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Abstract

Deep learning techniques have shown their superior performance in dermatolo-

gist clinical inspection. Nevertheless, melanoma diagnosis is still a challenging

task due to the difficulty of incorporating the useful dermatologist clinical knowl-

edge into the learning process. In this paper, we propose a novel knowledge-

aware deep framework that incorporates some clinical knowledge into collab-

orative learning of two important melanoma diagnosis tasks, i.e., skin lesion

segmentation and melanoma recognition. Specifically, to exploit the knowl-

edge of morphological expressions of the lesion region and also the periphery

region for melanoma identification, a lesion-based pooling and shape extraction

(LPSE) scheme is designed, which transfers the structure information obtained

from skin lesion segmentation into melanoma recognition. Meanwhile, to pass

the skin lesion diagnosis knowledge from melanoma recognition to skin lesion

segmentation, an effective diagnosis guided feature fusion (DGFF) strategy is

designed. Moreover, we propose a recursive mutual learning mechanism that fur-

ther promotes the inter-task cooperation, and thus iteratively improves the joint

learning capability of the model for both skin lesion segmentation and melanoma

recognition. Experimental results on two publicly available skin lesion datasets
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show the effectiveness of the proposed method for melanoma analysis.

Keywords: Melanoma diagnosis, knowledge-aware deep framework,

lesion-based pooling and shape extraction, diagnosis guided feature fusion,

recursive mutual learning.

1. Introduction

Melanoma is one of the most malignant skin cancer that increases rapidly

throughout the world [1–4]. Timely treatment of the melanoma can efficiently

improve the survive rate of the patients. Dermoscopic images captured by dig-

ital imaging devices, offer the magnified visualization of the melanoma, and

thus assist the dermatologists in examining the melanoma based on a set of

complex visual characteristic of the lesion. Computer-aided diagnosis (CAD)

system provides an effective way that allows dermatologists’ clinical inspection

of the skin lesion in dermoscopic images. A CAD system for melanoma analy-

sis generally contains two crucial functions: lesion segmentation and melanoma

recognition. Specifically, the task of segmentation [5–12] aims to divide a der-

moscopic image into the skin lesion parts and background parts, i.e., it is a

pixel-wise classification process to generate more conceptual saliency informa-

tion for melanoma analysis [13–17]. Meanwhile, melanoma recognition is an

image-level classification task that aims to identify the skin lesion types, such

as melanoma, seborrheic keratosis, and benign nevi [18–22].

Recent deep learning-based methods [23–29] have shown their promising

achievements in both lesion segmentation [30–34] and melanoma recognition [21,

22, 35–42]. Existing approaches usually train the task-specific models to per-

form skin lesion segmentation and melanoma recognition separately, and do not

explicitly consider the dermoscopists’ clinical criteria for melanoma inspection.

For example, most of the existing methods [21, 22, 35–42] heavily depend on

the abstract feature representation obtained at the high layer of the network,

and they often leverage the global information of the whole feature maps for

melanoma identification, i.e., melanoma recognition is often conducted in a sim-
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Fig. 1. Visualization examples of skin lesions. Red and blue contours indicate the periphery

and center regions of the skin lesions respectively. Some important morphological expressions

for recognizing skin lesions, like streaks, can be observed at the periphery regions.

ilar fashion as other general object classification tasks [43, 44]. However, in the

domain of melanoma inspection, such a fashion has a high potential of losing

important pathological patterns and morphology knowledge that are crucial for

melanoma recognition. Generally, for dermatologists, they identify melanoma

via certain prior criteria, like the statistical information of the lesion color’s

variation and the border’s irregularity [40, 45, 46]. Moreover, clinical studies

[19, 47, 48] have confirmed that the characteristics of the peripheral lesion are

very useful morphological expressions for identifying melanoma, as shown in

Fig. 1. However, these types of knowledge have not been explicitly considered

yet by current deep learning-based methods [36–42].

In this paper, we propose a novel knowledge-aware framework that is able

to exploit the clinical knowledge within the deep feature learning process for

melanoma analysis. Specifically, in our framework, both the skin lesion seg-

mentation task and the melanoma recognition task are learned and performed

via a joint deep network, such that the clinical knowledge can be exploited and

transferred with the mutual guidance and assistance of these two tasks.
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Concretely, to promote the performance of the deep learning framework on

melanoma recognition, we propose to incorporate the clinical knowledge by ex-

plicitly considering the morphological expression of the lesion area and also the

periphery region. To achieve this, we design a novel lesion-based pooling and

shape extraction (LPSE) module that transfers the lesion structure information

obtained from the skin lesion segmentation task to the melanoma recognition

task, and thus we are able to embed the morphological operation into our deep

network. With the integration of morphological analysis of the skin lesion struc-

ture, our network is thus able to selectively learn the informative features con-

taining useful statistical information from both the lesion center region and also

the border region. Compared with the features produced by direct global aver-

age pooling in most of the existing deep learning-based methods [35–41, 49–51],

our network generates more discriminative lesion representation for melanoma

recognition.

Melanoma and non-melanoma lesions generally have very different patholog-

ical feature representations (e.g., more border irregularity and inhomogeneous

textures for melanoma lesions). With lesion class information, the segmentation

network can generate more discriminative feature representation for detecting

different types of skin lesions from dermoscopic images. To improve skin lesion

segmentation performance for both the melanoma and non-melanoma classes,

we propose a new unit called diagnosis guided feature fusion (DGFF) that incor-

porates the lesion diagnosis information from melanoma recognition task into

skin lesion segmentation task. With the guidance of skin lesion class infor-

mation learned from the melanoma recognition task, our DGFF achieves more

discriminative feature representation for each lesion class and thus enhances

the capability of our network in segmenting the skin lesion regions from the

dermoscopic images.

Moreover, to seamlessly achieve both the aforementioned skin lesion seg-

mentation task and the melanoma recognition task within our end-to-end net-

work, we also propose a recursive mutual learning scheme that enables effective

inter-task cooperation and recurrently improves the joint leaning capability of
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the model on both tasks. The proposed recursive mutual learning scheme sys-

tematically exploits the mutual guidance signals generated between skin lesion

segmentation and melanoma recognition, and thus simultaneously boosts the

performance of both tasks. The main contributions of this paper are summa-

rized as follows:

• We propose a novel end-to-end deep framework that is able to perform

skin lesion segmentation and melanoma recognition jointly, where the clinical

knowledge is exploited and transferred with the mutual guidance between these

two tasks.

• We design a lesion-based pooling and shape extraction module to trans-

fer the lesion structure information from the skin lesion segmentation task to

the melanoma recognition task, by embedding the morphological analysis into

the feature learning process of our network, which helps generate informative

clinically interested features for melanoma recognition.

•We propose a diagnosis guided feature fusion scheme to pass the lesion class

information from the melanoma recognition task into the skin lesion segmenta-

tion task, which generates discriminative representations for different types of

skin lesions.

• We design a recursive mutual learning method that further enhances the

joint learning ability of the proposed model for both skin lesion segmentation

and melanoma recognition.

2. Related Work

Deep learning-based methods have been used for melanoma diagnosis dur-

ing recent years. Skin lesion segmentation and melanoma recognition are both

important research tasks for melanoma inspection. In this section, we review

the deep learning-based methods that address these two tasks.

Skin lesion segmentation: The work of [3] introduced a deep fully con-

volutional network with Jaccard distance for skin lesion segmentation. Bi et

al. [30] refined the skin lesion segmentation performance by integrating the mul-
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tiple embedded FCN stages. Yuan et al. [31] extended their previous work [3]

by developing a deeper network framework with a smaller kernels. Al-masni

et al. [52] proposed a full resolution convolutional networks (FrCn) to generate

the full resolution features of each pixel of the input dermoscopic images. Li

et al. [53] detected skin lesion with a dense deconvolutional network (DDN).

Tu et al. [54] achieved skin lesion segmentation by exploiting a dense-residual

network with adversarial learning. Bi et al. [55] used a deep class-specific learn-

ing framework to learn the important visual characteristics of the skin lesions of

each individual class (melanoma vs. non-melanoma). Tang et al. [56] introduced

a skin lesion segmentation approach based on the separable-Unet with stochas-

tic weight averaging. The authors in [57] applied a fully convolutional network

with dense pooling layers to delineate the boundary of the skin lesion. Wei et

al. [58] adopted an attention-based denseUnet network with adversarial train-

ing for skin lesion segmentation. The authors in [59] employed a skin lesion

segmentation framework with bi-directional dermoscopic feature learning and

multi-scale consistent decision fusion. Recent multi-path-based deep learning

architectures are also used in [33, 34] for skin lesion segmentation.

Melanoma recognition: Esteva et al. [60] used GoogleNet Inception v3

CNN architecture for melanoma recognition. Harangi [35] achieved melanoma

recognition by fusing the outputs of the classification layers of four different

deep neural network architectures. Yu et al. [21] aggregated local convolutional

features extracted from a deep residual network by Fisher vector (FV) encod-

ing strategy. The authors in [36] fused deep features from multiple pre-trained

and fine-tuned DNNs at abstraction levels. Liang et al. [37] explored a multi-

pooling attention learning for skin lesions classification. Gessert et al. [38] built

a skin lesion classification framework using CNNs with patch-based attention

and diagnosis-guided loss weighting. Sultana et al. [39] applied a deep resid-

ual network with regularised fisher framework for the melanoma recognition.

Hagerty et al. [40] combined conventional image processing with deep learning

to improve the melanoma diagnosis performance. Zhang et al. [41] exploited

an attention residual learning convolutional neural network for skin lesion clas-
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Fig. 2. The flowchart of the proposed knowledge-aware deep framework for skin lesion seg-

mentation and melanoma recognition. Our proposed knowledge-aware deep framework collab-

oratively achieves the performance enhancement of skin lesion segmentation and melanoma

recognition by recursively utilizing mutual benefits from each individual task, i.e., exploiting

lesion structure information from skin lesion segmentation task for recognition, and involving

lesion class information from melanoma recognition task for segmentation.

sification. Gu et al. [61] designed a two-step progressive transfer learning and

adversarial domain adaption for skin disease classification.

Meanwhile, there are also several efforts aiming to improve melanoma recog-

nition by integrating the localization information from skin lesion segmentation

task [22, 42, 62]. They usually focus on the feature extraction from region of

interest and remove the noise signals from background. For example, Yang et

al. [22] embedded a region average pooling (RAPooling) module into convolu-

tional neural network to reduce the distraction of the background. Yu et al. [42]

cropped the lesion patch based on the lesion segmentation network, and then ap-

plied a deep residual network for melanoma recognition. Xie et al. [63] designed

a deep framework for sequential lesion segmentation and classification. Al et

al. [62] improved the skin lesion disease classification performance by feeding

the segmented skin lesions into a convolutional network.

Different from all the aforementioned works, in this paper, we propose a novel

knowledge-aware deep framework that iteratively exploits the mutual benefits
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from both the skin lesion segmentation task and the melanoma recognition task,

and thus simultaneously enhances the performance of both tasks. By incorpo-

rating the clinical knowledge into our deep learning architecture, the reliability

of skin lesion analysis is improved. In addition, the proposed multi-stage mu-

tual learning scheme further promotes the inter-task cooperation, and increases

the joint learning capability of the model on both skin lesion segmentation and

melanoma recognition.

3. Proposed Network

In this section, we describe the proposed knowledge-aware deep framework

for joint skin lesion segmentation and melanoma recognition in detail. First, we

introduce our lesion-based pooling and shape extraction (LPSE) method that

transfers the skin lesion structure information from the skin lesion segmentation

task to the melanoma recognition task. It is capable of selectively learning the

informative clinically interested features from the lesion and its border regions.

Second, we propose a diagnosis guided feature fusion (DGFF) scheme that ex-

ploits the lesion class information from the melanoma recognition task to boost

the pixel-wise classification performance of skin lesion segmentation. More-

over, our design of recursive mutual learning further promotes the collaborative

learning ability of the network on both skin lesion segmentation and melanoma

recognition. The overall architecture of the proposed knowledge-aware deep

framework is shown in Fig. 2.

3.1. Lesion-based Pooling and Shape Extraction

To identify the skin lesion type, dermatologists usually make an inspection

by observing the detailed anatomical structures and morphological expressions

of the lesion. Deep learning-based melanoma recognition frameworks can also

be used to achieve certain level of identification of the skin lesion as melanoma

or non-melanoma, by encoding the convolutional feature information at the high

layers. Most of these frameworks use global average pooling (GAP) to generate
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Fig. 3. Example of a network structure with lesion-based pooling and shape extraction.

(a) Feature representation for skin lesion and background. (b) Global average pooling. (c)

Lesion-based pooling and shape extraction. The red contours indicate the boundary between

skin lesion and background.

the global representation for melanoma recognition [36–38, 41, 42, 63]. Fig. 3(b)

shows the process of global average pooling, where the spatial average operation

is performed over the entire feature maps of each channel at the last convolu-

tional layer. However, in dermoscopic images, some noises, such as hair, air

bubbles, and calibrator, also appear as a part of the dermoscopic image. Thus

the information from the noises is also aggregated to the feature representation

when directly using global average pooling. Moreover, the domain knowledge

(observing the morphological expressions and statistical information of the le-

sion area, especially the border region) that is often used by dermatologists for

melanoma identification, is not specifically considered when using such a global

average pooling operation. Therefore, in order to reliably recognize melanoma,

it is beneficial to consider the clinical domain knowledge during the feature

learning process of the deep network. In this paper, we propose a lesion-based

pooling and shape extraction method that explicitly exploits the important clin-

ical knowledge by embedding morphology analysis within our network, which

thus generates informative feature representation for melanoma recognition.

Inspired by the process that dermatologists inspect melanoma, we first aim

to delineate a desirable shape of skin lesion. Benefiting from the skin lesion

segmentation task that is able to encode the input image into the preliminary
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representation for lesion parsing, we formulate the lesion shape by exploiting

the information from the skin lesion segmentation process. Let Sc
p denote the

score maps generated from the pixel-wise skin lesion segmentation task, i.e.,

Sc
p = Fa(F ; θa), (1)

where p is the spatial position, and c indicates the lesion class or background

class. Fa is the linear classification function, and θa denotes the corresponding

parameters. F denote the feature maps computed from the layer before the

global average pooling layer of the baseline network, as shown in Fig. 2. Thus

the lesion existence probability can be formulated as ocp = Fb(S
c
p), where Fb is

the softmax function. Then we convert the lesion probability map (ocp) into a

binary mask, M , using a fixed threshold 0.5, such that the skin lesion region

and the background area are clearly separated. Concretely, if the probability

that a candidate pixel belongs to skin lesion is larger than the threshold 0.5, it

is classified to the skin lesion class.

As illustrated in Fig. 2, with the binary mask (M) generated from the

segmentation task, we are then able to incorporate the clinical knowledge by

analyzing the morphological expressions and statistical information from the

lesion center area and also the periphery region. Specifically, to locate the

center and periphery regions of the skin lesions, we utilize the mathematical

morphology analysis on the binary mask M :

Rl = M 	 E, (2)

Rm = M ⊕ E −M 	 E, (3)

where Rl and Rm respectively represent the center region and the periphery

region of the skin lesion. ⊕ and 	 are the morphological dilation and erosion

operations with the structuring element E. Morphological dilation adds pixels

to the boundary of the skin lesions, while morphological erosion removes pix-

els belonging to the skin lesions. The size and shape of structuring element E

decide the number of pixels added or removed from the skin lesions. By com-

bining morphological dilation and erosion into Eqs. (2) and (3), we determine
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the center and periphery regions of the skin lesions. The shape delineations ob-

tained using Eqs. (2) and (3) are illustrated as yellow and green color regions,

respectively, in Fig. 3.

For each feature map fk (spatial dimension: H ×W , k ∈ {1, 2, ...,K}) of F ,

we propose to squeeze the specific spatial information of the lesion center region

and the periphery region separately, which is achieved by extracting statistical

information from the feature map (fk) as follows:

z1k =
∑

(x,y)∈Rl

fk(x, y)/Nl,

z2k =
∑

(x,y)∈Rm

fk(x, y)/Nm,

z3k =

√ ∑
(x,y)∈Rl

(fk(x, y)− z1k)2/Nl,

z4k =

√ ∑
(x,y)∈Rm

(fk(x, y)− z2k)2/Nm,

(4)

where Nl and Nm denote the numbers of pixels in the lesion center region (Rl)

and the periphery region (Rm), respectively. z1k and z2k represent the spatial

average information of the lesion center and periphery regions. z3k and z4k mea-

sure the standard deviations of feature distribution information of the lesion

center and periphery regions. Hence, for each feature map fk of F , we generate

a lesion feature descriptor (zk) that explicitly characterizes the lesion center

and periphery regions, i.e., zk = [z1k, z
2
k, z

3
k, z

4
k]. Compared with the feature

information obtained by direct global average pooling over feature maps, our

final feature representation {zk}Kk=1 encodes informative statistical information

about the morphological expression from both the lesion center area and the

periphery region, which is much more powerful for melanoma recognition. By

feeding {zk}Kk=1 into a softmax classifier, we obtain the skin lesion classifica-

tion information {gr}Cr=1. Here, {gr}Cr=1 indicates the probability of the lesion

belonging to each lesion type. r indexes the skin lesion type (melanoma or

non-melanoma in this work), and C is the number of lesion types.
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3.2. Diagnosis Guided Feature Fusion

Skin lesion segmentation is a pixel-wise image classification task, i.e., each

pixel of a dermoscopic image is assigned with the class label of either lesion

or background. Generally, melanoma and non-melanoma lesions have differ-

ent pathological features. For example, compared with non-melanoma lesions,

melanoma cases have more inhomogeneous textures and irregular borders. Ex-

isting deep models [3, 30, 52–54, 57, 59] often do not consider the lesion type

information when learning features for skin lesion segmentation. However, if

melanoma and non-melanoma lesions are represented by the feature maps indis-

criminately, it will be difficult for the networks to produce effective segmentation

for different types of skin lesions. In this paper, we propose a diagnosis guided

feature fusion (DGFF) module to incorporate the diagnosis information gen-

erated from the melanoma recognition task into the skin lesion segmentation

task, which assists our network to produce discriminative feature representa-

tions for melanoma and non-melanoma lesions. Specifically, with the guidance

of the lesion diagnosis information, the network learns the weights of different

feature channels for melanoma and non-melanoma lesions, which thus enables

our network to adaptively select the appropriate feature representations for the

input image.

To let the diagnosis signals guide the feature learning process of skin lesion

segmentation, we first fuse the lesion class information {gr}Cr=1 with the feature

channel-wise information {hk}Kk=1 of F as:

µ = Fe[{hk}Kk=1, {gr}Cr=1], (5)

where Fe is the concatenation operation. For each feature channel fk of F , its

feature channel-wise information hk is formulated as:

hk =
∑

(x,y)∈fk

fk(x, y)/Nk, (6)

where Nk is the number of pixels in fk. We then normalize µ as follows:

µ̃ = tanh(Ft(µ; θt)), (7)
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Fig. 4. Illustration of diagnosis guided feature fusion. FDC is the fusion of diagnosis and

channel-wise signals.

where Ft is a linear mapping function to reduce the dimensionality of µ from

(K + C) to K. θt are learnable parameters. The obtained µ̃ containing diag-

nosis signals is used as the channel weight for feature learning. Concretely, we

weight each feature channel of F with the guidance of the diagnosis informa-

tion to generate the feature representation µ̃⊗ F , where ⊗ is the channel-wise

multiplication.

Therefore, with the guidance of diagnosis information that contains lesion

type information, we obtain a set of discriminative feature representations as

follows:

F
′

= Fr(µ̃⊗ F, F ), (8)

where the function Fr learns a weighted summation of µ̃ ⊗ F and F . After

that, we generate the final feature representation F
′′

by feeding F
′

to two con-

volutional layers with 3× 3 kernel size, which further refines the feature fusion

information for skin lesion segmentation. F
′′

is then used for pixel-wise skin

lesion segmentation. Fig. 4 shows the process of the proposed diagnosis guided

feature fusion, where the lesion class information obtained from the melanoma

recognition task is embedded into the skin lesion segmentation task. With the

guidance of the diagnosis signals from the melanoma recognition, our network is

able to adaptively select the discriminative feature representations for handling

segmentation on both melanoma images and non-melanoma images.
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3.3. Recursive Mutual Learning

Skin lesion segmentation can be considered as a pixel-wise image classifica-

tion process, while melanoma recognition is an image-level classification process.

Given pixel-level annotated lesion images and image-level annotated lesion im-

ages, the aim of our proposed method is to collaboratively learn skin lesion

segmentation and melanoma recognition, in which the two tasks work together

to enhance the performance of each other. To promote the mutual learning

of skin lesion segmentation and melanoma recognition, we design a recursive

mutual learning method to systematically exploit mutual guidance information

between these two tasks.

Inspired by the success of recursive network design [64, 65], we update the

results of skin lesion segmentation and melanoma recognition by incorporating

the information generated at the previous stages of the network. Specifically,

in our method, the information generated at the previous stage serves as the

input for the next stage of our network. This means our proposed architecture

iteratively optimizes the two tasks during mutual learning, i.e., the refined lesion

segmentation and melanoma recognition are alternatively fed into each other to

progressively improve the network’s representation capability. For example, let

F
′′

n−1 be the input feature information at the (n − 1)th stage (as shown in

Fig. 2), we enhance the representation ability of Fn by designing the recursive

counterparts:

F
′′

n = Fq(F
′′

n−1), (9)

where F
′′

n represents the output feature information after the recursive coun-

terpart. Fq is the mutual learning process within the recursive counterpart.

Our recursive mutual learning seamlessly integrates skin lesion segmentation

and melanoma recognition into a unified framework. It deepens the learning

level of the network and benefits the collaborative integration of skin lesion

segmentation and melanoma recognition. To effectively train our network with

recursive mutual learning, we first train the skin lesion segmentation part until
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the segmentation performance is accurate and stable. This process ensures a

good initialization of the network, which further enhances the recursive mutual

learning of the network on skin lesion segmentation and melanoma recognition.

Then we train the skin lesion segmentation and melanoma recognition collabo-

ratively, so that the whole network can converge efficiently for both tasks.

4. Experimental Evaluation

4.1. Materials

We evaluate our proposed framework on two public benchmark datasets

(ISBI 2016 [66] and ISBI 2017 [67]). They are provided by the International Skin

Imaging Collaboration (ISIC) for the International Symposium on Biomedical

Imaging challenges named “Skin Lesion Analysis toward Melanoma Detection”.

ISBI 2016 dataset includes a training set with 900 dermoscopic images (727

non-melanoma cases and 173 melanoma cases), and a testing set with 379 der-

moscopic images (304 non-melanoma cases and 75 melanoma cases). ISBI 2017

dataset is an extension of the ISBI 2016 dataset, which contains three different

sets for training, validation and test. Training set comprises 2000 dermoscopic

images, i.e., 374 melanoma cases, 254 seborrheic keratosis cases, and 1372 be-

nign nevi cases. Validation set contains 150 annotated dermoscopic images, i.e.,

30 melanoma cases, 42 seborrheic keratosis cases, and 78 benign nevi cases. Test

set consists of 600 dermoscopic images, i.e., 117 melanoma cases, 90 seborrheic

keratosis cases, and 393 benign nevi cases.

4.2. Evaluation Criteria

Skin lesion segmentation: We adopt four different metrics for skin lesion

segmentation evaluation, including jaccard index (JA), dice coefficient (DI), seg-

mentation accuracy (ACs) and geometric mean (GE). JA and DI are two metrics

that estimate the similarity between the ground truths and the segmented skin

lesions: JA = TP/(TP +FN +FP ) and DI = 2TP/(2TP +FN +FP ), where

TP and TN are the number of pixels correctly segmented skin lesion and back-

ground pixels; FN and FP are the number of pixels incorrectly segmented
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background and lesion pixels. ACs is the ratio of the number of correctly seg-

mented lesion and background pixels to the total number of pixels. GE is the

average value of sensitivity and specificity of the segmentation performance.

Jaccard index (JA) was taken as the most important criterion for skin lesion

segmentation comparison in ISBI 2016 and 2017 challenges.

Melanoma recognition: To evaluate the melanoma recognition perfor-

mance, we employ four measurements including the melanoma recognition ac-

curacy (ACr), sensitivity (SE), specificity (SP) and the area under the receiver

operating characteristic curve (AUC). ACr is the ratio of the number of correctly

recognized melanoma and non-melanoma cases to the total number of lesion

cases. SE represents the ratio of the number of correctly recognized melanoma

to the total number of melanoma cases. SP denotes the ratio of the number of

correctly recognized non-melanoma to the total number of non-melanoma cases.

The receiver operating characteristic (ROC) curve is plotted with true positive

fraction (sensitivity) versus false positive fraction (1-specificity) by varying the

threshold on the probability map. AUC measures the area under the ROC curve.

ISBI 2016 and 2017 challenges took AUC as the most important criterion for

melanoma recognition comparison.

4.3. Implementation Details

We use the ResNet101 model [43] (pre-trained on ImageNet [68]) as our

baseline network. To optimize the skin lesion segmentation and melanoma

recognition tasks, we use both the pixel-level annotated data and the image-

level annotated data for model training. Two cross-entropy losses Lseg and

Lcls are adopted to minimize the distance between the output of each task and

the corresponding ground truth. The total loss is a linear combination of the

skin lesion segmentation and melanoma recognition: Loss=Lseg+βLcls. Here,

β is the parameter to control this multi-task loss, which is empirically set to be

0.3 in this work. The proposed network is trained end-to-end using standard

stochastic gradient descent with batch size 8. For skin lesion segmentation, a

deconvolutional layer is exploited to increase the size of score maps to that of
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the input images [69]. We denote the feature generation process (before global

average pooling ) of the baseline network as five blocks, i.e., Block 1, Block2,

. . . , Block 5, where each Block produces the feature maps with different resolu-

tions. For melanoma recognition task, the features are learned from the cascade

stages of the network. Since features from shallow layers have more appearance

information that help the skin lesion segmentation, we apply the skip layers to

extract multiscale information from the shallow layers to increase the skin le-

sion segmentation performance as [70]. Specifically, we exploit the FCN-8s [70]

architecture where the outputs from three Blocks (Block 3, Block 4, Block 5)

are up-sampled and fused with features from cascade stages to generate the

final feature maps for skin lesion segmentation. For morphological analysis in

Eqs. (2) and (3), we create a disk-shaped structuring element E, whose radius

is set to be 1/16 of the height of binary mask M . Following [71, 72], we first set

the initial learning rate to 10−3 and then update it by the “poly” learning rate

policy. For batch processing, each image is resized to have maximum extent of

512 pixels.

As ISBI 2016 dataset only provides training and test sets for skin lesion

segmentation and melanoma recognition, we randomly pick up 800 images from

training set for training and the rest 100 images from training set for validation.

For ISBI 2017 dataset, training and validation are performed on its provided

training and validation sets. We set the numbers of iterations for ISBI 2016 and

ISBI 2017 datasets to 30k and 60k respectively. Data augmentation strategies,

like random flipping and cropping, random scaling in a range of [0.8, 1.2], are

applied to further enlarge the training dataset.

4.4. Ablation Studies

4.4.1. Evaluation of Each Component in Our Framework

To investigate the effectiveness of our approach on skin lesion segmentation

and melanoma recognition, we conduct comprehensive studies on the challeng-

ing ISBI 2016 and ISBI 2017 datasets. Tables 1 and 2 show the performance of

our proposed method on skin lesion segmentation and melanoma recognition re-
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Table 1. Performance of skin lesion segmentation on ISBI 2016 and ISBI 2017 datasets (%)

Dataset Method JA ACs DI GM

Baseline 84.5 95.6 90.8 93.8
ISBI 2016 Baseline+DGFF 87.4 96.4 92.8 95.1

Proposed method 89.1 96.9 93.9 95.5

Baseline 75.1 92.7 83.5 86.4
ISBI 2017 Baseline+DGFF 79.5 94.2 87.4 88.4

Proposed method 82.4 95.2 89.4 91.0

Table 2. Performance of melanoma recognition on ISBI 2016 and ISBI 2017 datasets (%)

Dataset Method AUC ACr SE SP

Baseline 83.6 83.6 57.3 83.6
ISBI 2016 Baseline+LPSE 85.3 85.5 41.3 96.4

Proposed method 87.7 87.3 52.0 96.1

Baseline 82.2 83.8 42.7 93.8
ISBI 2017 Baseline+LPSE 87.4 86.9 58.2 93.5

Proposed method 89.1 88.2 63.3 94.2

spectively. Compared with the baseline model for skin lesion segmentation, the

model integrating the lesion class information from the melanoma recognition

task enhances the skin lesion segmentation performance, i.e., improving the JA

by 2.9%-4.4% on ISBI 2016 and ISBI 2017 datasets. In contrast to the base-

line model for melanoma recognition, the model embedding the lesion structure

information from the skin lesion segmentation task achieves a significant perfor-

mance increase of melanoma recognition, i.e., resulting in the 1.7%-5.2% of AUC

improvement on ISBI 2016 and ISBI 2017 datasets. By learning the mutual in-

formation from both skin lesion segmentation task and melanoma recognition

task in a recursive manner, the proposed method in 3 recursive stages further

boosts the skin lesion segmentation and melanoma recognition performance on

ISBI 2016 and ISBI 2017 datasets consistently. For example, we achieve 1.7%-

2.9% of JA enhancement for skin lesion segmentation, and 1.7%-2.4% of AUC

enhancement for melanoma recognition on ISBI 2016 and ISBI 2017 datasets

respectively.

We also qualitatively show the performance of our proposed framework on
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Fig. 5. Qualitative evaluation of skin lesion segmentation and melanoma recognition on

ISBI 2016 dataset. First row: skin lesion segmentation results of ground truth (red contour),

baseline segmented model (blue contour) and our proposed framework (green contour) re-

spectively. Second row: melanoma recognition results of ground truth (red font), baseline

recognition model (blue font) and our proposed framework (green font) respectively.

skin lesion segmentation and melanoma recognition in Figs. 5 and 6. We display

some challenging skin lesion cases in ISBI 2016 and ISBI 2017 datasets, like the

lesion with different appearance features (e.g., color, shape, texture), the lesion

with low contrast, and lesion images with some noises. Compared with the

baseline models that segment skin lesion and recognize melanoma separately, our

proposed framework can simultaneously achieve skin lesion segmentation and

melanoma recognition. For skin lesion segmentation, the proposed framework

compared with the baseline segmentation, produces better visualization of skin

lesion segmentation including more accurate delineation of skin lesions with

different shape, color and texture characteristic. For melanoma recognition, the

proposed framework compared with the baseline recognition, achieves better

melanoma detection performance. For example, the last columns in Figs. 5 and

6 show the challenging melanoma cases. The baseline model for recognition is

not able to classify those types of skin lesions as melanoma, while our proposed

framework correctly classifies them to be melanoma.

4.4.2. Evaluation of Different Numbers of Cascade Stages

To evaluate the performance of different numbers of cascade stages on re-

cursive mutual learning process, we design the experiments of skin lesion seg-
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Fig. 6. Qualitative evaluation of skin lesion segmentation and melanoma recognition on

ISBI 2017 dataset. First row: skin lesion segmentation results of ground truth (red contour),

baseline segmented model (blue contour) and our proposed framework (green contour) re-

spectively. Second row: melanoma recognition results of ground truth (red font), baseline

recognition model (blue font) and our proposed framework (green font) respectively.

mentation and melanoma recognition at multiple learning stages. Since ISBI

2017 dataset has more challenging melanoma and non-melanoma cases, we take

ISBI 2017 dataset as an illustration for the evaluation of different numbers of

cascade stages. Table 3 shows the results of different numbers of cascade stages

for skin lesion segmentation and melanoma recognition. From Table 3, we find

the proposed framework improves the performance of skin lesion segmentation

and melanoma recognition progressively with the increase of the numbers of

cascade stages. This further exemplifies the consistent effectiveness of the pro-

posed method on skin lesion diagnosis. When the cascade stage number is larger

than 3, the performance of skin lesion segmentation and melanoma recognition

is slightly enhanced. Considering the computation time and GPU memory, we

take the performance of the proposed network with three cascade stages as the

example for the following analysis and comparison.

We also visualize the saliency maps of features from three different cascade

stages by GradCAM [73], as shown in Fig. 7. It can be observed that our

proposed network can learn to focus on the discriminative parts of skin lesions.

For some challenging dermoscopic images with noises (e.g., hairs and rulers)

and low contrast, the proposed network also shows the promising localization

ability for the skin lesions. Furthermore, with the increase of the cascade stage
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Table 3. Performance of different cascade numbers of the proposed network on ISBI 2017

dataset (%)

Number
Skin lesion segmentation Melanoma recognition
JA ACs DI GM AUC ACr SE SP

1 79.5 94.2 87.4 88.4 87.4 86.9 58.2 93.5
2 81.1 94.8 88.4 89.8 88.0 87.0 51.3 95.6
3 82.4 95.2 89.4 91.0 89.1 88.2 63.3 94.2
4 82.7 95.2 89.6 91.9 89.0 88.0 62.4 94.2
5 82.9 95.3 89.8 92.1 89.2 87.3 59.0 94.1

number, our network concentrates more on the specifically informative parts of

skin lesions, which displays the effectiveness of the recursive learning on skin

lesion analysis. In addition, the detailed visualization in Fig. 7 also makes the

learning process of our proposed network more explainable.

Fig. 7. Visualization examples of saliency images. First and fifth columns: original skin

lesion images. Second to fourth columns: the saliency maps of features of original images

(first column) at the 1st, 2nd and 3rd cascade stages, respectively. Sixth to eighth columns:

the saliency maps of features of original images (fifth column) at the 1st, 2nd and 3rd cascade

stages, respectively.

4.5. Comparison with Other Methods

We compare our proposed framework with other state-of-art methods on

skin lesion segmentation and melanoma recognition. Tables 4 and 5 shows the

performance comparison of skin lesion segmentation, including the top 5 seg-

mentation results on ISBI 2016 and 2017 skin lesion segmentation challenge.

Compared with the other methods on skin lesion segmentation, the proposed
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Table 4. Performance comparison of skin lesion segmentation on ISBI 2016 dataset (%)

Method
Melanoma Non-melanoma Overall
JA ACs JA ACs JA ACs

Team-EXB [66] 82.9 93.2 84.6 95.8 84.3 95.3
Team-CUMED [42] 82.9 93.2 83.0 95.3 82.9 94.9
Team-Rahman [66] 82.7 93.2 82.0 95.7 82.2 95.2
Team-SFU [66] 81.9 92.2 80.9 94.9 81.1 94.4
Team-TMU [66] 82.3 93.4 80.7 94.9 81.0 94.6

Yuan et al. [3] N.A N.A N.A N.A 84.7 95.5
Yuan et al. [31] N.A N.A N.A N.A 84.9 95.7
Li et al. [53] N.A N.A N.A N.A 87.0 95.9
Bi et al. [30] 85.8 94.7 84.3 95.7 84.6 95.5
Bi et al. [55] 85.6 94.3 85.6 96.2 85.9 95.8
Wang et al. [59] 88.4 95.9 88.1 97.0 88.1 96.7
Proposed method 89.3 96.0 89.0 97.2 89.1 96.9

method achieves the highest skin lesion segmentation performance, i.e., produc-

ing the best JA for all skin lesion cases in ISBI 2016 and 2017 datasets. For

specific lesion cases like melanoma and non-melanoma, the proposed method

also generates the better skin lesion segmentation results consistently for differ-

ent types of skin lesions.

In Table 6, we compare the performance of the proposed framework with

different deep learning methods on melanoma recognition, including the top 5

melanoma recognition results on ISBI 2016 skin lesion classification challenge. In

contrast to other melanoma recognition methods, the proposed knowledge-aware

deep framework provides a noticeable improvement of the melanoma recogni-

tion, i.e., increasing the AUC by 2.5% from the best reported result [21]. Table

7 shows the comparison of different deep learning methods on melanoma recog-

nition for ISBI 2017 dataset. Note that some results reported in the literature

are produced by training the networks using many additional external skin le-

sion images to enhance the performance, like the top five techniques in [67], and

the methods in [41, 63]. For example, AUC in [41] is increased from 85.9% as

shown in Table 7 to 87.5% by using the additional training data. These results

are not comparable to ours, since they use additional training samples not spec-
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Table 5. Performance comparison of skin lesion segmentation on ISBI 2017 dataset (%)

Method
Melanoma Non-Melanoma Overall
JA ACs JA ACs JA ACs

Team-Yuan [31] 71.2 90.0 77.8 94.2 76.5 93.4
Team-Berseth [67] 68.8 89.0 78.0 94.2 76.2 93.2
Team-popleyi [67] 69.3 89.6 77.6 94.3 76.0 93.4
Team-Ahn [67] 69.1 89.6 77.5 94.3 75.8 93.4
Team-RECOD [67] 68.8 89.4 77.0 94.0 75.4 93.1

Li et al. [53] N.A N.A N.A N.A 76.5 93.9
Tu et al. [54] N.A N.A N.A N.A 76.8 94.5
Bi et al. [55] 72.2 90.1 79.1 95.1 77.7 94.1
Wang et al. [59] 77.3 92.0 82.5 95.3 81.5 94.7
Xie et al. [63] N.A N.A N.A N.A 80.4 94.7
Proposed method 77.4 92.2 83.7 95.9 82.4 95.2

ified to train their networks. To make our results reproducible by others and

comparable with others, our proposed framework is trained only by the standard

training samples that are from the training set (2000 images) of ISBI 2017 chal-

lenge without any other external training data. From Table 7, we can observe

that the proposed method achieves the best AUC, i.e., 2.0% higher than the

best reported result [37]. In addition, the high melanoma recognition with less

training data achieved by the proposed framework also provides a potential way

to extend the proposed framework to other medical image analysis application

with small training sample size.

In addition, the method in [59] is our previous work for skin lesion segmen-

tation. Main differences between the method in [59] and our new proposed

network are concluded as follows: first, our new proposed network presents a

novel collaborative learning strategy for skin lesion segmentation and melanoma

recognition, where the benefits from both tasks are transferred with the mutual

guidance to boost the performance of the skin lesion analysis. However, the pre-

vious work in [59] didn’t use this collaborative learning process for skin lesion

segmentation. Second, our new proposed method achieves an explainable diag-

nosis of the skin lesions by explicitly utilizing the clinical knowledge within deep

feature learning process, while the previous work in [59] only learns the lesion
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Table 6. Performance comparison of melanoma recognition on ISBI 2016 dataset (%)

Method AUC ACr SE SP

Team-BFTB [66] 82.6 83.4 32.0 96.1
Team-GTDL [66] 80.2 81.3 57.3 87.2
Team-GTDL2 [66] 80.0 68.1 78.7 65.5
Team-GTDL1 [66] 81.3 81.5 46.7 90.1
Team-CUMED [66] 80.4 85.5 50.7 94.1

Al et al. [62] 76.6 81.2 81.8 71.4
Yu et al. [21] 85.2 86.8 N.A. N.A.
Yu et al. [42] 80.4 85.5 50.7 94.1
Sultana et al. [39] 83.5 86.1 56.0 92.4
Wang et al. [59] 84.2 84.7 46.7 94.1
Proposed method 87.7 87.3 52.0 96.1

feature representation implicitly through the deep framework. Third, we design

a recursive mutual learning to enhance the joint learning ability for skin lesion

segmentation and melanoma recognition, while the previous work in [59] applies

a straightforward learning manner to segment the skin lesion. Compared with

the method in [59] for skin lesion segmentation, our proposed network improves

JA by 0.9%-1% on two publicly available datasets consistently (as shown in

Tables 4-5), which exemplifies the effectiveness of incorporating lesion diagnosis

knowledge into skin lesion segmentation. Furthermore, we also test the work

in [59] for melanoma recognition by utilizing the features from the top convo-

lution layers of the network. Compared with the work in [59] for melanoma

recognition, our proposed network enhances AUC by 3.5%-3.9% (as shown in

Tables 6-7), which shows the benefit of transferring the skin lesion segmentation

information to the melanoma recognition.

4.6. Evaluation on ISIC archive dataset

ISIC archive dataset1 supports more skin lesion samples with melanoma di-

agnosis and lesion segmentation information. We use 13779 skin lesion images

to evaluate the performance of our proposed network on skin lesion segmenta-

1https://www.isic-archive.com/
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Table 7. Performance comparison of melanoma recognition without external training data

on ISBI 2017 dataset (%)

Method AUC ACr SE SP

Zhang et al. [41] 85.9 83.7 59.0 89.6
Yang et al. [22] 84.2 83.0 60.7 88.4
Sultana et al. [39] 78.9 83.2 52.9 90.5
Al et al. [62] 81.6 N.A. 75.3 80.6
Harangi [35] 85.1 85.2 40.2 71.9
Liang et al. [37] 87.1 86.8 57.0 98.0
Wang et al. [59] 85.2 85.8 53.9 93.5
Proposed method 89.1 88.2 63.3 94.2

For fair comparison, only results from the same training data are recorded.

Table 8. Skin lesion segmentation and melanoma recognition on ISIC archive dataset (%)

Task Method JA ACs DI GM

Skin lesion Baseline 73.4 96.1 84.7 91.8
segmentation Proposed method 79.5 97.0 86.0 92.4

Task Method AUC ACr SE SP

Melanoma Baseline 92.7 92.9 40.0 97.8
recognition Proposed method 95.5 93.4 55.4 97.0

tion and melanoma recognition. Here, we take 80% of those images as training

set, 10% and 10% of them as validation and test sets. Table 8 shows the per-

formance of our proposed network on ISIC archive dataset. Compared with

the performance of the baseline model, our proposed network improves JA by

6.1% for skin lesion segmentation, and AUC by 2.8% for melanoma recognition,

which justifies the validity and robustness of the proposed network on skin lesion

analysis.

4.7. Result Summary

Skin lesion segmentation and melanoma recognition are two most critical

functions for the automatic diagnosis of melanoma. We propose a knowledge-

aware deep framework that achieves state-of-the-art performance for skin lesion

segmentation and melanoma recognition on two publicly available skin lesion

datasets. Experimental results in Tables 1 and 2, Figs. 5 and 6, show the ef-
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(a) (b)

Melanoma Melanoma Melanoma Non-melanoma

Fig. 8. Examples of some challenging cases for skin lesion segmentation and melanoma

recognition that need further investigation. (a) a challenging case for skin lesion segmentation.

(b) a challenging case for melanoma recognition. Red and green contours denote the skin lesion

segmentation results of ground truths and the proposed method, while red and green fonts

represent the melanoma recognition results of ground truths and the proposed method.

fectiveness of the proposed method on skin lesion segmentation and melanoma

recognition respectively. We attribute the melanoma recognition performance

enhancement to the network embedded with morphological analysis that incor-

porates the skin lesion structure information from skin lesion segmentation into

the melanoma recognition. Thus, the network have capability of learning in-

formative feature containing the useful clinical statistical information of both

lesion and its border regions to identify the challenging melanoma. In addition,

the improvement of the skin lesion segmentation comes from the integration

of the lesion class information from melanoma recognition into skin lesion seg-

mentation, which assists the network to select the discriminative lesion features

for different types of lesion cases (i.e., melanoma and non-melanoma) for skin

lesion segmentation. Tables 4-7 show the comparison of our proposed frame-

work with other methods on skin lesion segmentation and melanoma recognition.

Those results clearly show the efficiency of our knowledge-aware deep framework

that exploits mutual benefits from both skin lesion segmentation and melanoma

recognition to jointly improve each task performance.

Though the proposed framework have achieved promising performance for
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skin lesion segmentation and melanoma recognition, there are still some dermo-

scopic cases that need to be further investigated for both tasks. Fig. 8 (a) shows

one failure case for skin lesion segmentation, where the skin lesion has an area

of redness on the surrounding of lesion center. Fig. 8 (b) shows the failure case

for melanoma recognition, where some black spots appear in the dermoscopic

image. Our proposed framework is insufficient to segment dermocopic image as

Fig. 8 (a) and recognize melanoma as Fig. 8 (b), because the both skin lesion

cases are a minority of lesion types found in ISBI 2016 and ISBI 2017 datasets.

5. Conclusion

In this paper, we propose to integrate dermatologists clinical knowledge into

the learning process of a knowledge-aware deep framework for collaborative

skin lesion segmentation and melanoma recognition. In particular, we propose

a lesion-based pooling and shape extraction method to transfer the lesion struc-

ture information from the skin lesion segmentation into the melanoma recogni-

tion. It embeds the morphological operation within the deep network, which as-

sists the network to learn more informative feature representation for melanoma

recognition. We also propose a diagnosis guided feature fusion to pass the lesion

class information from the melanoma recognition into the skin lesion segmenta-

tion, which enhances the performance of our network in detecting different types

of skin lesions from dermoscopic images. Furthermore, a recursive mutual learn-

ing mechanism is designed to boost the joint leaning capability of the network

on skin lesion segmentation and melanoma recognition. Experimental results

have shown the effectiveness of the proposed approach on skin lesion segmen-

tation and melanoma recognition, which achieves state-of-the-art performance

on two publicly available skin lesion datasets. The demonstrated effectiveness

of the proposed network on skin lesion diagnosis supports an advanced way of

the deep learning in real clinic application for medical image analysis. Our fu-

ture work will focus on closer collaboration with the clinical doctors to further

enhance the computer-aided disease diagnosis of skin lesion.
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