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Abstract

X-ray security screening is widely used to maintain aviation/transport
security, and its significance poses a particular interest in automated screen-
ing systems. This paper aims to review computerised X-ray security imag-
ing algorithms by taxonomising the field into conventional machine learn-
ing and contemporary deep learning applications. The first part briefly dis-
cusses the classical machine learning approaches utilised within X-ray se-
curity imaging, while the latter part thoroughly investigates the use of mod-
ern deep learning algorithms. The proposed taxonomy sub-categorises the
use of deep learning approaches into supervised, semi-supervised and unsu-
pervised learning, with a particular focus on object classification, detection,
segmentation and anomaly detection tasks. The paper further explores well-
established X-ray datasets and provides a performance benchmark. Based
on the current and future trends in deep learning, the paper finally presents a
discussion and future directions for X-ray security imagery.

1 Introduction

X-ray security screening is one of the most widely used security measures for main-
taining airport and transport security, whereby manual screening by human oper-
ators plays the vital role. Despite the fact that experience and knowledge are the
key factors for confident detection, external variables such as emotional exhaustion
and job satisfaction adversely impact the manual screening [1–5].

Cluttered nature of X-ray bags is another issue negatively affecting the decision
time and detection performance of the human operators [6–8]. For instance, the
threat detection performance of human screeners significantly reduces when lap-
tops are left inside the bags. This is due to the compact structure of laptops which
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Figure 1: Statistics for the recent papers published in X-ray security imaging. Con-
ventional Machine Learning (CML) approaches were dominant in the field before
2016, while deep learning approaches have recently become the standard approach.

conceals the potential threats, limiting detection capability of the screeners [9,10].
All these issues necessitate the use of automated object detection algorithms within
X-ray security imaging, which would maintain the alertness and improve detection
and response time of human operators, yielding higher operator trust [11].

Despite the surge of interest in X-ray screening [12–16], automated computer-
aided screening is understudied, particularly due to the lack of data, and the need
for advanced learning algorithms. State-of-the-art studies within the literature
have focused on image enhancement [17–19], classification [20–23], detection
[21, 24–26], segmentation [27–29], and unsupervised anomaly detection [30–33]
for automated security screening. Notable surveys within the field [34, 35] catego-
rize the existing literature within two main categories: (i) image processing [17]
and (ii) image understanding [28,36,37]. Early work within the field focuses more
on image processing approaches such as image enhancement [17], threat image
projection (TIP) [38], material discrimination and segmentation [19]. Recent work,
on the other hand, has a particular interest in image understanding focusing more
on automated threat detection and automated content verification via machine/deep
learning algorithms [22, 25, 29, 32, 33].

In a traditional setting, a machine learning algorithm pipeline contains pre-
processing, enhancement, segmentation, feature extraction, and classification stages
[34, 35]. Pre-processing and enhancement stages reduce the noise from the input
data and improve the overall quality. The segmentation step crops the regions of
interests from the full cluttered image. Feature extraction stage extracts the hand-
crafted features of the object, such as edges and shapes. The final stage classifies
the objects based on the features derived from the preceding step.

The main drawback of these machine learning approaches is their dependency
on hand-crafted features requiring manual engineering. Deep convolutional neural
networks overcome this issue by learning the task-specific features, which overall
yields a significant improvement. A convolutional neural network contains a single
or multiple layers, each of which comprises a set of neuron activations and non-
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linear transformation. The earlier layers learn high-level features such as edges and
shapes, while higher layers learn lower level features that are more specific to the
image fed into the network. Despite being initially proposed more than decades ago
[39], the use of convolutional neural networks within the field of computer vision
has become prevalent especially after achieving state-of-the-art performance [40]
on ImageNet object classification challenge [41] by a large margin.

Within the X-ray security imaging, on the other hand, the transition from the
classical machine learning to modern deep learning approaches was not instant.
This is due to data-hunger nature of deep learning approaches, which initially lim-
ited its use within the field, where the availability of such large datasets is some-
what limited. With the utilisation of transfer learning paradigm [42] and synthetic
data generation [38], the use of deep learning approaches has become the golden
standard within the field [37, 43, 44].

This literature survey reviews the published work within various computer vi-
sion tasks (Figure 1b) in X-ray security screening, with a particular focus on the
deep learning applications. The main contributions of this paper are as follows:

• taxonomy — an extensive overview of classical machine learning and con-
temporary deep learning within X-ray security imaging.

• datasets — an overview of the large datasets used to train deep learning
approaches within the field.

• open problems — discussion of the open problems, current challenges, and
future directions based on the current trends within computer vision.

The rest of the paper is as follows: Sections 2 and 3 explore conventional image
analysis and machine learning algorithms with a specific focus on image enhance-
ment, threat image projection, image segmentation, object classification, and object
detection. Section 4 reviews the applications of the deep learning algorithms withi
X-ray security imaging. Section 5 discusses the open problems, current challenges
and Section 6 finally concludes the paper.

2 Conventional Image Analysis

A conventional image understanding consists of the following stages: (i) pre-
processing stage that enhances the quality of the input image, (ii) segmentation
stage to crops the region of interests (RoI) from the full image, (iii) feature extrac-
tion stage that computes fundamental attributes of the object such as edges, texture
and shape, (iv) classification stage to predict the corresponding class label based
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Figure 2: A Taxonomy of the X-ray security imaging papers.

4



on the extracted features. This section explores the conventional image analysis
techniques that perform image enhancement and threat image projection.

2.1 Image Enhancement

Preprocessing the input data plays a substantial role to yield higher-quality images
that increase the readability by both screener and computer.

Initial attemps [17] fuse low and high energy X-ray images and apply back-
ground subtraction for noise reduction. To improve low-density images, Radon
transformation is used for threshold selection to declutter RoI from complex X-ray
scans [45]. For adaptive image enhancement, multi-layer perceptron is used, where
the model predicts the best enhancement technique based on input and enhanced
output images [46].

Following work [17, 47] explore pseudocolouring grey scale X-ray images,
which improves the detection performance and alertness level of the operators.
Threat detection performance is further improved via new colour coding scheme
by calibrating the estimation of effective atomic number (Zeff ) and density infor-
mation (ρ) [95].

2.2 Threat Image Projection (TIP)

The detection performance of human screeners is heavily dependent on experience
and knowledge acquired with computer-based training [1, 96, 97]. Due to the lim-
ited availability of X-ray scans with prohibited items, the training is achieved with
the images onto which threat images are synthetically projected [38].

More recently TIP has also been used for synthetic data generation to address
the data requirements of machine learning models. By projecting a large number
of threat objects onto benign X-ray images, it is possible to gather large datasets
that could train/evaluate machine learning algorithms [50, 51, 98].

Common approach for TIP is to project binary threat mask onto a benign
input X-ray image via multiplication, yielding an output X-ray with the threat
item. Application of affine transformations improves the robustness of the algo-
rithm [50]. A similar approach first employs logarithmic transformation to separate
foreground objects from the background, which are subsequently multiplied with
the input [51]. Another use of the algorithm is the task of object detection, where a
sparse representation algorithm extracts the dictionaries of both foreground (threat)
and background (benign) objects and performs classification, which yields 93.0%,
99.0%, 98.7% precision, recall, and accuracy, respectively.
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3 Machine Learning Approaches in X-ray Security Imag-
ing

This section explores the applications of conventional machine learning approaches
in X-ray security imaging. The literature is reviewed based on three tasks: (i)
classification, (ii) detection, and (iii) segmentation. For an alternative perspective
for this section, the reader could refer to the related reviews of Mery [99] and
Rogers et al. [35].

3.1 Object Classification

Prior to the dominance of the deep learning within the field, the bag of visual
words (BoVW) approach was prevalent. In of the initial attempts utilizing BoVW,
Baştan et al. [59] perform classification of X-ray objects on a relatively limited
dataset. Scale Invariant Feature Transform (SIFT) [100], Speeded Up Robust Fea-
tures (SURF) [101] and Binary Robust Independent Elementary Features (BRiEF)
feature descriptors are computed around the points detected using standard Dif-
ference of Gaussians (DoG), Hessian Laplace, Harris, Features from accelerated
segment test (FAST) and STAR feature detectors. k-means [102] clusters the vi-
sual vocabulary, which is trained with an SVM [103]. DoG detector and SIFT
descriptor are shown to perform the best among the descriptors (mAP: 0.65 on 200
X-ray images.

Inspired by [59], Turcsany et al. [60] presents a unique BoWV approach for
the X-ray firearm classification via class-specific feature extraction. With the use
of SURF [101] feature detector and descriptor with a BoVW approach trained on an
SVM [103] classifier achieves 99.07% true positive rate and 4.31% false-positive
rate.

A multi-staged approach [64] performs car detection from X-ray images of
freight containers. The method first creates cars vs non-cars image patches from
stream-of-commerce X-ray images. The next step extracts features via image in-
tensity, log intensity together with basic and oriented images features [104]. The
final stage utilizes Random Forest (RF) [105], achieving 100% detection rate with
1.23% false alarm rate. A follow-up work [67] detects loads in cargo containers by
an RF classifier trained with local image moments and oriented basic image fea-
tures (oBIF) [104], yielding 99.3 % detection accuracy and 0.7% false positives.

BoVW approach is further employed in [36]. A dictionary is formed for each
class that consists of SIFT [100] feature descriptors of randomly cropped image
patches. Fitting a sparse representation classification to the feature descriptors of
the random test patches yields 95% accuracy for each class and 85% in case of
occlusion. In another BoVW approach in [68, 69], an SVM is trained with local
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latent low-level image features extracted from a dataset with 15 different classes,
each of which comprises 100 images (AUC: 80.1%).

Inspired by the various research outcome drawn for the BoVW, Kundegorski
et al. [70] exhaustively evaluate various feature point descriptors within a BoVW-
based image classification task. The combination of FAST-SURF trained with an
SVM classifier [103] is the best performing feature detector and descriptor combi-
nation for a firearm detection task on a large dataset, yielding a statistical accuracy
of 0.94 (true positive: 83% and false positive: 3.3%).

Despite the BoVW dominance, other computer vision/machine learning tech-
niques have also been studied for X-ray object classification task. A study [62]
aims at detecting threat items in vehicles using X-ray cargo imagery. The proposed
multi-staged approach (i) initially improves the image quality via normalization,
denoising, and enhancement, (ii) subsequently performs multi-view alignment and
pseudocolouring (iii) finally classifies the threats via correlating the similarities be-
tween temporally aligned images. Another study by Zhang et al. [63] investigate
the use of joint shape and texture features extracted from superpixel regions of the
input. Tranining the extracted feature-map with SVM [103] yields 89% classifica-
tion accuracy.

Mery et al. [73] utilize structure estimation and segmentation together with a
general tracking algorithm to detect X-ray objects. Another classification pipeline
by Mery et al. [73] (i) extracts features with SIFT [100], (ii) removes redundancy
via RANSAC [106], (iii) sort features based on the difference between two consec-
utive frames and (iv) use Mahalanobis distance classifier to predict class labels (P:
70%, R: 86% 64 X-ray images).

Similar works [37, 78, 79, 83, 107] exhaustively evaluate various computer vi-
sion techniques, with a specific focus on k-nn based sparse representation. A k-
means algorithm [102] clusters the features, segmented from input via an adaptive
k-means [108] and extracted via SIFT [100]. During the test, the score for a patch
is calculated based on the closest distance to a neighbour clustered via k-nn classi-
fier [109], achieving comparable accuracy to deep models on GDXray (94.7% vs.
96.3%).

3.2 Object Detection

This section reviews the conventional X-ray object detection models presented in
the literature. Being a challenging task, where the bounding box coordinates and
class labels are to be predicted simultaneously, conventional object detection algo-
rithms in the literature is relatively limited in the field.

Schmidt-Hackenberg et al. [81] compare the use of visual cortex inspired fea-
tures such as SLF-HMAX and v1-like to the standard features such as SIFT [100].
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Compared to SIFT, HMAX features are shown to provide superior feature encod-
ing for BoVW approach trained with SVM [103].

Evaluation works of [61, 66] exhaustively investigate the use of BoVW for the
X-ray object detection. Evaluating various feature descriptors within a single and
multiple-view imagery for the detection via branch and bound algorithm with struc-
tural SVM classifier [103] shows that (i) combination of SIFT and SPIN achieves
the best detection performance (mAP: 46.1%), and (ii) utilizing multi-view im-
proves the detection (mAP: 66.5%).

Multi-view X-ray imaging improves the performance when rotation and su-
perimposition hinder the viewability of the objects from one view [110]. Despite
its computational complexity, multi-view imaging help human operators and ma-
chines to improve the detection performance [66, 111].

A general multi-staged approach proposed in the works of [72, 74, 76, 112]
(i) initially performs feature extraction via feature descriptors and k-NN classifier
[109], (ii) matches the key-points for the consecutive images from different views
and (iii) analyse the multiple-views ,where the key-points of the two successive
images are matched, and their 3D points are formed with structure from motion.
After being clustered, 3D points are re-projected back to 2D key-points, which are
classified by the k-NN classifier [109]. The best performing approach achieves
95.7% precision, 92.5% recall for 120 X-ray images.

Franzel et al. [82] propose a sliding window detection approach with the use of
a linear SVM classifier [103] and histogram of oriented gradients (HOG) [113].
As HOG is not fully rotationally invariant, they supplement their approach by
detection of varying orientations. Multi-view integration step fuses the multiple
viewpoints to find the intersection of the true detections, which achieves superior
performance compared to single-view (mAP: 64.5).

3.3 Object Segmentation

One of the crucial steps for accurate object classification in conventional image
understanding is the precise object segmentation. The rest of the section explores
various segmentation techniques presented in the literature.

Early work in the field [52,53] investigates simplistic pixel-based segmentation
with a fixed absolute threshold and region grouping. Subsequent work, on the
other hand, focuses more on pre-segmentation via nearest neighbour, overlapping
background removal and final classificaiton [19, 27, 54].

Instead of using shape information, some approaches utilises chemical (attenu-
ation) proporties [28] and high atomic numbers [55]. Nearest Neighbour Distance
Ratio [114] on SURF [100] features computed on regions disconnected with mor-
phological operations achieves promising results (RMS error: 1.15 on 23 X-ray
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images).

4 Deep Learning in X-ray Security Imaging

This section reviews the X-ray security applications utilising deep learning algo-
rithms. By initially introducing the well-established datasets in the field, we ex-
plore the applications for various computer vision tasks such as object classifica-
tion, detection, segmentation and unsupervised anomaly detection.

4.1 Datasets

This section explores X-ray security imaging datasets that are widely used in the
literature.

4.1.1 Durham Baggage Patch/Full Image Dataset

This dataset comprises 15, 449 X-ray samples with associated false color materials
mapping from dual-energy. Originally, samples have the following class distri-
butions: 494 camera, 1, 596 ceramic knife, 3, 208 knife, 3, 192 firearms, 1, 203
firearm parts, 2, 390 laptop and 3, 366 benign images. Several variants of this
dataset is constructed for classification (DBP2 and DBP6) [21, 43, 70] and detec-
tion (DBF2 and DBF6) [21, 91].

4.1.2 GDXray

Grima X-ray Dataset (GDXRAY) [115] comprises 19, 407 X-ray samples from
five various subsets including castings (2, 727), welds (88), baggage (8, 150), nat-
ural images (8, 290), and settings (152). The baggage subset is mainly used for
security applications and comprises images from multiple-views. The limitation
of this dataset is its non-complex content, which is non-ideal to train for real-time
deployment.

4.1.3 UCL TIP

This dataset comprises 120, 000 benign images, each of which is 16-bit grayscale
with sizes varying between 1920× 850 and 2570× 850. The train and test split of
the dataset is 110000 : 10000, where the training images are 256×256 patches ran-
domly sub-sampled from 110, 000 images and the test set comprises 5000 benign
and 5000 threat images. The threat images are synthetically generated via the TIP
algorithm proposed in [50], where, depending on the application, small metallic
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threats (SMT) or car images are projected into the benign samples. With several
variants, this dataset is used in several studies such as [44, 84–87, 93, 94].

4.1.4 SIXray

Collected and released by [22], SIXray dataset comprises 1, 059, 231 X-ray im-
ages, 8929 of which are manually annotated for 6 different classes: gun, knife,
wrench, pliers, scissors, hammer, and background. The dataset consists of objects
with a wide variety in scale, viewpoint and especially overlapping, and is first stud-
ied in [22] for classification and localization problems.

4.1.5 Durham Baggage Anomaly Dataset –DBA

This in-house dataset comprises 230275 dual energy X-ray security image patches
extracted via a 64×64 overlapping sliding window approach. The dataset contains
3 abnormal sub-classes —knife (63496), gun (45855) and gun component (13452).
Normal class comprises 107, 472 benign X-ray patches, split via 80 : 20 train-test
ratio. DBA dataset is used in [31] and [32] for unsupervised anomaly detection.

4.1.6 Full firearm vs Operational Benign –FFOB

As presented in [21, 31, 32], this dataset contains samples from the UK govern-
ment evaluation dataset [116], comprising both expertly concealed firearm (threat)
items and operational benign (non-threat) imagery from commercial X-ray security
screening operations (baggage/parcels). Denoted as FFOB, this dataset comprises
4, 680 firearm full-weapons as full abnormal and 67, 672 operational benign as full
normal images, respectively.

4.1.7 Compass - XP Dataset

This dataset [117] is collected using 501 objects from 369 object classes that are
subset of ImageNet classes. The dataset includes 1901 image pairs such that each
pair has an X-ray image scanned with Gilardoni FEP ME 536 and its photographic
version taken with a Sony DSC-W800 digital camera. In addition, each X-ray
image has its low-energy, high-energy, material density, grey-scale (combination
of low and high energy) and pseudo-colored RGB versions.

4.2 Evaluation Criteria

Before listing the performance results of the reviewed papers, it is important to
introduce the various performance metrics used in the field.
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Dataset Domain Task # Samples Classes Performance Reference

DBP2 Baggage Classification 19,938 firearm, background ACC: 0.994 [21, 43]
DBP6 Baggage Classification 10,137 firearm, firearm parts, camera, ACC: 0.937 [21, 43]

knife, ceramic knife, laptop
UCL TIP Cargo Classification 120,000 small metallic threat (SMT), car ACC: 0.970 [20, 85–87, 93, 94]

Detection
Anomaly Detection

GDXRay Baggage Classification 19,407 gun, shuriken, razor blade ACC: 0.963 [37, 90, 118, 119]
Detection

DBF2 Baggage Detection 15,449 firearm, background mAP: 0.974 [21, 91]
DBF6 Baggage Detection 15,449 firearm, firearm parts, camera, mAP: 0.885 [21, 91]

knife, ceramic knife, laptop
PBOD Baggage Classification 9,520 Explosives AUC: 0.950 [120]
MV-Xray Baggage Detection 16,724 Glass Bottle, TIP Weapon, Real Weapon mAP: 0.956 [25]
SASC Baggage Detection 3,250 Scissors, Aerosols mAP: 0.945 [26]
Zhao et al. Baggage Classification 1,600 wrench, pliers, blade, lighter, ACC: 0.992 [89]

knife, screwdriver, hammer
Smiths-Duke Baggage Detection 16,312 gun, pocket knife, mixed sharp mAP: 0.938 [24]
SIXray Baggage Detection 1,059,231 gun, knife, wrench, pliers, mAP: 0.439 [22]

scissors, hammer, background
UBA Baggage Anomaly Detection 230,275 gun, gun part, knife AUC: 0.940 [31, 32]
FFOB Baggage Anomaly Detection 72,352 full-weapon, benign ACC: 0.998 [31, 32]
Yang et al. Baggage Classification 2,000 wrench, fork, handgun, power bank, ACC: 0.991 [23]

lighter, pliers, knife, liquid, umbrella, screwdriver

Table 1: Datasets used in deep learning applications within X-ray security imaging

laptop 

gun 

camera

laptop 
gun 

camera

laptop 

(a) (b) (c) (d)

Figure 3: An input X-ray image, and the outputs depending on the deep learning
task, (a) classification via ResNet-50 [121], (b) detection with YOLOv3 [122] and
segmentation via Mask RCNN [123]

Accuracy (ACC) Accuracy is defined as the number of correctly predicted sam-
ples over the the total number of predictions, which is mathematically shown as
ACC = (TP + TN)/(TP + TN + FP + FN).

Mean Average Precision (mAP) mAP is defined as the mean of the average
precision, a metric evaluated by the area under the precision and recall curve, where
precision is TP/(TP + FP ), and recall is TP/(FN + TP ).

AUC AUC is the area under the curve (AUC) of the receiver operating character-
istics (ROC), plotted by the true positive rates and false positives rates.

11



4.3 Classification

The study of [43] is one of the first research applying CNN to X-ray security im-
agery. The authors examine the use of CNN via transfer learning to evaluate to
what extent transfer learning helps classify X-ray objects within the problem do-
main, where the availability of the datasets is somewhat limited. Freezing AlexNet
weights layer by layer on a two-class (gun vs. no-gun) X-ray classification problem
shows that CNN significantly outperforms the BoVW approach (SIFT+SURF),
trained with SVM or RF, even when the layers of the network are all frozen. An-
other set of experimentation analyses the use of CNN within a challenging 6-class
classification problem, whose results show a great promise of the use of CNN in
the field.

A similar work [44] compares the use of deep learning against the conven-
tional machine learning to classify non-empty cargo containers with cars or SMT.
A multi-stage approach first classifies cargo containers as empty vs non-empty.
The second stage is the classification of cars from the containers classified as non-
empty, achieved via oBIF + RF. By using UCL TIP dataset, the authors evaluate the
of 9 and 19 layers networks [84] that are similar to [40] and [124], and show that
even the worst performing CNN outperforms the conventional machine learning
approach (oBIF + RF).

A follow-up work [85] further investigates the detection of cars from X-ray
cargo images. A sliding window splits UCL TIP images into patches. Authors then
explore various features including intensity, oBIF [104], Pyramid of Histogram
of Visual Words (PHOW) [125] and CNN features. Training these features on
SVM [103], RF [105], and soft-max (CNN) shows that an RF classifier trained
on the VGG-18 [124] features extracted from log-transform images achieves the
highest performance (FPR: 0.22%).

Additional work by Jaccard et al. [86] evaluate the impact of input types on
CNN performance by training single-channel raw image and dual-channel data
that contains the raw image and its log-transformed image on VGG [124] variants.
The quantitive analysis demonstrates that VGG-19 model trained from scratch by
using dual-channel raw and log-transformed images outperforms the other variants
(AUC: 97%, FPR: 6%).

Rogers et al. [87] explore the use of dual-energy X-ray images for automated
threat detection. Authors investigate varying transformations applied to high-energy
(H) and low-energy(L) X-ray images captured via the dual-energy X-ray machine.
Using UCL TIP dataset, 640,000 image patches are generated via a 256 × 256
sliding-window. Training this dataset with a fixed VGG-19 network [124] with
varying input channels, including single-channel (H), dual-channel({H,− logH},
{− logH,− logL}) and four-channels ({− logL,L,H,− logH}) shows that dual
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and four-channels always achieves superior detection performance compared to
their single-channel variants (ACC: 95%–dual vs 90%–single).

Inspired by the limited availability of X-ray datasets, a three-stage algorithm
by Zhao et al. [89] first classifies and labels the input X-ray dataset via KNN Mat-
ting [126] that uses the angle information of the foreground objects extracted from
the input image. The second stage generates new X-ray objects via an adversarial
network similar to [127]. Additional use of [128] improves the quality of the gener-
ated images. Finally, a small classification network confirms whether the generated
image belongs to the correct class. In a follow-up study, Yang et al. [23] further
investigate the ways to improve the GAN training to produce better X-ray images.
Experiments and evaluation based on Frechet Inception Distance (fiD) score [129]
show that the proposed GAN approach in the paper generates visually superior
prohibited items.

Miao et al. [22] introduce a model (CHR) to classify/localize X-ray images
from SIXray. The model copes with class imbalance and clutter issue by ex-
tracting image features from three consecutive layers, where subsequent layers
are upsampled and concatenated with the previous layers. A refinement func-
tion g() removes the redundant information from the concatenated feature map.
The objective of the work is to minimize the loss of the weighted sum of the
classification of the refined mid-level features from the three consecutive layers
({h(x̃(l−1)

n ), h(x̃
(l)
n ), h(x̃

(l+1)
n )}). Training the model with the proposed loss yields

2.13% mAP improvement when used with ResNet-101 on SIXray (36.01 vs. 38.14).
An evaluation work [120] investigates the use of CNN for the task of explo-

sive detection. An initial stage process the input data by fixing the image size,
cropping the irrelevant background object where Zeff = 0 and applying data aug-
mentation transformations. Evaluation of random initialization vs. pre-training
on VGG19 [124], Xception [130], and InceptionV3 [131] networks shows that
randomly initialized models achieves superior accuracy for binary classification
task. To study the impact of intensity and Z-eff values on the performance, the
authors train three VGG-19 networks on both intensity and Z-effective, the inten-
sity only and Z-effective only. Training the model with only Z-eff is shown to
yield the highest accuracy. The final set of experiments investigates localization
via heatmaps and shows that pre-trained networks achieves superior performance
since randomly initialized networks tend to overfit on small datasets.

Caldwell et al. [20] study the generalization capability of models trained with
different datasets. To investigate this problem, the authors first train a network with
a cargo dataset and evaluate its performance with a test set that also contains some
parcel dataset samples. Quantitative analysis reveals that the performance of the
CNN model is weak when it is tested with the combined dataset. The second stage
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combines these two datasets within the training stage, yielding a considerable im-
provement in the performance of the model. Based on this experimentation, authors
conclude that transferring information between different modalities is challenging
since CNN cannot sufficiently generalize to the unseen target dataset.

4.4 Detection

After the success of CNN for classification, the work of [91] train sliding-window
based CNN, Faster RCNN [132] and R-FCN [133] models on DBF2/6 datasets for
firearm and multi-class detection problems. Experiments demonstrate that Faster
RCNN [132] with VGG16 [124] yield 88.3% mAP on 6-class DBF6 dataset, while
R-FCN with ResNet-101 achieves the highest performance (96.3 mAP) on 2-class
(gun vs no-gun) on DBF2 dataset.

Similar to [91], another evaluation work [24] explores the performance of
F-RCNN, R-FCN [133] and SSD [134] within single/multi-view X-ray imagery.
Utilizing OR-gate detection by merging object detection outputs from individual
views shows that multi-view outperforms that of single-view (0.938 vs. 0.798
when trained with R-FCN and ResNet-101). A two-stage approach by Liu et
al. [135] first extracts foreground objects and subsequently utilises F-RCNN to
detect 32, 253 subway X-ray images, with an mAP of 77% for 6 object classes.

A similar study [136] explores SSD and F-RCNN by training on a dataset con-
taining 4 threat classes, each of which comprises approximately 3, 400 images.
F-RCNN with Inception ResNet v2 backbone yields the highest mAP (92.2 and
97.7 on single and multi-view images, respectively).

Another work [25] utilize multi-view by modifying F-RCNN. A multi-view
pooling layer constructs 3D feature 2D extracted from the convolutional layers. 3D
region proposal network generates the RoI. Classification and bounding box pre-
diction is performed after 3D RoI pooling layer. Experiments show that multi-view
yields an improvement compared to single-view imagery (95.56% vs. 91.23%).

Liu et al. [26] also performs object detection via YOLOv2 [122] to detect scis-
sors and aeorosols on SASC dataset. Training YOLO v2 for 6000 iterations yield
94.5% average precision and 92.6% recall rates with 68 FPS run-time speed.

Cui and Oztan [137] argue that RetinaNet [138] achieves comparable detection
performance, while being considerably faster than traditional sliding window clas-
sification when trained with 30,000 images synthetically genarated via TIP with
5000 X-ray cargo containers and 544 firearms.

Hassan et al. [139] proposes an object detection algorithm, whereby the RoI
is generated via cascaded multiscale structure tensors that extracts based on the
variationts of the orientations of the object. The extracted RoI is then passed into a
CNN, which quantitatively and computationally outperforms RetinaNet, YOLOv2
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and F-RCNN on GDXray and SIXray datasets.
Motivated by the lack of annotated X-ray datasets, Xu et al. [90], make use

of attention mechanisms for the localization of threat materials. The first stage
forward-passes an input and finds the corresponding class probability. The back-
propagation stage finds which neurons within the network decides the output class.
Using the neurons from the first convolutional layer on top of the input image
localizes the threat. The final stage refines the activation map by normalizing the
layers with the activations of the previous layer. Comparison against the traditional
deconvolution method (mAP: 34.3%) shows that the proposed method achieves
superior detection (56.6%) without needing for bounding box information.

Similar to [20], generalisation capability of CNN is studied by Gaus et al. [140]
by training/validating CNN on different datasets (DBF3 (88% mAP) → SIXray
(85% mAP)).

4.5 Anomaly Detection

Human operators tend to perform better detection when focusing on the benign
objects rather than threat items. In addition, the knowledge of every-day benign
objects leads to a much better detection performance [141]. Same concept is ap-
plied in anomaly detection, where the model is only trained with normal samples,
and tested on normal/abnormal examples.

An anomaly detection approach [30] employs sparse feed-forward autoencoders
in an unsupervised manner to learn the feature encoding of normal and abnormal
data. An SVM [103] then classifies the images either anomalous or benign. Val-
idation on MNIST [39] and freight container dataset (empty vs non-empty) shows
that hidden layer representation extracted from the autoencoder, in fact, is rather
significant for the detection of abnormalities in the images. When fused with the
raw-input and residual error, features encoding from the hidden layers yield even
better detection performance.

A follow-up work utilizes intensity, log-intensity and VGG-19 [124] features
extracted from patches from UCL TIP dataset and train normal images via for-
est of random split trees anomaly detector [142]. Testing the model on normal +
abnormal data yields 64% AUC.

A similar study [31], in which image and latent vector spaces are optimized
for anomaly detection, utilizes an adversarial network such that the generator com-
prises encoder-decoder-encoder sub-networks. The objective of the model is to
minimize the distance between both real/generated images and their latent repre-
sentations jointly, which overall outperforms the previous state-of-the-art both sta-
tistically and computationally (UBA: 64.3%, FFOB: 88.2% – AUC). A follow-up
work [32] improves the performance of [31] further by (i) utilizing skip-connections
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in the generator network to cope with higher resolution images, and (ii) learning
the latent representations within the discriminator network (UBA: 94.0%, FFOB:
90.3% – AUC).

Another anomaly detection algorithm [33] (i) first extract the feature of the
normal images from Inception v3 [143] alike network, (ii) subsequently trains a
multivariate Gaussian model to capture the normal distribution of CAST dataset.
Anomaly score of a test sample is based on its likelihood that is relative to the
model, which overall yields 92.5% AUC.

4.6 Segmentation

Due to the scarcity of datasets with pixel-level annotation, the task of segmentation
is understudied within the field. One of the published work [29] addresses segmen-
tation and anomaly detection tasks together, whereby a dual-CNN pipeline initially
segments RoI via Mask RCNN [123] and classifies the regions as benign/abnormal
via ResNet-18 [121], achieving 97.6% segmentation mAP and 66.0% anomaly
detection accuracy. Another work [144] proposes three-stage approach, whereby
(i) object-level segmentation is achieved by the use of Mask RCNN [123], (ii)
sub-component regions are segmented via super-pixel segmentation and (iii) fi-
nal object classification is performed via fine-grained CNN classification, which
overall yields 97.91% anomaly detection accuracy on 7, 878 electronic items. An
et al. [145] propose a segmentation model that utilises dual attention mechanism
within an encoder-decoder segmentation network. The former attention module
classifies the RoI, while the latter localises the object. Experiments on PASCAL
alike structured X-ray dataset containing 7, 532 augmented images from 7-classes
yield 99.3 accuracy and 68.3 mean intersection over union (mIoU).
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Reference Domain Problem Method

Akçay et al. [43] Baggage Object Classification CNN with transfer learning
Svec [83] Baggage Object Classification CNN with transfer learning
Andrews et al. [94] Cargo Anomaly Detection Train CNN features with Random Split Trees
Jaccard et al. [44] Cargo Object Classification oBIF+RF for non-empty cargo detection, followed by CNN for car detection
Jaccard et al. [84] Cargo Object Classification CNN from scratch outperforms RF
Rogers et al. [87] Cargo Object Classification Evaluation of high and low energy x-ray imagery
Caldwell et al. [20] Cargo, Baggage Object Classification Transferability between domains
Yuan and Gui [88] Tera Hertz Object Classification Two-stage. Classify from RGB, then Tera-Hertz images.
Zhao et al. [89] Baggage Image Generation, Generate X-ray objects via GAN, and classify with CNN

Object Classification
Yang et al. [23] Baggage Image Generation Generate X-ray objects via GAN, and classify with CNN

Object Classification
Miao et al. [22] Baggage Object Classification with class-balanced hierarchical refinement
Morris et al. [120] Baggage Object Classification Region-based detection with Z-effective
Akçay and Breckon [91] Baggage Object Detection Object Detection, Faster-RCNN is the best.
Liang et al. [24] Baggage Object Detection RFCN is the best. Multi-view outperforms single view.
Liang et al. [136] Baggage Object Detection Explores various detection algorithms, F-RCNN with Inception ResNet v2 achieves the highest performance
Steitz et al. [25] Baggage Object Detection F-RCNN with multi view pooling is superior to single view only.
Liu et al. [26] Baggage Object Detection YOLOv2 achieves real time performance.
Xu et al. [90] Baggage Object Detection Localizes the threat material from the X-ray images via attention mechanisms
Islam et al. [146] Baggage Object Detection track passengers and their belongings in airports while passing X-ray security checkpoints
Liu et al. [135] Baggage Object Detection Foreground object segmentation via material info, followed by a F-RCNN
Gauss et al. [140] Baggage Object Detection F-RCNN to investigate the tranferrability between various X-ray scanners.
Cui and Oztan [137] Baggage Object Detection RetinaNet trained on a TIP dataset achieves considerable faster detection than sliding window CNN.
Hassan et al. [139] Baggage Object Detection RoI are extracted via cascaded multiscale structure tensors, which are then classified via a CNN
Bhowmik et al. [98] Baggage Object Detection Explores the generalisation capability of the models trained on TIP datasets.
Andrews et al. [30] Cargo Anomaly Detection Fusion of the raw-input and residual error with feature encoding from the hidden layers.
Akçay et al. [31] Baggage Anomaly Detection encoder- decoder-encoder sub-networks. Minimize latent vector and image space.
Akçay et al. [32] Baggage Anomaly Detection Use of skip connections. Minimize latent vector in the discriminator network.
Griffin et al. [33] Baggage Anomaly Detection Feature Extraction with CNN, then train with Gaussian model.
Gauss et al. [29] Baggage Object Segmentation Mask-RCNN to segment RoI, and CNN classification for anomaly detection
Bhowmik et al. [144] Baggage Object Segmentation Mask-RCNN to segment RoI, superpixel for sub-component level analysis, fine-grained CNN for classification
An et al. [147] Baggage Object Segmentation Dual attention mechanism within an encoder decoder segmentation network.

Table 2: Overview of deep learning approaches applied within X-ray security imaging.
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5 Discussion and Future Directions

This section evaluates the current trends within the field presented in Section 4,
and discusses the challenges and future directions within the field.

Data Although the use of transfer learning improves the performance of small
X-ray datasets, the lack of large datasets limits contemporary deep model train-
ing. Relatively large datasets in the field such as SIXray, FFOB are highly biased
towards certain classes, limiting to train reliable supervised methods. Hence, it
is essential to build large, homogeneous, realistic and publicly available datasets,
collected either by (i) manually scanning numerous bags with different objects and
orientations in a lab environment or (ii) generating synthetic datasets via contem-
porary algorithms.

There are advantages and disadvantages of both methods. Although manual
data collection enables to gather realistic samples with the flexibility to produce
any combination, it is rather expensive, requiring tremendous human effort and
time.

Synthetic dataset generation, on that hand, is another method, currently achieved
by TIP [50, 51] or GAN [23, 89]. A recent study [98] empirically demonstrates
that using a TIP dataset for a detection task adversely impacts the detection per-
formance on real examples. In future work, therefore, more advanced algorithms
such as image translation or domain adaptation [128,148] could be considered such
that the model would learn to translate between benign and threat domains, which
overall would yield superior projection/translation to TIP.

The literature has also seen another type of synthetic datasets generated by
GAN algorithms. The limitation of current GAN datasets [23,89], however, is that
the models are currently capable of producing only objects but full X-ray images.
Moreover, the quality of the generated images is far from being realistic. Further
studies, taking these issues into account, will need to be undertaken. It might
be feasible to create more realistic X-ray images by using contemporary GAN
algorithms [149].

Exploiting Multiple-View Information Existing research recognizes the critical
role played by multiple-view imagery, especially when the detection of an object
from a particular viewpoint is challenging [24, 25, 110].

Two key study [24] and [25] investigate utilizing multiple-view integration in-
side/outside a CNN. Despite the incremental performance improvement reported,
further work is required to investigate other possible ways to utilise multiple-view
imagery better.
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Transferring Between Domains and X-ray Scanners As pointed out in [20,
140], transferring models between different scanners could be challenging due to
the unknown intrinsics of the scanners. Future work would utilize domain adap-
tation [148], where the source domain contains images from one scanner, and the
target domain would be of another X-ray scanner. Training with even unbalanced
datasets would learn the intrinsic, and map from one to the other.

Improving Unsupervised Anomaly Detection Approaches The performance
of the current anomaly detection algorithms presented in Section 4.5 is somewhat
limited to be deployed for a real-world scenario. Therefore, more research on
this topic needs to be undertaken to design better reconstruction techniques that
thoroughly learn the characteristics of the normality from which the abnormality
would be detected.

Use of the Material Information In dual-energy X-ray systems attenuation be-
tween high and low energies yields a unique value for different materials, which
could be utilized further for more accurate object classification/detection [150,
151]. Even though recent research [87, 120] have examined the use of material
information, the research outcome present inconsistent results. Hence, a further
study thoroughly investigating the material information is suggested.

6 Conclusion

This paper taxonomises conventional machine and modern deep algorithms utilised
within X-ray security imaging. Traditional approaches are sub-categorised based
on computer vision tasks such as image enhancement, threat image projection, ob-
ject segmentation, feature extraction, object classification, and detection. Review
of the deep learning approaches includes classification detection, segmentation and
unsupervised anomaly detection algorithms applied within the field. The discus-
sion finally provides the strengths and weaknesses of the current techniques, open
challenges and envisions the future directions of the field.
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