with the default learning rate 
of 0.001 and momentum of 0.9 for 100 epochs with no 
weight decays or custom layers/objects used to ensure 
reproducibility. Furthermore, the image resolution for 
CIFAR-10 is 32 × 32 but, authors in [12] trained models on 
the ImageNet dataset with 224 × 224 resolution images, 
therefore model performance will deteriorate significantly. 
All models were trained from scratch on the specified 
hardware.  

Finally, we examine the transfer learning performance of 
EBCLE models relative to baseline. The objective is to 
investigate if limiting depth omits important feature 
information from being retained that might be pertinent for 
model performance. The results for transfer learning for 
STL-10 and CIFAR-10 datasets for the ResNet models 
were on average 15.75% and 16.93% for the ResNet-50 
and ResNet-EBCLE models respectively. These specific 
datasets were selected because of their similar constituent  

Table 1. Table of results comparing different CNN models on various benchmarking datasets. 

 

Table 2. Summary table of results highlighting the relative efficacy 
of the ResNet models trained adopting the EBCLE heuristic and a 
dynamic compound scaling approach on the CIFAR-10 
benchmarking dataset. EfficientNet-B3-B7 could not be evaluated 
due to the required memory constraints. ∗ 𝐻′ = depth and 𝜒′ = 
breadth co-efficients for EfficientNet models.  
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class information. All images in the CIFAR-10 dataset were 
upsampled to normalize pixel resolutions for equalization 
with the STL-10 dataset. Other models could not be 
evaluated due to the lack of video memory on the new 
commissioned hardware.  

5.1. Statistical testing  
First, the Shapiro-Wilk test for normality was used to 
establish if the collected raw data were normally 
distributed. The data were normally distributed with all p-
values less than 0.05, Table 3 present the mean results over 
three experimental runs. As the distribution of data is 
normal, we select the parametric one-tailed paired t-test for 
statistical testing of the data. A one-tailed paired t-test is the 
most applicable since we want to question if there was an 
observable difference in accuracy and training time for 
EBCLE models on the same CNN architectures relative to 
deeper models. In other words, is there a statistical 
difference in the classification accuracies and training costs 
when EBCLE models are used instead of the standard CNN 
models.  

Tests were performed with the independent variable as the 
CNN depth and classification accuracy as the dependent 
variable. The interpretation was done at the standard 
significance p-value threshold of 0.05 for a one-tailed test, 
with the assumption that deeper models should provide 
higher accuracies when compared to shallower EBCLE 
models. The default null hypothesis is that no observable 
differences are present.  
 

6. OUR ANALYSIS  
In this paper, conventional wisdom advocating the use of 
deeper CNN models [6] for enhancing classification 
accuracy has been challenged, with empirical data 
supporting the validity and efficacy of our proposed novel 
EBCLE heuristic to significantly reduce model training 
time without compromising model performance. 
Examining the input test images in Figs. 2 and 3, the 
EBCLE models exhibit identical high-level abstractions 
after the last convolutional layer compared to a deeper 
ResNet-50 model.  

The SE values, measured after the first and last 
convolutional layer of the ResNet-EBCLE and ResNet-50  

models, as visualized in Figs. 2 and 3 are 5.2735 and 5.5625 
for the first convolutional layer and 5.3668 and 6.0959 for 
the last convolutional layer respectively. The difference is 
more pronounced for the MNIST dataset where the SE 
measures of the activation maps for the EBCLE and 
ResNet-50 models after the first convolutional layer are 
4.9176 and 4.2341 and after the last convolutional layer are 
1.9172 and 2.3010 respectively. The lower SE values in the 
EBCLE model indicate a higher degree of feature 
compression in the ResNet-EBCLE model compared to the 
standard ResNet-50 model with similar higher dimensional 

 
Fig. 2. Feature/Activation maps visualized after the first convolutional layer for a test image of a horse in the CIFAR-10 dataset, 
EBCLE depth = 26. 

Table 3. Table of paired one tailed t-test results to validating the 
EBCLE heuristic. 
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feature maps using only half as many convolutional layers 
thereby maintaining or even outperforming deeper 
networks.  

In a few instances (CIFAR-100 and STL-10), the broader 
EBCLE models outperformed deeper models by a 
statistically significant margin, implying that the 
performance improvements in both accuracies and training 
times of the EBLCE models are not random. Furthermore, 
in all instances, the average EBCLE model training time 
and cost reduction was 45.22%. The reason is due to the 
efficient minimization in the trade-off between complexity 
and information gaps for EBCLE-based models. To 
discriminate between images related to ships and cars, 
simple edge detectors that can abstract salient features such 
as wheels, bow and stern are sufficient to achieve a high 
classification accuracy. Overly complex abstractions start 
to increase the information gap while minimizing the 
complexity gap causing over-fitting and detrimental 
classification performance.  

Utilizing an EBCLE model ensures sufficient 
dimensionality reduction has occurred before the final 
classification layer allowing greater fine-grained features to 
be learned. However, optimality in depth for any CNN 
model cannot be accurately determined, as asserted by 
authors in [7]. The proposed EBCLE, at the very least, 
offers a mathematically sound way to justify HP choices 
and optimizations affecting classification performance 
while mitigating untrained features, a characteristic of deep 
models [9].  

A significant contribution of the EBCLE heuristic is the 
reduction in model training time while maintaining or 
outperforming baseline classification performance, inline  
with wider residual network architectures [20]. Other 
compression, quantization or pruning methods discussed in 
Section 2.2.1 are accompanied by a statistically significant 
decrease in classification performance and thus are not 
studied extensively in this paper.  
 
6.1. Exponential increase in trainable parameters leads to 
marginal gains in performance  

The number of trainable parameters increases 
exponentially for additional convolutional layers, as there 
is a 2," increment in convolutional kernels/units in the 
model to compensate for the reduction of model capacity 
[5]. As gradients are in the direction of the steepest descent 
in back-propagation [11], utilizing unnecessarily deep 
networks will lead to untrained features [9]. The EBCLE 
heuristic presented in Section 13 provides an adequate 
depth estimation using Shannon’s entropy for measuring 
the theoretical limit for feature compression by the 
convolutional layers after which feature representations 
resolve into identity transformations which are ineffective 
in enhancing model performance. Further credence for 
shallower yet wider models is provided by the data 
presented in [10], where a classification improvement of 
1.1% was achieved from an 117 additional depth increase.  

Training CNN models by varying the depths and widths on 
the same CIFAR-10 dataset while keeping all other 
HyperParameters constant resulted in the EBCLE model 
outperforming deeper models. It is noteworthy to mention 
that additional increases in the initial convolutional width 
(𝜒/) caused over-fitting at extremely large values (256) and 
resulted in decreased classification performance. Moderate 
values of 𝜒′ (128) produced the best classification accuracy 
(with an increment of 0.75%) but resulted in an exponential 
increase in the number of trainable parameters. In other 
words, models with a 𝜒/ value of 128 had 23,493,130 no. 
of trainable parameters compared to a narrower model with 
a 𝜒 value of 24 with only 830,698 i.e. a 96.46% decrease in 
the number of trainable parameters resulted in only a 0.75% 
decrease in classification performance. This decrease in the 
number of parameters suggests excessive model width 
increases do not offer huge improvements in classification 
performance similar to very deep models.  
 
6.1.1. Counter-intuitive decrease in model training time  
A marked increase in the time required to compute 
gradients for some EBCLE models due to increase in the 
total number of parameters can be witnessed relative to 
baseline models. How- ever, since most of the model 
training time is consumed during the feature compression 
phase (discussed in Section 3.1), EBCLE- based models are 

 
Fig. 3. Feature/Activation maps visualized after the last convolutional layer for a test image of a horse in the CIFAR-10 dataset, EBCLE 
depth = 26. 
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inherently restricted in terms of their feature 
compressibility and as such a corresponding decrease in the 
solution space with yields the observed training time 
reductions. The increased breadth of the EBCLE-models 
enables optimal utilization of the computing hardware due 
to enhanced data loading and parallel processing, relative 
to deeper networks which experience frequent information 
processing bottlenecks.  

Results presented in Tables 1 and 2 indicate that EBCLE-
based models show slight to significant increases in model 
performance even with decrease in model parameters due 
to more effective feature extraction, abstraction and 
compression relative to baseline models. As discussed 
earlier in Section 6.1, exponential increases in model 
parameters lead to only marginal gains in performance. As 
such, more effective training regimes provide significant 
performance gains compared to simply increasing model 
sizes. This is due to the tendency of deeper layers to resolve 
into identity transformations. 
  
6.2. Limitations  
A key limitation for employing EBCLE is that, the heuristic 
is limited in applications where the entropic variance of 
constituent classes in the input dataset is high, as there are 
no practical ways to determine relative effective variances 
for individual classes to optimize feature compression. In 
other words, if some of the constituent classes in the input 
dataset have high entropy and others have low entropy, 
EBCLE would not be applicable since mean entropic 
measures are utilized in this paper.  

Another limitation for a comprehensive evaluation of the 
EBCLE heuristic presented in this paper is that, although 
the principles of optimizing feature compression should 
hold true for different application domains or tasks such as 
audio classification or segmentation; empirical evidence is 
critical in drawing any meaningful conclusions and as such 
EBCLE remains confined to CNN image classification in 
this article.  
 

7. CONCLUSION AND FUTURE WORK  
To overcome the problems posed by severe over-
parameterization concerning model training time and 
architecture selection, we proposed an entropy-based 
heuristic that imposes feature abstraction and compression 
restricting over-parameterization with regards to 
convolutional depth in CNNs. The proposed heuristic 
employs a priori knowledge of data distribution for the 
input dataset to simplify and accelerate CNN model 
training. Using the EBCLE heuristic, we provided 
empirical evidence utilizing several well-known 
benchmarking datasets and CNN architectures against 
established baselines to validate the efficacy of EBCLE-
based models with respect to training time and 
classification accuracy. Results for the EBCLE heuristic 
adopting a shallow yet broad CNN model indicate a 
24.99% - 78.59% reduction in model training time 
compared to deeper yet narrower CNN models for the same 
HyperParameter (HP) configurations without significant 
performance degradation.  

The results presented in this paper support the independent 
findings obtained in [9], where the authors assert that wider, 
yet shallower models outperform deeper, yet narrower 
CNN models. Furthermore, the authors in [38] establish 
both theoretically and empirically that entropy-based 
heuristics can simplify and accelerate inner and outer loop 
calculations for feature selection. Additional validation for 
our EBCLE heuristic regrading forced feature abstraction 
and compression can be corroborated by the findings 
presented in [10], where the authors establish 
experimentally, that shallower CNN models can learn the 
same functional representations as deeper networks.  

Our proposed EBCLE heuristic offers a simplified 
approach to select CNN architectures and accelerate model 
training by utilizing the a priori entropy of input the dataset. 
Additionally, our EBCLE heuristic is architecturally 
agnostic facilitating application in multiple domains. The 
empirical data presented in this paper allude to the same 
phenomenon of over-parameterization for convolutional 
widths 𝜒/, suggesting further gains could be achieved with 
regards to decreasing model training times. This is an 
important area for exploration and future publications. 
Empirical validation for our proposed EBCLE heuristic is 
conducted on five benchmarking datasets (ImageNet32, 
CIFAR-10/100, STL-10, MNIST) and three network 
architectures (DenseNet, ResNet, ResNeXt) along with a 
dynamically scaling network architecture (EfficientNet).  

Wider but shallower residual networks have shown to 
outperform narrow yet deeper networks [20], corroborating 
the findings presented in this paper. Furthermore, very deep 
CNN architectures resolve into a collection of independent 
feature extractors making the process of feature extraction 
redundant since skip connections facilitate only the most 
important features to be captured [9]. The EBCLE heuristic 
could be employed to introduce forced feature abstraction 
and compression enhancing the efficiency of model 
training. Empirical evidence supports the fact that shallow 
residual net- works can learn the same functional 
representations as deeper networks [10], providing further 
independent validation that the EBCLE heuristic could help 
optimize model training, in terms of addressing severe 
over-parameterization with regards to training time and 
simplified CNN model selection.  

Finally, the theory behind EBCLE for CNN architectures 
supports the fact that the same principles governing feature 
compression should apply to other deep learning tasks such 
as segmentation or regression but, empirical evidence is 
essential to draw any meaningful conclusions and as such 
it is reserved as future work.  
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