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Abstract

One of the successful approaches in semi-supervised learning is based on the consis-

tency regularization. Typically, a student model is trained to be consistent with teacher

prediction for the inputs under different perturbations. To be successful, the prediction

targets given by teacher should have good quality, otherwise the student can be misled

by teacher. Unfortunately, existing methods do not assess the quality of the teacher tar-

gets. In this paper, we propose a novel Certainty-driven Consistency Loss (CCL) that

exploits the predictive uncertainty in the consistency loss to let the student dynamically

learn from reliable targets. Specifically, we propose two approaches, i.e. Filtering CCL

and Temperature CCL to either filter out uncertain predictions or pay less attention on

them in the consistency regularization. We further introduce a novel decoupled frame-

work to encourage model difference. Experimental results on SVHN, CIFAR-10, and

CIFAR-100 demonstrate the advantages of our method over a few existing methods.

Keywords: semi-supervised learning, certainty-driven consistency loss, uncertainty

estimation, decoupled student-teacher, reliable targets, noisy labels

1. Introduction

Deep neural networks achieve tremendous success in many visual tasks such as

image recognition [1] and object detection [2]. However, training networks requires
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large-scale labeled datasets [3, 4] which are usually expensive and difficult to collect.

Semi-supervised learning (SSL) aims to boost the model performance by leveraging a

limited amount of labeled data and a large amount of unlabeled data [5, 6].

Most of the recent methods follow some noise regularization approaches, e.g. data

augmentation and dropout, to encourage the model to give similar predictions under

random perturbations. The network is trained using a standard supervised classifica-

tion loss and an unsupervised consistency loss. Pseudo ensembles [7] and Γ-model in

the ladder network [8] produce a noisy student model and clean teacher model, and

train the student to predict consistently with the ”soft targets” (i.e. softmax probabil-

ity distributions) generated by the teacher. Following this student-teacher framework,

Π model [9] simplifies the network by making both student and teacher model noisy.

Recent works focus on designing a better teacher model. Temporal ensemble [9] and

mean teacher (MT) [10] generate a better teacher by prediction ensemble and model

weights ensemble, respectively. FSWA [11] proposes fast stochastic weight averaging

to obtain a stronger ensemble teacher faster.

One common issue of the perturbation-based SSL approach is a problem called

confirmation bias [10], which means the model is prone to confirm the previous pre-

dictions and resist new changes. If the unsupervised consistency loss outweighs the

supervised classification loss, the model cannot learn any meaningful knowledge, and

hence can get stuck in a degenerated solution. Most existing methods [9, 12, 10, 13]

address this issue by employing a weighting function that gives a ramp-up weight (i.e.

a gradually increasing weight) for the consistency loss. This ramp-up loss weight can

let the model learn more from supervised loss early in the training, and then gradually

learn from the unsupervised consistency regularization.

However, we consider that solely using a ramp-up weight is still ineffective to

solve the confirmation bias. Even though the ramp-up weight is used, the unsuper-

vised consistency loss is applied to all training samples blindly, ignoring the fact that

not all training data provide meaningful and reliable information. In the context of the

student-teacher framework, it means the student blindly learns from all noisy targets,

regardless of the quality of the teacher’s targets. For labeled data, the supervised classi-

fication loss probably can correct some of the mistakes in the successive training steps.
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However, for the majority of unlabeled data, they can still remain in the previously

enforced wrong predictions, since no ground-truth class labels are available to correct

their predictions.

In this paper, our goal is to let the student gradually learn from meaningful and

reliable targets from the teacher, rather than some noisy misleading information. We

propose a Certainty-driven Consistency Loss (CCL) to exploit uncertainty information

when enforcing the consistency between perturbated predictions given by the student

and the teacher. In general, there are two ways to tackle uncertain targets: hard filtering,

and soft weighting/attention. Our basic idea is that if the teacher is uncertain about its

prediction of a training sample, the teacher should either filters it out from the student’s

learning list, or let the student learn with a lesser effort from it. We present two ap-

proaches to utilize CCL: Filtering CCL and Temperature CCL, to enforce consistency

in either a hard or a soft way.

Principally, our method lets the student dynamically learn from more meaningful

and reliable targets. Our method adapts a progressive learning strategy [14] to gradually

learn from certain targets to less certain targets in the consistency regularization. Unlike

existing SSL methods that blindly enforce consistency loss on all unlabeled data, our

method enforces consistency gradually from high certainty regions to low certainty

regions through our hard filtering and soft temperature consistency regularization.

Our method is also in conformity to the smoothness assumption [5], that is: ”If two

points x1, x2 in a high-density region are close, then so should be the corresponding

outputs y1, y2”. This assumption implies that points in a high-density region should

generate more consistent predictions than those in a low-density region. Inspired by

this implication, our key idea is to enhance stronger consistency regularization in the

high-density regions than in the low-density regions. We consider that it is better to en-

hance the consistency loss gradually from high-density regions to low-density regions,

with higher learning weights in high-density regions, rather than enhancing the consis-

tency in all regions equally. To achieve this, our method first estimates the predictive

certainty of each data, which has positive correlation with the data local density. The

reason is that if a data point lies in a high-density region (e.g. cluster center), the pre-

dictive certainty should be high. On the other hand, if a data point lies in a low-density
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region (e.g. cluster boundary), the predictive certainty should be low. Then, based

on the certainty estimation, we propose two approaches in both hard and soft ways to

achieve the attentive consistency regularization. Specifically, our Filtering CCL adopts

a curriculum strategy, where we gradually learn from certain unlabeled predictions to

less certain ones. Our Temperature CCL scales down the loss magnitude of uncertain

predictions, and hence the erroneous gradients coming from the unreliable unlabeled

data can be reduced.

To let the teacher provide additional useful information for the student, we further

propose a decoupled consistency in a multi-teacher framework, where the consistency

regularization is enforced between decoupled students and teachers with different net-

work initialization and training conditions. We argue that the strongly coupled student-

teacher in the existing perturbation-based methods [9, 10] can limit the capacity of the

model, due to the high similarity between them. We introduce a framework to decouple

the students and teachers, by forming them in a closed circle. In this way, the teacher

does not teach the student that generated it anymore, but teaches the next student in a

circle manner.

Our contribution is four-fold: (1) We present a certainty-driven consistency loss

(CCL) that exploits the uncertainty of the model predictions for the consistency reg-

ularization, which has not been explored before in semi-supervised learning. (2) We

propose two novel approaches Filtering CCL and Temperature CCL: Filtering CCL

enforces consistency on the reliable targets by filtering out uncertain predictions; Tem-

perature CCL reduces the magnitudes of gradients on the uncertain targets and lets

the model pay more attention on learning certain ones. (3) We introduce a combined

method, FT-CCL, that utilizes both approaches and shows robustness to noisy labels.

Since the noisy labels can be ignored in both hard and soft way, and thus the model can

benefit from the most reliable predictions. Extensive experiments demonstrate the ef-

fectiveness of our proposed method. (4) We introduce a decoupled multi-teacher frame-

work to encourage the teacher provide additional new knowledge for the student. The

decoupled consistency and multi-teacher framework further boosts the performance.
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2. Related work

Semi-supervised learning. Self-training is one of the earliest methods which incre-

mentally adds unlabeled data with self-predicted labels with high confidence [15, 16].

Co-training [17, 18] trains multi-view models for the classification task by using dis-

joint splits or views of the training data or other advanced techniques (e.g. image

region division [19]). Due to the efficiency and simpleness, co-training framework

has been used in many application tasks besides image classification, such as image

segmentation [20, 21], detection [22], tracking [23], and knowledge distillation [24].

Recently, Qiao et al. propose deep Co-Training [25] which adds a consistency con-

straint on the adversarial examples between multi-view independent models. Both of

our decoupled multi-teacher framework and deep Co-Training [25] follow the general

co-training architecture [17] that trains multiple independent models in parallel. How-

ever, the goals and mechanisms used to encourage model diversity are different. Deep

co-training [25] encourages model difference among multiple student models using ad-

versarial examples. In our decoupled multi-teacher framework, our goal is to encour-

age the difference between the student and teacher. We decouple the student from the

self-generated exponential moving average (EMA) teacher by letting it learn from an-

other teacher, which is generated by the next student in the circle. Meanwhile, different

student models are trained with different network initialization, random perturbations,

and network dropout. Hence, the multiple students can provide different information

about each data. One advantage of our decoupled student-teacher framework over [25]

and existing co-training methods is that, for each view, the single model performance

is increased by the “shadow” EMA teacher model with zero learning costs.

Several recently proposed methods are based on training the model predictions to

be consistent to perturbations [12, 10, 13, 11]. Pseudo ensembles [7] and Γ-model in

the ladder network [8] produce a noisy student and clean teacher, and trains the stu-

dent model to predict the target given by the teacher. Following the same paradigm, Π

model [9] applies noise to both the student and the teacher, then penalizes inconsistent

predictions. Temporal ensemble [9] penalizes the inconsistency between the network

predictions and the temporally ensembled network predictions, and maintains an ex-
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ponential moving average (EMA) prediction for each training data. Mean teacher [10]

utilizes EMA on the model weights to maintain an averaged teacher model for gener-

ating targets for the student to learn from. VAT [12] utilizes virtual adversarial training

method to select the perturbations in the direction sensitive to the prediction of the clas-

sifier. Athiwaratkun et al. [11] modify the stochastic weight averaging (SWA) [26] to

obtain a stronger ensemble teacher faster. SEGCN [27] combines graph convolutional

network (GCN) with mean teacher [10], and builds a student graph and a teacher graph

on top of the student and teacher model, respectively to model graph-structured data.

Deep label propagation [28] combines mean teacher with transductive label propaga-

tion to infer pseudo labels for unlabeled data. However, these methods do not assess

the quality of the targets, which can be unreliable for the student to learn from. In

contrast, our approach leverages the uncertainty of perturbated predictions to provide

reliable consistency constraints.

The recently proposed Fixmatch [29] and DS [30] share some merits with our

method in terms of selecting the reliable or stable pseudo labels for the unlabeled data.

However, our approach has advantage over these methods in the respect of selection

indicator, and the attention mechanism among unlabeled data. Firstly, both Fixmatch

and DS use the confidence score of the argmax class as the selection indicator. How-

ever, it has been shown that the deep neural network tends to be over-confident [31, 32]

(i.e. a model can be uncertain in its predictions even with a high softmax output),

making the predicted confidence score non-linear to the test accuracy. In contrast, our

method uses Bayesian uncertainty, specifically Monte Carlo dropout [31, 33] to esti-

mate the uncertainty of the unlabeled data predictions. We propose four uncertainty

metrics, e.g. predictive variance, over multiple predictions under random input pertur-

bations and network dropout, and hence, our method measures both data uncertainty

and model uncertainty [34]. The experimental results show that our proposed uncer-

tainty estimation metrics are proportional to the error rate, and hence can be used as an

error estimate. Furthermore, both Fixmatch and DS rely on hard thresholding to filter

out unreliable and unstable pseudo labels, without considering the relative uncertainty

degree among them. In contrast, besides hard filtering, in our proposed Temperature

CCL, we use soft attention to control the loss contributions of different unlabeled data
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dynamically during the training phase according to their respective uncertainty levels.

Uncertainty modelling. A few uncertainty modelling methods have been proposed

based on Bayesian neural network [35, 31, 36, 37]. One of them is Monte Carlo

dropout proposed by [31, 33]. They theoretically prove that dropout at test time can

be used to approximate a model’s uncertainty. However, this uncertainty is only used

during testing, which does not influence the training process. We extend this uncer-

tainty modelling approach into training to evaluate the uncertainty of the predictions in

SSL. Furthermore, our uncertainty also takes the local smoothness into consideration,

in order to model both data uncertainty and model uncertainty [34].

Curriculum learning and active learning. Our method adapts progressive learning

strategy and an uncertainty indicator to let the student gradually learn from certain

targets to less certain ones, which relate to curriculum learning [14] and active learning

[38]. Bengio et al. [14] first propose a progressive learning paradigm which organizes

the training data from easiest to hardest. In active learning [38, 39], similar indicators

have been used to guide decisions about which data point to label next. In general, we

all rely on some indicators to evaluate the training data. However, to our knowledge,

applying this indicator in terms of the consistency regularization to SSL is new, and

has not been explored before.

Knowledge distillation. Hinton et al. [40] apply the concept of temperature in model

distillation, which aims to distill the knowledge from a large pre-trained network to a

much smaller network without lossing much of the generalization ability. The temper-

ature, a hyperparameter inside softmax function, is used to soften the probability distri-

butions of softmax, which encourages the small model to learn more ”dark knowledge”

distributions from the large model, rather than the hard label. However, the method

needs to set the value of temperature empirically, which is shared by all training sam-

ples. Our method can automatically define the temperature of each training sample

according to its uncertainty, and use its own temperature to decide how much influence

it has on training the student model.
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3. Our Approach

One common drawback of the existing perturbation-based methods is that they

regularize the outputs to be smooth regardless of the quality of the targets. We address

this drawback by estimating the uncertainty of the targets, and then let the student learn

more from certain targets, and less from uncertain targets. We achieve this by either

filtering out uncertain targets, or decreasing the relative impact of uncertain targets vs.

certain ones. By doing this, the student learns meaningful and reliable knowledge in-

stead of some error prone information. Our certainty driven consistency loss improves

the student model, which in turn forms a better teacher model that can generate high-

quality targets.

Let the whole training set D consist of total of N examples, out of which only Nl

are labeled. Let DL = {(xi, yi)}Nl
i=1 be the labeled set, where yi ∈ {1, ..., C}, C is

the number of classes, and DU be the unlabeled set. Given an input batch B with |B|

training samples, we aim to minimize the supervised classification loss Lcls for the

labeled set, along with a consistency loss Lcons for the whole batch:

min
θ

∑
xi∈(B∩DL)

Lcls(f(xi, θ, η), yi)

+ λ(e)
∑
xi∈B

Lcons
(
f(xi, θ

′, η′)− f(xi, θ, η)
)
,

(1)

where Lcls is the standard cross-entropy loss, and Lcons is the consistency loss to mea-

sure the distance between the softmax prediction of the teacher and the prediction of

the student. We use the Mean Squared Error (MSE) loss: Lcons = ||f(xi, θ
′, η′) −

f(xi, θ, η)||2. Here, (θ, η) and (θ′, η′) represent the weights and perturbation parame-

ters (e.g. augmentation and dropout) of the student and teacher models, respectively.

λ(e) is an epoch-dependent ramp-up weighting function, which controls the trade-off

between the two loss terms.

We maintain teacher’s weights θ′ as an EMA [10] of student’s weights θ at training

step s as Eq. 2. Note that the teacher model is directly generated using the EMA

weights of the student model, and hence does not involve any training process.

θ′s = αθ′s−1 + (1− α)θs , (2)

8



where α is the smoothing hyperparameter called EMA decay, controlling the updating

rate of the teacher. A small α enables large update of the teacher according to the

student’s weights at each step, resulting in a teacher of high similarity with the student.

However, if the student learns too much unreliable targets, a large update can degrade

the quality of the teacher. Mean teacher [10] address this problem by using a large α

(e.g. 0.99) to have a teacher of low similarity with the student. Rather than relying

on the hyperparameter, our more general solution is to improve the performance of

the student by letting it learn from more reliable targets instead of uncertain noisy

targets. Consequently, with a better student, the quality of the targets generated by the

”shadow” model teacher can also be improved.

We introduce certainty-driven consistency on each training data in the loss term

Lcons in Eq. 1. In particular, (1) Filtering CCL: the consistency loss is only computed

on a subset certain targets, selected by our proposed uncertainty guided filtering algo-

rithm (see Section 3.3) with a binary filtering mask M , using a mixture of two filtering

strategies: hard filtering and probabilistic filtering. (2) Temperature CCL: we use a

relative high temperature Vi to reduce the loss magnitude of uncertain predictions vs.

certain ones in the consistency loss term (see Section 3.4). An alternative is to use loss

weight. However, this requires a deliberate design of suitable weights for all individual

predictions.

The framework of our proposed method is illustrated in Fig. 1. Given an input mini-

batch, besides outputs predictions (i.e. softmax probability), the teacher evaluates the

uncertainty of each of the predictions. We estimate the predictive uncertainty by mea-

suring the variance or entropy of multiple predictions given by the up-to-date teacher

model, under random input augmentations and dropout. In Filtering CCL, shown in

Fig. 1 (a), the teacher filters out uncertain predictions and gradually selects a subset of

certain predictions (i.e. of low uncertainty), that are robust targets for the student to

learn from. In Temperature CCL, shown in Fig. 1 (b), the teacher remains all targets

but raises the temperature of the uncertain predictions, resulting in a less penalty on

uncertain targets if the student gives inconsistent predictions with the teacher. Both

hard and soft CCL follow a ramp-up learning paradigm, that enables the student to

gradually learn from relatively certain/easy to uncertain/hard cases. We believe that
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Figure 1: (a) In Filtering CCL, the teacher filters out uncertain predictions and gradually selects a subset

of certain predictions for the student to learn from. (b) In Temperature CCL, the teacher remains all targets

but raises the temperature of the uncertain predictions, resulting a smaller loss on uncertain targets. Better

viewed in color.

our more general solution can be more effective than most existing perturbation-based

methods that ignore the quality of the loss of the individual training sample.

3.1. Certainty-Driven Consistency Loss

Mean teacher [10] shows that the consistency of perturbated predictions around

both labeled and unlabeled data provides smoothness regularization. However, in our

view, it is an ideal case that all training data can be correctly classified. In reality,

both labeled and unlabeled data can be misclassified. Penalizing inconsistency around

misclassified data not only slow down the convergence of labeled data, but also can be

harmful for the nearby unlabeled data. Without ground-truth supervision, the issue of

the confirmation bias can make the model stuck in these incorrect inconsistency con-

straints, and can hardly be revised in the successive training process. Blindly enforcing

smoothness around all samples can induce the confirmation bias. Although in the next

training epoch, the supervised loss can correct the prediction of a labeled data, some

unlabeled data can still remain in the previously enforced wrong prediction, given that

there is no ground-truth label available for it.

Our main idea is not to simply just train the teacher for doing predictions, but also to

estimate the underlying uncertainty associated with them, so that it can then gradually
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(d) (e) (f) (g)

(h) (i) (j) (k)

X1 X3 X4X2 X5 X1 X3 X4X2 X5 X1 X3 X4X2 X5

Figure 2: A sketch of a binary classification task with two labeled data x1, x2 and three unlabeled data

x3, x4, x5. Blindly penalizing the inconsistency around all data points can hinder learning (see (a-c)). Our

approach dynamically selects (Filtering CCL) or pays more attention (Temperature CCL) to the certain

predictions by estimating the model uncertainty under random dropout (d-g), and the local smoothness under

input augmentations (h-k). A data on x-axis filled with red means it is used to enforce consistency. We omit

the random sampled prediction curves in (f, g). Better viewed in color.

select the most certain predictions as targets for the student to learn from. As illus-

trated in Fig. 2, we perform two kinds of perturbations to estimate uncertainty: dropout

(Fig. 2 (d-g)), and random input augmentation (Fig. 2 (h-k)). The former estimates

model uncertainty [31], and the latter estimates local smoothness. Taking Filtering

CCL as a example, in the initial training epochs, the supervised classification loss can

be high, and the predictions can vary considerably under different perturbations (Fig. 2

(d, h)). In this case, the teacher can only select a small number of high certainty targets

with relatively low variances to enforce consistency (red dots in Fig. 2 (e, i)). As train-

ing continues, the overall classification loss decreases and so does consistency loss.

The uncertainty level of the teacher predictions can be reduced gradually, allowing the

student to learn from more reliable targets of unlabeled data (Fig. 2 (f, g, j, k)). As for

Temperature CCL, the red dots means they have higher impact (lower temperature) in

the consistency loss compared to uncertain ones (white).
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3.2. Uncertainty Estimation

Given a batch of input training images containing both labeled and unlabeled data,

each training step includes two stages: prediction and uncertainty estimation. In the

prediction stage, the student and teacher output two sets of predictions respectively.

Existing methods directly use the teacher’s predictions as targets for the student to learn

from. Instead, we introduce uncertainty estimation to dynamically select a subset of

certain predictions that are associated with reliable targets to enforce consistency con-

straints. In the uncertainty estimation stage, we perform T stochastic forward passes

on teacher model under random dropout θ̂′t and input augmentation η̂′t.

For each input data x at tth forward pass, we obtain a softmax probability vector

[p(y = 1|x, θ̂′t, η̂′t), ..., p(y = C|x, θ̂′t, η̂′t)]. Collecting a set of T predictions for each

x, we are able to estimate the teacher model’s predictive uncertainty U . This can be

considered as the Monte Carlo sampling from the posterior distribution of models [31].

Different from [31] which only measures model uncertainty by random dropout, our

uncertainty also takes the local smoothness into consideration. Our key reasoning is

that a certain prediction should meet two requirements: to predict consistently for the

same input using randomly sampled sub-networks, and to predict consistently for the

similar input pair with randomized augmentations.

We investigate four metrics to approximate uncertainty: predictive variance (PV),

entropy variance (EV), predictive entropy (PE) [41, 42], and mutual information (MI) [43,

42]. The criteria of choosing a metric is: (i) It can measure the variance over T times

random samplings. (ii) It can reflect the probability distribution of different classes,

rather than representing a hard prediction, i.e. the top one predicted class (argmax).

Hence, we do not use predictive ratio (PR) [42] which is the frequency (tmode) of the

mode predicted class (mode) over T times: PR = 1− tmode/T . (iii) It gives a contin-

uous scalar value in order to compare the uncertainty of different data points with high

precision.

Specifically, (1) PV has been used in regression task [31]. We apply PV in classifi-

cation task to measure the variance of multiple soft predictions obtained from stochastic

forward passes for all classes. The larger variance with respect to the T times mean,

the higher uncertainty. (2) EV is the variance of T times’ entropies of the predictions.
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If the entropy H varies a lot over T times, we consider the model is uncertainty. (3)

PE [41, 42] captures the entropy of the averaged probability distribution over T times.

It attains its maximum value when all classes are predicted to have equal uniform prob-

ability, and its minimum value of 0 when one class has probability = 1 and all others

probability = 0, i.e. a certain prediction. (4) MI [43, 42] equals to PE minus the aver-

age entropy over T times stochastic passes, which combines the entropy of the expected

prediction with each prediction’s entropy. Overall, by measuring the uncertainty of T

times soft predictions, we effectively estimate how close the T times distributions is to

each other. This can be seen as the uncertainty of ”dark knowledge” [40], which is a

much stronger estimation compared to measuring whether only the final classification

remains the same. The respective definitions of the metrics are as follows:

µc =
1

T

∑
t

p(y = c|x, θ̂′t, η̂′t)

Ht =
∑
c

p(y = c|x, θ̂′t, η̂′t) log p(y = c|x, θ̂′t, η̂′t)

PV =
∑
c

Var[p(y = c|x, θ̂′1, η̂′1), ..., p(y = c|x, ˆθ′T , ˆη′T )]

=
∑
c

( 1

T

∑
t

(p(y = c|x, θ̂′t, η̂′t)− µc)2
)

EV = Var[H1, ...,HT ]

PE = −
∑
c

µc logµc

MI = PE − 1

T

∑
t

Ht

(3)

In practice, in the prediction stage, we turn off dropout inside the teacher and use

the whole network to provide a robust prediction target, which is the expected output

over the previous training steps. In the uncertainty estimation stage, we turn on dropout

in the teacher network to obtain multiple randomly connected sub-networks. For the

student, since it is trained with loss back-propagation, we keep the dropout on through-

out training to prevent over-fitting, as done in the standard dropout procedure [44].
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Figure 3: Filtering strategies in our Filtering CCL.

3.3. Certainty-Driven Consistency with Filtering

Using the mentioned uncertainty measurement, the teacher outputs an uncertainty

value Ui for each data points xi in the input batch, along with their soft targets. Based

on Ui, we explore two filtering strategies – hard filtering and probabilistic filtering to

filter out relatively uncertain predictions when computing the consistency loss (Fig. 3).

Hard filtering ensures that the student always learns from the targets that are of rela-

tively high quality, i.e. with low predictive uncertainty. Probabilistic filtering filters a

data sample by a probability value related to its uncertainty ranking. A sample with

high uncertainty has high probability to be filtered out, but still has a chance to remain.

This strategy introduces complementary randomness into the filtering process, which

can improve the generalization performance.

In each training step, the data samples in the input batch B are sorted according to

their uncertainty values [U1, ..., U|B|] in ascending order to obtain an ordered rank list

R = [R1, ..., R|B|]. The first on xi is the most certain in the batch, i.e. Ri = 1, and

the last one xj is the most uncertain, i.e. Rj = |B|. (1) Hard filtering: We choose

a ramp-up number of top-k certain data points and filter out the left uncertain data,

where k = βe, e is the epoch. The hard filtering mask is denoted as Mh (length of B),

and for input xi, Mhi = 1 if Ri ≤ k, otherwise Mhi = 0. (2) Probabilistic filtering:

The probabilistic filtering mask is denoted as Mp. Each element of Mp is a Bernoulli
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distributed random variable Mpi = {0, 1} expressed as:

Mpi ∼ Bernoulli(mpi), (4)

where:

mpi =
Pmax
|B| − 1

(Ri − 1),

Pmax =

 1− ρ eE , if e ≤ E

0 , if e > E,

where ρ ∈ (0, 1) is a coefficient hyperparameter influencing the value of Pmax, and E

is a thresholding epoch deciding from which epoch we want to exploit all training data

in the consistency loss.

We find that it is more stable to use this mapped value based on rank Ri as the

filtering probability mpi compared to the original uncertainty value Ui. In particular,

for the most certain data Ri = 1 in the batch, the probability of being filtered out is

always 0 (mpi = 0). For the most uncertain data Rj = |B|, the probability of filtering

it out equals to Pmax, which decreases as the training epoch increases. For the data

in between these two extremes, the probability of being filtered out follows a uniform

distribution ranging from 0 to Pmax. The reason we use this mapped value is that an

absolute uncertainty value Ui can be numerically small but relatively larger than that of

other data in the same batch or other batches. In this case, we still want to filter it out

with a relatively high probability. Additionally, non-uniformly distributed filtering can

cause a large variation in terms of the number of the selected data among the batches,

which can make the training process unstable.

Our method can gradually select the most certain predictions as the targets for the

student to learn from. In the initial training epochs, the supervised classification loss

can be high, and the predictions can vary considerably under different perturbations.

In this case, the teacher can only select a small number of high certainty targets with

relatively low variances to enforce consistency. As training continues, the overall clas-

sification loss decreases and so does the consistency loss. The uncertainty level of the

teacher predictions can be reduced gradually, allowing the student to learn from more

reliable targets of unlabeled data.
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Note that, we do not explicitly differentiate between labeled and unlabeled data

when computing our consistency loss. As mentioned before, the consistency con-

straints of both the misclassified labeled and unlabeled data can be harmful to learning

convergence and generalization performance. In practice, since the learning curve of

the labeled data will converge quickly with supervised classification loss, the average

uncertainty level of the labeled data is usually lower than the unlabeled data. Also,

as training continues, both the student and the teacher can learn more and more reli-

able knowledge, and the system generates more and more stable predictions instead of

just noisy random guesses, which can then reduce the overall uncertainty level of the

model. Hence, our filtering strategy automatically retains more and more labeled data,

and filter out less and less uncertain data.

3.4. Certainty-Driven Consistency with Temperature

Besides filtering out uncertain targets in a hard way, we also investigate a soft

way by letting the student pay less attention on learning from such uncertain targets.

We adopt the temperature softmax function [45] into our consistency regularization to

adjust the magnitudes of the gradients of the training samples with various uncertainty

values.

The temperature function is a variant of the softmax activation function by dividing

the logit zi for class i with a positive temperature V :

qi =
exp(zi/V )∑
j exp(zj/V )

, (5)

where qi is the output of the temperature softmax for class i. A higher temperature

V produces a softer probability distribution, i.e. all classes are equally distributed. A

lower temperature V causes all classes to be sparsely distributed.

The scaling effect in the temperature softmax is discussed by Hinton et al. [40]

in the context of model distillation. It has been theoretically proved that in the high

temperature limit, minimizing the consistency loss between two predictions with tem-

perature V has the effect of reducing the magnitudes of the gradients by a scale of

1/V 2. However, [40] needs to manually set the value of V , which is the same for all

training samples. On the contrary, our method can automatically define the temperature
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of each training sample according to its uncertainty. We use different temperatures to

control the magnitude of the consistency loss to let the student learn more from certain

targets and less from uncertain ones. We apply temperature softmax to both student

and teacher models.

Specifically, we use higher temperatures to reduce the magnitudes of the gradients

coming from uncertain targets, to let the student learn more from certain targets and

less from uncertain ones. In each training step, we automatically enforce relatively

higher temperatures on uncertain targets, and lower temperatures on certain targets,

according to the previously obtained certainty ranking list R in each input batch B:

Vi = (
Ri
|B|

)2Vmax + 1, Vmax = max(Vb −
e

E
), 1), (6)

where Vi is the temperature for the input xi, |B| is batch size, Ri is the certainty rank

of xi, Vmax is the maximum temperature value for the most uncertain data in each

batch, Vb is the base temperature, and e is the current training epoch. We use quadratic

function to make the temperature values of certain and uncertain data in the batch

differentiable. Vmax decreases as training continues, since the system is more and

more certain. E is a threshold epoch controlling the speed of the ramp-down function.

Besides the scaling effect, our temperature CCL also encourages diverse gradients

coming from various classes rather than the predicted (i.e. argmax) class for the un-

certain targets. Our idea is, for certain targets, we can trust more in the argmax class

compared to uncertain ones, since the argmax prediction is probably correct. However,

for the uncertain targets, it can be dangerous to focus only on the error-prone argmax

class and ignore other classes. Hence, we increase the temperature of uncertain data to

soften the probability distribution, so that the influence from different classes becomes

more balanced. This balanced distribution can reduce the total amount of the unreliable

error-prone gradients in the loss back-propagation procedure.

3.5. Combining Filtering and Temperature CCL

We further analyze the effectiveness of combining our proposed Filtering CCL and

Temperature CCL, denoted as FT-CCL. The motivation is that, with regard to learning

from certain targets, the two approaches have complementary effects. In particular, in
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Figure 4: Our proposed circle-shape framework with two decoupled students and teachers.

each training step, according to the previously obtained certainty ranking listR for each

input batch B, we obtain the two masks Mh and Mp for hard filtering and probabilistic

filtering respectively, and the temperature value list.

We first filter out uncertain predictions based onMh andMp, and then, compute the

outputs of the temperature softmax for the remaining certain predictions using their cor-

responding temperature values. In the initial training epochs, the Filtering CCL plays

a dominant role, since it only select a few top-k certain predictions for the consistency.

In the following epochs, Temperature CCL becomes more and more important, since

the temperature values of the remaining predictions becomes more and more differen-

tiable. Yet, as training continues, such differences reduces since the overall certainty

level increases.

3.6. Decoupled Multi-Teacher

The typical perturbation-based methods [46, 8, 9, 10] use one single teacher to

provide a prediction target for a student to learn from. In MT [10], the teacher produced

by the student also teaches the same student in terms of the consistency. This strongly

coupled student-teacher can limit the capacity of the model, due to the high similarity

between them. Aiming to improve the generated targets, we extend the single student-

teacher framework to a mutually learning framework containing pairs of students and

teachers.

It has been shown that mutual learning between two models with different initial-

ization can provide additional knowledge to each other, and hence improves perfor-

mance for model distillation in fully supervised scenario [47]. The key condition of
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mutual learning [47] to be successful is that, the model from different initialization

can provide additional information about each data. We introduce a mutual learning

framework to decouple the students and teachers, by forming them in a closed circle

(Fig. 4). Assume we have a sequence of n pairs of student-teacher. The studenti

produces an EMA model as teacheri, which teaches the next studenti+1, and the last

teachern teaches the first student1, forming a circle of a learning process. In this way,

the teacher does not directly teach the student that generated it anymore, but teaches

the next student in a circle manner. Since the feedback connection between a student

model and its EMA-self (i.e. teacher) has to go through an intermediary (i.e. a circle),

one can consider the EMA duration has been extended, encouraging the individual

models to be diverse. To further avoid the models collapsing into each other, we apply

different input augmentations randomly for all students/teachers.

Note that, in order to prove the effectiveness of our circle-shape framework, we

do not ensemble the multiple teacher models for the final evaluation. Instead, we only

report the average performances of these models.

4. Experiments

We show the experimental results on three widely adopted image classification

benchmark datasets: SVHN [48], CIFAR-10 and CIFAR-100 [49]. The Street View

House Numbers (SVHN) includes 32 × 32 RGB images of real-world house numbers

(0 9), and the task is to classify the centermost digit. It consists of 73,257 training

images and 26,032 test images. The CIFAR-10 consists of 32 × 32 natural images

from 10 classes such as airplanes, cats, and dogs. It contains 50,000 training images

and 10,000 test images. The CIFAR-100 dataset consists of 50,000 training images and

10,000 test images from 100 more fine-grained object classes.

Following the standard semi-supervised classification protocol [8, 50, 9, 10, 13], we

randomly sample 1000, 4000 and 10000 labels for SVHN, CIFAR-10 and CIFAR-100,

respectively, with the remaining 72257, 46000, 40000 training images as unlabeled

training data. The results are averaged over 5 runs with different seeds for data splits.
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4.1. Implementation Details

We implemented our code using PyTorch [51]. We adopt the 13-layer CNN archi-

tecture as [9, 10]. We initialize the network weights using a self-supervised pretraining

(i.e. RotNet [52]), which is to predict the image rotations ({0◦, 90◦, 180◦, 270◦}). In

the uncertainty estimation analysis, we initialize the network from random weights to

better show the effectiveness of our uncertainty estimation. Following the previous

works [9, 10], we use random translation ([−2, 2] pixels) on SVHN and horizontal

flips and random translation on CIFAR-10 and CIFAR-100. We train the network with

minibatches of size 512, including 128 labeled and 384 unlabeled data. We use SGD

optimizer for training with base learning rate 0.1, a weight decay of 2e− 4, and a mo-

mentum of 0.9. The teacher model weights are updated after each training step using an

EMA with α = 0.99. Following [10, 9], we ramped up the consistency loss coefficient

λ during the first 80 epochs using a sigmoid-shaped function exp[−5(1 − x)2], where

x advances linearly from zero to one during the ramp-up period. We run 10 times

dropout during training to measure uncertainty, which we find is sufficient for our pur-

pose of estimating uncertainty. Except PR, the four uncertainty metrics (PV, EV, PE,

MI) show similar performance. Unless specified, we use PV as the default uncertainty

metric. In Filtering CCL, hard filtering strategy selects top-k certain predictions using

a linear ramp-up function k = 8e, where e is epoch, and probabilistic filtering sets the

maximum masking probability as Pmax(e) = 1− 0.4e/210. In Temperature CCL, the

maximum temperature Vmax(e) = 4 − e/80 bounded by 1. These hyper-parameters

are set through grid-search on the validation set. For fair comparison, in our decoupled

multi-teacher method, we do not ensemble the multiple teacher models. Instead, we

only report the average performances of these models.

4.2. Comparisons

We compare our proposed method with the existing methods in literature. Tab. 1

shows the results of our proposed CCL approaches and the existing methods on the

three benchmarks for the cases where different number of labels are given. The accu-

racy of existing methods are all taken from existing literature. In general, both of our

Filtering CCL and Temperature CCL perform well, and our combined FT-CCL with
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Table 1: Test error rate on benchmark datasets, averaged over 5 runs. Metric: Error rate (%) ± standard

deviation, lower is better. ”–” indicates no reported result, ”*” is based on our best implementation, ”1”

result is reported in [9].

Model CIFAR-10 CIFAR-100 SVHN

1000 labels 2000 labels 4000 labels 10000 labels 1000 labels

Supervised-only [10] 46.43± 1.21 33.94± 0.73 20.66± 0.57 44.56± 0.301 12.32± 0.95

Π model [9] – – 12.36± 0.31 39.19± 0.36 4.82± 0.17

TempEns [9] – – 12.16± 0.24 38.65± 0.51 4.42± 0.16

VAT+Ent [12] – – 10.55± 0.05 – 3.86± 0.11

MT [10] 21.55± 1.48 15.73± 0.31 12.31± 0.28 37.91± 0.37* 3.95± 0.19

Π+SNTG [13] 21.23± 1.27 14.65± 0.31 11.00± 0.13 37.97± 0.29 3.82± 0.25

MT+SNTG [13] – – – – 3.86± 0.27

TempEns+SNTG [13] 18.41± 0.52 13.64± 0.32 10.93± 0.14 – 3.98± 0.21

MA-DNN [53] – – 11.91± 0.22 34.51± 0.61 4.21± 0.12

LP [28] 16.93± 0.7 13.22± 0.29 10.61± 0.28 35.92± 0.47 –

Co-Train [25] – – 9.03± 0.18 34.63± 0.14 3.61± 0.15

MT+FSWA [11] 15.58± 0.12 11.02± 0.23 9.05± 0.21 33.62± 0.54 –

WCP [54] 17.62± 1.52 11.93± 0.39 9.72± 0.31 – 3.58± 0.18

DS [30] 14.17± 0.38 10.72± 0.19 8.89± 0.09 32.77± 0.24 –

Filtering CCL 14.35± 0.51 11.76± 0.34 9.77± 0.16 34.07± 0.47 3.70± 0.23

Temperature CCL 14.48± 0.59 11.84± 0.33 9.90± 0.21 34.19± 0.42 3.73± 0.16

FT-CCL 14.14± 0.46 11.03± 0.24 9.65± 0.17 33.92± 0.36 3.67± 0.13

FT-CCL with 2 T 13.68± 0.38 10.59± 0.23 9.17± 0.19 33.51± 0.31 3.53± 0.18

FT-CCL with 3 T 13.45± 0.35 10.32± 0.21 8.89± 0.15 33.34± 0.32 3.50± 0.17

multiple teachers further boosts the performance across all experimental settings on

three datasets. Among existing approaches, Π model [9], TempEns [9], and MT [10]

are three base methods which generate the teacher model by copying the student model,

ensemble the student predictions, and ensemble the student model weights, respec-

tively. The recently proposed DS [30] jointly trains two student models together with

the EMA teacher, and enforces the consistency loss on the stable samples. DS [30]

achieves 14.17% and 10.72% error rate on CIFAR-10 with 1000 and 2000 labels, re-

spectively. On CIFAR-10, our method achieves better performance compared to DS

method, especially when labels are fewer. In particular, the test error rate of our decou-

pled FT-CCL with 3 teachers reaches 13.45% and 10.32% with 0.72 and 0.4 absolute

gains compared to DS on CIFAR-10 with 1000 and 2000 labels, respectively. With
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Figure 5: The prediction accuracy of our selected training samples with high certainty during training (blue)

on CIFAR-10 with 1000 labels. Better viewed in color.

4000 labels, our decoupled FT-CCL with 3 teachers (8.89%) performs comparably to

DS (8.89%). Co-Training [25] exploits adversarial examples to improve teacher mod-

els. MT+FSWA [11] improves over MT using fast stochastic weight averaging to gen-

erate a stronger ensemble teacher. On CIFAR-100, which is a more challenging dataset

with 100 number of classes, our proposed FT-CLL with 3 teachers achieves better per-

formance (33.34%) than the previous method Co-Training (34.63%) and MT+FSWA

(33.62%). The recently proposed WCP [54] stabilizes the network predictions in pres-

ence of the worse-case perturbations imposed on the network weights and dropout

structures. On SVHN, our decoupled FT-CCL with 3 teachers achieves an error rate of

3.50%, which outperforms the previous WCP method (3.58%).

We further compare the computation and memory usage between our decoupled

multi-teacher networks with the existing single teacher methods and co-training meth-

ods. Compared to single student-teacher methods, e.g. MT [10], our decoupled 2

teacher model contains one more trainable student model, and one more EMA teacher

model. Hence, the computation and memory cost can be doubled. Compared to co-

training [25], with the same number of trainable models (2 students), our method ob-

tains better teachers “for free” thanks to the EMA weights, which does not involve any

optimization process.
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Figure 6: The inverse correlation between accuracy and uncertainty on CIFAR-10 trained with 1000 labels

and 49000 unlabeled data (DU ). DT denotes test set. (a) Except predictive ratio, other four metrics give

similar trends: higher uncertainty, lower accuracy. (b) shows the inverse relationship between class accuracy

and predictive variance. Better viewed in color.

4.3. Effectiveness of Our Uncertainty Estimation

A potential concern of our Filtering CCL is the quality of the selected training

samples during training, since the uncertainty estimation is likely to be unreliable at

the beginning of the training process. Fig. 5 shows the prediction accuracy of our

selected training samples with high certainty during training (blue), and the accuracy

of all training samples in the input batch (orange). Note that, the ground-truth labels

for unlabeled data are only used to evaluate the quality of our filtering algorithm, and

have not been used for training. In the initial training step, although the selection

accuracy fluctuates, since hard filtering only allows few (e.g. 8, 16) samples to be

picked, the selection accuracy increases fast. As training continues, since we select

more and more training data in the consistency loss, the two accuracy curve will merge

together. The key that ensures the positive effect of our certainty driven consistency

on convergence is our filtering strategy. Even though the estimated uncertainty can be

wrong in the beginning, which can influence the probabilistic filtering performance,

the hard filtering strategy only allows the teacher to slowly select the most certain

data to enforce consistency. This dynamic certainty-driven and gradual ramp-up top-k

selection strategy allows the system to warm up.

To further verify the effectiveness of our uncertainty estimations and understand the
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Figure 7: Test accuracy on CIFAR-10 trained with 4000 labels with percentages of 20%, 30%, 50% corrupted

labels. Supervised only training (blue) fluctuates a lot and overfits to the incorrect labels. MT [10] shows the

resistance to the corruption but still influenced by noisy labels. Our proposed Filtering CCL and Temperature

CCL show considerable resistance to noisy labels. The high robustness of combined CCL verifies that

our proposed methods provides complementary effects to prevent the model learning from uncertain/noisy

targets. Better viewed in color.

behaviour of different uncertainty metrics, we plot the relationship between accuracy

(y-axis) and uncertainty estimates (x-axis) in Fig. 6. Given a model trained on CIFAR-

10 trained with 1000 labels and 49000 unlabeled data (denoted as DU ). We evaluate

the accuracy on DU and test set DT respectively, and compute the five uncertainty

metrics including PV, EV, PE, MI, and PR (defined in Section 3.2) by feeding forward

test images 10 times under random dropout. Then, the input images are sorted in an

ascending order according to their uncertainty values. Based on the five ranking lists,

we distribute the input images of DU into 490 bins. In Fig. 6 (a), each bin contains

100 images. The x-axis shows the bin index, and y-axis shows the average accuracy

of the images that belong to the corresponding uncertainty ranked bin. Except predic-

tive ratio [42], other four metrics give similar trend of an inverse relationship between

uncertainty and accuracy. Taking PV as an example, Fig. 6 (b) show a strong inverse

relationship between class accuracy and mean PV of each class on DT .

4.4. Robustness to Noisy Labels

In a further test we studied the robustness of our method under random corruption

of labels. Certain percentages (20%, 30%, 50%) of true labels on the training set are

replaced by random labels. Fig. 7 shows the classification error on CIFAR-10 test set,

trained with 4000 labels. In general, Filtering CCL performs better than Temperature

CCL when noisy labels are few (e.g. 20%). When the percentage of noisy labels
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increases, Temperature CCL outperforms Filtering CCL, and the combined FT-CCL

shows the most robustness under 50% noisy labels.

Specifically, when most of the labels are correct (20% noisy), Filtering CCL is able

to filter out uncertain noisy targets and gradually learn from the certain predictions.

When there is moderate percentage (30%) of labels are corrupted, Filtering CCL and

Temperature CCL show comparable robustness. The former converges faster than the

latter, and the FT-CCL outperforms both in the end. When 50% of the labels are cor-

rupted, Temperature CCL shows higher robustness than Filtering CCL, since uncertain

targets remain high temperatures and low impacts in the consistency regularization

compared to certain targets throughout training process. The FT-CCL further boosts

the performance, indicating that our proposed Temperature CCL and Filtering CCL in-

troduce complementary abilities to enforce consistency on reliable predictions. Thus,

our proposed CCL provides considerable resistance to noisy labels, and improves the

generalization performance of the model.

5. Conclusion

In this paper, we have proposed a certainty-driven consistency loss (CCL) to let the

student learn meaningful and reliable targets from the teacher by utilizing the certainty

information of the unlabeled data predictions. We propose two approaches Filtering

CCL and Temperature CCL to filter out uncertain predictions in a hard way, and reduce

the loss magnitudes of uncertain predictions in a soft way, respectively. We conclude

by stating that considering the predictive uncertainty of the unlabeled data is benefi-

cial to semi-supervised classification, since the erroneous gradients coming from the

uncertain predictions can be reduced. We further propose to decouple the student and

teacher model to encourage model diversity, and train multiple student-teacher pairs

in the network, which show further improvements. Nevertheless, as a trade-off, it re-

quires to optimize multiple student models, and brings a larger memory footprint to

store multiple student/teacher models. To the best of our knowledge, this is the first

work that exploits the predictive uncertainty information into consistency regulariza-

tion for semi-supervised learning. The extensive experiments on three semi-supervised
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benchmark datasets validate the effectiveness of our approach over a few existing meth-

ods. As a byproduct, our method can provide extra uncertainty information along with

the predictions. Besides, our combined FT-CCL, that suppresses unreliable targets in

both hard and soft way, show high tolerance to noisy labels, indicating that our pro-

posed hard filtering and soft temperature adjusting strategies introduce complementary

abilities to enforce consistency on reliable predictions.

Interesting extensions of this work in the future may consist in: (1) Exploring

stronger data perturbation techniques, e.g. adversarial examples [55] and RandAug-

ment [56]. Stronger perturbations can generate more and harder training samples,

which can enable stronger consistency between student and teacher in the training

process. (2) Utilizing uncertainty information into graph-based semi-supervised meth-

ods [27] to model graph-structured data. For example, one can modulate the label

propagation procedure on the graph to let the signals coming from the uncertain nodes

propagate less to the neighbouring nodes. (3) Our idea of using uncertainty in the con-

sistency loss can also be applied to other down-stream application tasks to control the

contributes of unsupervised losses coming from different training samples. The down-

stream tasks may include but not limited to semantic segmentation, domain adaptation,

and person re-ID. Since the reliability of unlabeled predictions varies among different

unlabeled data samples or image pixels, we believe that our proposed certainty-based

loss modulation approach could provide useful recipe or idea for dealing with these

tasks.
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