
Deep Momentum Uncertainty Hashing

Chaoyou Fua,c,d,∗, Guoli Wange, Xiang Wuc, Qian Zhangf, Ran Hea,b,c,d,∗∗

aNational Laboratory of Pattern Recognition, CASIA
bCenter for Excellence in Brain Science and Intelligence Technology, CAS
cCenter for Research on Intelligent Perception and Computing, CASIA

dSchool of Artificial Intelligence, University of Chinese Academy of Sciences
eDepartment of Automation, Tsinghua University

fHorizon Robotics

Abstract

Combinatorial optimization (CO) has been a hot research topic because of its

theoretic and practical importance. As a classic CO problem, deep hashing aims

to find an optimal code for each data from finite discrete possibilities, while the

discrete nature brings a big challenge to the optimization process. Previous

methods usually mitigate this challenge by binary approximation, substituting

binary codes for real-values via activation functions or regularizations. However,

such approximation leads to uncertainty between real-values and binary ones,

degrading retrieval performance. In this paper, we propose a novel Deep Mo-

mentum Uncertainty Hashing (DMUH). It explicitly estimates the uncertainty

during training and leverages the uncertainty information to guide the approx-

imation process. Specifically, we model bit-level uncertainty via measuring the

discrepancy between the output of a hashing network and that of a momentum-

updated network. The discrepancy of each bit indicates the uncertainty of the

hashing network to the approximate output of that bit. Meanwhile, the mean

discrepancy of all bits in a hashing code can be regarded as image-level uncer-

tainty. It embodies the uncertainty of the hashing network to the correspond-

ing input image. The hashing bit and image with higher uncertainty are paid

∗This work was done during an internship at Horizon Robotics.
∗∗Corresponding author.

Email addresses: chaoyou.fu@nlpr.ia.ac.cn (Chaoyou Fu),
wangguoli1990@mail.tsinghua.edu.cn (Guoli Wang), alfredxiangwu@gmail.com (Xiang
Wu), qian01.zhang@horizon.ai (Qian Zhang), rhe@nlpr.ia.ac.cn (Ran He)

Preprint submitted to Journal of LATEX Templates July 14, 2021

ar
X

iv
:2

00
9.

08
01

2v
3

 [
cs

.C
V

]
 1

3
Ju

l 2
02

1

more attention during optimization. To the best of our knowledge, this is the

first work to study the uncertainty in hashing bits. Extensive experiments are

conducted on four datasets to verify the superiority of our method, including

CIFAR-10, NUS-WIDE, MS-COCO, and a million-scale dataset Clothing1M.

Our method achieves the best performance on all of the datasets and surpasses

existing state-of-the-art methods by a large margin.

Keywords: Combinatorial optimization, Deep hashing, Uncertainty

1. Introduction

Combinatorial optimization (CO) has a great impact on business and society,

ranging from locomotive dispatching to aerospace industry [1, 2]. Due to the

limitation in tractability and scalability of traditional solvers, many researchers

recently turn their attention to machine learning (ML) for better solutions [3, 4].

Deep hashing is a typical task that combines CO and ML, aiming to find an

optimal code for each data from finite discrete possibilities via deep neural

networks, so that similar data have shorter Hamming distance and dissimilar

data have longer Hamming distance.

With the explosive growth of data in practical applications, hashing has re-

ceived sustained attention due to its advantages in low storage cost and fast

computation speed [5]. Traditional hashing methods are based on the elabo-

rately designed hand-crafted features [6, 7, 8]. The binary codes are learned from

data distributions [9] or obtained by random projection [10]. In recent years, as

the thriving of deep neural networks, deep hashing that combines hashing with

deep neural networks further improves retrieval performance [11]. Generally, the

last layer of a neural network is leveraged to output binary hashing codes [12].

Early works, such as convolutional neural network hashing (CNNH) [13], adopt

a two-stage framework, where the feature learning of the neural network and the

hashing coding are separate. Subsequent works, e.g. deep pairwise-supervised

hashing (DPSH) [11], perform feature learning and hashing coding in an end-

to-end framework, which has shown better performance than the two-stage one.

2

0.087 0.089

0.071 0.063

0.975 0.717 0.736

0.778 1.004 0.8060.057

0.062

Figure 1: Top: the approximate real-values of two bits at different training epochs. It is
obvious that bit-1 changes more sharply than bit-2, which denotes that the hashing network
has higher bit-level uncertainty to the former. Bottom: the mean bit-level uncertainty of
all bits in a hashing code is regarded as image-level uncertainty, whose value is shown in the
upper left corner of each image. The images with low uncertainty (< 0.1) usually have clear
objects and simple backgrounds (left), while the images with high uncertainty (> 0.7) contain
nebulous objects and complex scenarios (right).

For all of the deep hashing methods, an intractable problem is that the binary

hashing codes are discrete, which impedes the back-propagation of gradient in

the neural network [14]. The discrete optimization of the binary hashing codes

remains a great challenge.

Previous methods usually adopt binary approximation to tackle the above

challenge. That is, the binary codes are replaced by continuous real-values,

which are enforced to be binary via non-linear activation functions [14]. Never-

theless, the output of the activation function, such as Sigmoid or Tanh, is easy

to be saturated. This inevitably slows down or even limits the training process

[15]. In order to avoid the saturating problem, some recent methods desert

the non-linear activation function and impose a regularization on the output to

enforce the real-value of each bit to be close to a binary one (+1 or -1) [11].

However, these methods equally approximate all bits, while ignore their differ-

ences. As shown in Fig. 1 (Top), we discover that the approximate output of

each bit has a unique change trend. It is observed that the output of bit-1 has

more drastic changes than the output of bit-2 during training. That is to say,

3

the hashing network has higher uncertainty to the approximate output of bit-1

than that of bit-2. We call such uncertainty for each bit as bit-level uncertainty.

Furthermore, if all bits of a hashing code generally have high uncertainty, it indi-

cates that the hashing network has high uncertainty to the corresponding input

image. We define the mean bit-level uncertainty of all bits in a hashing code

as the image-level uncertainty. As can be seen from Fig. 1 (Bottom), the im-

ages with high image-level uncertainty usually contain more complex scenarios,

belonging to hard examples [16, 17].

In order to explicitly estimate the bit-level uncertainty, i.e. the change

trends of the hashing bits, it is required to compare current output values with

previous ones. A straightforward strategy is to store the outputs of all train-

ing images in each optimization step and then compare the current outputs

with them. Unfortunately, this strategy is unfeasible because of the require-

ment of huge storage memory when training on large-scale datasets. Recently,

in order to tackle the memory problem in unsupervised and semi-supervised

learning, some works [18, 19, 20] develop an extra momentum-updated network

that averages model weights during training. The momentum-updated network

is an ensemble of previous networks in different optimization steps, outputting

ensemble results [20]. Inspired by this, in our method, a momentum-updated

network is introduced to obtain previous outputs approximately. We further

compare the outputs between the hashing network and the momentum-updated

network, and regard the discrepancy as the bit-level uncertainty. According

to the magnitude of the uncertainty, we set different regularization weights for

different hashing bits. Besides, by averaging the uncertainty of all bits in a

hashing code, we obtain the image-level uncertainty of the corresponding input

image. The image with higher uncertainty is paid more attention during the

optimization of Hamming distance. The effectiveness of our method is demon-

strated on four challenging datasets, including CIFAR-10 [21], NUS-WIDE [22],

MS-COCO [23], and a million-scale dataset Clothing1M [24]. In summary, the

main contributions of this work are as follows:

4

• We are the first to explore the uncertainty of hashing bits during ap-

proximate optimization. Depending on the magnitude of uncertainty, the

corresponding hashing bits and input images receive different attention.

• We propose to explicitly model bit-level and image-level uncertainty, re-

sorting to the output discrepancy between the hashing network and the

momentum-updated network.

• Extensive experiments on the CIFAR-10, the NUS-WIDE, the MS-COCO,

and the large-scale Clothing1M datasets demonstrate that our method

significantly improves retrieval performance when compared with state-

of-the-art methods.

2. Related Work

2.1. Learning of Combinatorial Optimization

A growing body of research is dedicated to integrating CO and ML, since

the latter can make effective decisions for the former with low computational

costs [4, 1]. [3] develops a Pointer Net that is equipped with neural atten-

tion, which has the ability to find an approximate solution for the Travelling

Salesman Problem (TSP). [25] proposes a novel FastColorNet that adopts deep

reinforcement learning to color large graphs. [26, 4, 27] focus on leveraging

graph embedding networks for robust graph matching [28, 29]. [30] develops

a DeepSets architecture for node sets and also provides corresponding permu-

tation invariant functions. With respect to resource management in wireless

networks, [31] presents a LORM framework that uses imitation learning to find

the best pruning policy. In contrast to the foregoing methods, this paper stud-

ies deep hashing that aims to learn the optimal binary code for each data via

deep neural networks. Meanwhile, this paper also explores the uncertainty in

the optimization process, which is expected to provide new insights for other

combinatorial problems.

5

2.2. Hashing Retrieval

Hashing aims to project data from high-dimensional pixel space into the low-

dimensional binary Hamming space [32]. It has drawn substantial attention of

researchers due to the low time and space complexity. Current hashing methods

can be grouped into two categories, including data-independent hashing meth-

ods and data-dependent hashing methods. For the data-independent hashing

methods, the binary hashing codes are generated by random projection or man-

ually constructed without using any training data. Locality sensitive hashing

(LSH) [10] is a representative method. Since the data-independent hashing

methods usually require long code length to guarantee retrieval performance,

more efficient data-dependent hashing methods that learn hashing codes from

training data have gained more attention in recent years [32].

The data-dependent hashing methods can be further divided into two types,

i.e. unsupervised methods and supervised methods, according to whether us-

ing the similarity labels. Iterative quantization hashing (ITQ) [9] and ordinal

embedding hashing (OEH) [33] are representative unsupervised hashing meth-

ods. Both of them retrieval the neighbors by exploring the metric structure in

the data. Other unsupervised hashing methods include discrete graph hashing

(DGH) [34], inductive manifold hashing (IMH) [35], and global hashing system

(GHS) [36]. Although unsupervised learning avoids the annotation demand

of the training data, exploiting available supervisory information usually im-

plies better performance. Representative supervised hashing methods based on

hand-crafted features include supervised hashing with kernels (KSH) [37] and

column-sampling based discrete supervised hashing (COSDISH) [38], both of

which achieve impressive results.

Benefiting from the powerful representation ability of deep neural networks

[39], hashing has made further progress in the last few years [40, 41, 42]. [43] is

the first one to introduce cross-modal hashing with hierarchical labels to settle

real-world problems and also contributes a large-scale dataset. [44, 45] pro-

pose to leverage full label information to assist in the learning of multimodal

hashing, and present a discrete optimization algorithm to learn binary codes.

6

[46] develops a generative adversarial framework for unsupervised hashing and

introduces a semantic similarity matrix to guide hashing coding. [47] digs sim-

ilarity correlations between cross-modal data via a triplet sampling strategy,

and elaborately designs an objective function to learn discriminative hashing

codes. [48] builds two subnetworks to learn potential semantic correlations in

cross-modal data and hashing codes, respectively. [49] disentangles cross-modal

instances into modality-related and modality-unrelated components, and uses

the former to boost the reliability of the hashing network. [50] jointly studies

the weakly-supervised semantic information and data structures for effective

hashing retrieval. [51] performs image-text and video-text retrieval via 2-D and

3-D CNNs respectively, in which both inter-modality and intra-modality infor-

mation are considered. To understand massive social images, [52] introduces

a Deep Collaborative Embedding (DCE) network to learn common representa-

tions of images and tags.

2.3. Uncertainty in Deep Learning

Here, uncertainty means the uncertainty of the deep neural network to the

current outputs. For traditional deep learning, the network only outputs a de-

terministic result. However, in many scenarios, such as autonomous driving,

we would like to simultaneously obtain the uncertainty of the network to that

output. This will facilitate reliability assessment and risk-based decision [53].

Therefore, uncertainty has received much attention in recent years [54, 55].

[56] develops an approximate Bayesian inference framework to represent model

uncertainty, which denotes the uncertainty existed in model parameters. [57]

proposes to estimate model uncertainty and data uncertainty (existed in the

training data) in a unified framework. [58] utilizes uncertainty to learn a con-

fidence map that facilitates 3D deformable modeling. [53] explores the uncer-

tainty in face images with different qualities, significantly boosting recognition

performance. [59] introduces uncertainty into the feature learning of person

re-identification.

In summary, there are three common uncertainty estimation strategies. The

7

Table 1: Meaning of the notations employed in our method.

Notation Meaning
B matrix
Bij (i, j)-th element of matrix B
B> transpose of matrix B
b vector
||b||2 Euclidean norm of vector b
a>b product of vectors a and b

sign(·) element-wise sign function

first one estimates uncertainty based on the changes of the outputs of the net-

work [56, 60]. For example, for the same input data, there will be multiple

outputs by performing multiple different dropouts on the network during the

inference phase. In this case, the variance of these outputs reflects the un-

certainty. The second one integrates uncertainty into the objective function

and directly outputs the uncertainty via the network [57, 58]. The third one

estimates uncertainty at the feature level [53, 59]. For example, the feature

is represented as a Gaussian distribution that is composed of learnable mean

and variance, and the variance indicates the uncertainty. It is obvious that our

method belongs to the first category.

3. Preliminaries

3.1. Notation

The notations employed in our method are listed in Table 1. Concretely,

uppercase letters such as B are used to denote matrices, and Bij is used to

denote the (i, j)-th element of B. B> indicates the transpose of the matrix

B. Lowercase letters like b denote vectors. ||b||2 is the Euclidean norm of the

vector b. a>b denotes the product of vectors a and b. sign(·) means the element-

wise sign function, which returns +1 and −1 when the element is positive and

negative, respectively.

3.2. Problem Definition

Suppose there are a total of n images X = {xi}ni=1, where xi means the i-th

image. For deep supervised hashing, the pairwise similarity between two images

8

-0.7 +0.9 -1.5

𝜙"(•, 𝜃") 𝜙$(•, 𝜃$)

𝑥&

Uncertainty Estimation

Momentum
Update

Gradient

-0.8 +1.4 -0.3

0.1 0.5 1.2

Approximate Binary Output

𝒖𝒊

𝒉𝒊 𝒎𝒊

Figure 2: Framework of our method that consists of a hashing network φh(·, θh) and a
momentum-updated network φm(·, θm). The weights θh are updated via back-propagation of
gradient, while the weights θm are updated by averaging θh. Given an input image xi, besides
outputting the approximate binary value hi = φh(xi, θh) as previous works, our method also
outputs the uncertainty ui. It derives from the discrepancy between hi and mi = φm(xi, θm).

is also available. The similarity matrix is denoted as S with Sij ∈ {0, 1}, where

Sij = 1 means xi and xj are similar and Sij = 0 means xi and xj are dissimilar.

The purpose of deep supervised hashing is to learn a function that maps the

data from high-dimensional pixel space to low-dimensional binary Hamming

space. That is, for each image xi, we can obtain a binary hashing code bi ∈

{−1,+1}c, where c means that the hashing code has c bits. Meanwhile, the

semantic similarity should be consistent before and after mapping. For example,

if Sij = 1, there should be as short Hamming distance as possible between bi

and bj . Otherwise if Sij = 0, bi and bj should have long Hamming distance.

Hamming distance between two binary codes is defined as:

disH(bi, bj) =
1

2
(c− b>i bj). (1)

As can be seen from the above definition, we need to find the optimal binary code

for each data from all discrete 2c possibilities, which is a classic combinatorial

optimization problem.

9

4. Method

In this section, we present the proposed DMUH in details, which integrates

both bit-level and image-level uncertainty into the learning process of hashing

codes. In the following parts of this section, we first introduce the overall frame-

work of DMUH. Then, we revisit the traditional hashing learning algorithm and

point out its potential problem. Subsequently, a novel uncertainty estimation

approach is proposed. On this basis, we finally derive the uncertainty-aware

hashing learning method and analyze its advantages over previous methods.

4.1. Overall Framework

As depicted in Fig. 2, the framework of DMUH contains two networks: a

hashing network φh(·, θh) and a momentum-updated network φm(·, θm), where

θh and θm are the weights of the two networks, respectively. Moreover, the two

networks have a same architecture: a backbone for feature learning as well as a

fully-connected layer for approximate binary coding. The difference lies in that

the weights θh are updated via back-propagation of gradient, while the weights

θm are updated by averaging θh.

Given an input image xi, the two networks output approximate binary values

hi = φh(xi, θh) and mi = φm(xi, θm), respectively. Since φm(·, θm) can be seen

as an ensemble of φh(·, θh) [20], we can approximatively calculate the change of

hi over previous values by comparing the discrepancy between hi and mi. As

mentioned in Section 1, such change is regarded as the uncertainty of the hashing

network to the current output value. For each bit, the larger the difference

between hi and mi, the more uncertainty the hashing network to that bit. By

this means, we can get the bit-level uncertainty. For instance, as shown in Fig. 2,

it is obvious that the hashing network is more uncertain about the output of the

third bit. In addition, by averaging the uncertainty values of all bits in a hashing

code, we can obtain the image-level uncertainty. It represents the uncertainty of

the hashing network to the corresponding input image. After obtaining the bit-

level and the image-level uncertainty, we will set different attention for different

10

bits and images during training. The detailed optimization process is introduced

in the following parts.

4.2. Hashing Learning Revisit

Given the binary hashing codes B, the likelihood of the pairwise similarity

S is formulated as [61, 11]:

p(Sij |B) =

 σ(Ωij), sij = 1

1− σ(Ωij), sij = 0
(2)

where Ωij = 1
2b
>
i bj and σ(Ωij) = 1

1+e−Ωij
. Considering the negative log-

likelihood of the pairwise similarity S, hashing codes bi and bj can be optimized

by [11]:

L = − log p(S|B) = −
∑
Sij

(SijΩij − log(1 + eΩij)). (3)

Combining with Eq. (1), we can find that minimizing Eq. (3) will make similar

image pairs have shorter Hamming distance, and dissimilar image pairs have

longer Hamming distance. Given that the discrete binary hashing codes are

not differentiable, a usual solution is to replace the discrete binary codes with

continuous real-values. Subsequently, a regularization term is imposed to enforce

the real-values to be close to binary ones [11]:

L = −
∑
Sij

(SijΘij − log(1 + eΘij)) + β
∑
i

||hi − bi||22, (4)

where hi = φh(xi, θh) are continuous real-values, Θij = 1
2h
>
i hj , bi = sign(hi),

and β is a hyper-parameter.

Discussion. Obviously, Eq. (4) can be used to learn hashing codes, where the

first term optimizes the distance in Hamming space and the second term con-

strains the real-values to approximate binary codes. However, Eq. (4) treats all

hashing bits and input images equally, without considering their differences. As

shown in Fig. 1, the hashing network has different uncertainty to the hashing

11

bits and the input images. Therefore, we argue that each hashing bit and each

input image should be treated separately according to the magnitude of the

uncertainty, rather than being treated equally.

4.3. Uncertainty Estimation

During the training process of the hashing network, the output real-value of

each hashing bit constantly changes to minimize the objective function Eq. (4).

Intuitively, if the real-value of one bit changes a lot during the optimization, it

indicates that the hashing network has high uncertainty to that bit. In order

to measure this change, a straightforward approach is to store the output of

each bit in each optimization step, and then compare the current output with

the previous ones. However, it is unfeasible because of the requirement of huge

storage memory when training on large-scale datasets.

Inspired by the recently proposed momentum model in unsupervised and

semi-supervised learning [18, 19, 20], we introduce a momentum-updated net-

work φm(·, θm) to help to estimate the uncertainty. Different from the hashing

network φh(·, θh) that updates its weights θh via gradient back-propagation,

φm(·, θm) updates θm by averaging θh:

θm = αθm + (1− α)θh, (5)

where α ∈ [0, 1) is a momentum coefficient hyper-parameter, whose value con-

trols the smoothness of θm. A larger α will result in smoother θm. Such an op-

timization manner can be seen as assembling the hashing networks in different

optimization steps to the momentum-updated network [20]. Therefore, com-

paring the output of the hashing network and that of the momentum-updated

network, we can approximately obtain the change of each bit during training.

We regard this change as the bit-level uncertainty. That is, if a bit changes

a lot, it means that the hashing network has high uncertainty to the current

approximate value. Formally, the uncertainty is defined as:

ui = |hi −mi|, (6)

12

where | · | is an element-wise absolute value operation. ui is a vector and each

element represents the bit-level uncertainty of the corresponding hashing bit.

After getting the bit-level uncertainty, by counting the average uncertainty of

all bits in a hashing code, we can further obtain the image-level uncertainty of

the input image corresponding to that hashing code:

ūi =
1

c

c∑
k=1

(uki), (7)

where the image-level uncertainty ūi is a single value instead of a vector.

Discussion. Fig. 1 (Top) presents the approximate real-values of two bits at

different training epochs. It is obvious that the two bits have different change

trends. After 40 epochs, bit-1 still changes sharply, while bit-2 changes slightly.

In addition, the calculated uncertainty values through Eq. (6) of the two bits are

0.073 and 0.005, respectively. We can see that the magnitude of the uncertainty

is consistent with the change degree of the approximate real-value. That is,

bit-1 has larger uncertainty and correspondingly has more drastic value change.

Therefore, it is reasonable to leverage the discrepancy between the output of

the hashing network and that of the momentum-updated network to represent

the uncertainty. Finally, Fig. 1 (Bottom) displays the images with different

image-level uncertainty. We can find that the images with low uncertainty

(ūi < 0.1) usually have clear objects and single backgrounds, while the images

with high uncertainty (ūi > 0.7) contain nebulous objects and complex scenes.

For instance, it is difficult to recognize the frog from the first image in the bottom

right corner. These phenomena reveal the relationship between the image-level

uncertainty and the input images.

4.4. Uncertainty-aware Hashing Learning

After getting the bit-level uncertainty ui, we leverage it to guide the opti-

mization of the regularization. Rather than treating each bit equally as Eq. (4),

we set different weights for different bits according to the magnitude of the

13

Algorithm 1 Optimization Algorithm

Input:
Training set X, semantic similarity S
Output:
The weights of the hashing network θh and those of the momentum-updated
network θm
REPEAT

• Randomly sample a batch of training data with pairwise similarity;
• Compute the outputs of the hashing network and those of the momentum-
updated network;
• Compute bit-level uncertainty and image-level uncertainty according to
Eq. (6) and Eq. (7), respectively;
• Update θh according to Eq. (10) with standard gradient back-propagation;
• Update θm according to Eq. (5);

UNTIL a fixed number of iterations

uncertainty, yielding a new optimization objective:

L = −
∑
Sij

(SijΘij − log(1 + eΘij)) + β
∑
i

eui ||hi − bi||22, (8)

where eui is multiplied as a weight on the regularization term. The hashing bit

with higher uncertainty is given a larger weight during regularization. In addi-

tion, the image-level uncertainty allows us to set different weights for different

input images. We apply larger weights to the images with higher uncertainty

in the optimization of Hamming distance. Considering both the uncertainty ūi

and ūj of images xi and xj , Eq. (8) is reformulated as:

L = −
∑
Sij

eūi+ūj (SijΘij − log(1 + eΘij)) + β
∑
i

eui ||hi − bi||22. (9)

It is obvious that Eq. (9) separately treats different input images (the first

term) and hashing bits (the second term) under the guidance of the image-level

uncertainty and the bit-level uncertainty, respectively. On this basis, we further

14

involve the uncertainty into the optimization objective:

L =−
∑
Sij

eūi+ūj (SijΘij − log(1 + eΘij))

+ β
∑
i

eui ||hi − bi||22 + γ
∑
i

ui,

(10)

where γ is a trade-off parameter. The whole optimization process for the hashing

network and the momentum-updated network is summarized in Algorithm 1.

Discussion. What are the advantages of the uncertainty-aware hashing learn-

ing? To begin with, according to the observations in Fig. 1, hard examples

can be discovered automatically based on the magnitude of the image-level un-

certainty. Benefiting from this, the first term of Eq. (10) can focus on the

optimization of the hard examples. The effectiveness of such a hard example

based optimization has been fully proved in previous works [16, 17]. Further-

more, the second term of Eq. (10) assists in stabilizing the outputs of the bits

that change frequently, which may accelerate the convergence of the hashing

network. Finally, the third term of Eq. (10) minimizes the discrepancy between

the outputs of the hashing network and those of the momentum-updated net-

work. Since the momentum-updated network is actually an ensemble of the

hashing networks in different optimization steps, the third term of Eq. (10) will

help to improve the retrieval performance of the hashing network [20].

5. Experiments

In this section, we systematically analyze the proposed DMUH and compare

it against state-of-the-art methods on four popular datasets, including CIFAR-

10 [21], Clothing1M [24], NUS-WIDE [22], and MS-COCO [23]. The remainder

of this section is organized as follows. We start with introducing the used

datasets and the corresponding protocols. Then, experimental details of our

method are reported. Subsequently, insightful experimental analyses of our

method are provided. Finally, comprehensive comparisons with state-of-the-art

methods are given.

15

5.1. Datasets and Protocols

A total of four widely used datasets are employed to evaluate the proposed

method, including two single-label (each image merely belongs to one class)

datasets CIFAR-10 and Clothing1M, as well as two multi-label (each image

belongs to one or multiple classes) datasets NUS-WIDE and MS-COCO.

CIFAR-10. It consists of 60,000 color images in 32×32 resolution from 10 classes

with 6,000 images per class. The labeled 10 classes include ’airplane’, ’automo-

bile’, ’bird’, ’cat’, ’deer’, ’dog’, ’frog’, ’horse’, ’ship’, and ’truck’. Following the

protocol in [11], we randomly sample 1,000 images with 100 images per class as

the query set, and randomly select 5,000 images with 500 images per class from

the rest images as the training set. Other images are used as the database set.

Clothing1M. It is a million-level large-scale dataset with a total of 1,037,497

images that are collected from the online shopping website. The clarified classes

are various clothes, such as ’jacket’, ’t-shirt’, ’shawl’, ’downcoat’, ’hoodie’, and

’sweater’. Following the protocol in [14], 7,000 images are randomly sampled

as the query set and 14,000 images are randomly selected as the training set.

About a million images are utilized as the database set.

NUS-WIDE. It contains 269,648 images collected from the Flickr website. Each

image is annotated with one or multiple labels from 81 classes, including ’water’,

’clouds’, ’ocean’, ’road’, ’buildings’, ’toy’, ’window’, ’zebra’, ’sun’, ’street’, and

so on. Following the protocol in [11], only 195,834 images belonging to the 21

most frequent classes are leveraged in our experiments. 2,100 images with 100

images per class are randomly sampled as the query set and 10,500 images with

500 images per class are randomly selected as the training set. Other images

are leveraged as the database set.

MS-COCO. It has 82,783 training images and 40,504 validation images that are

collected from the website. Each image belongs to one or multiple labels from

91 classes, including ’car’, ’cat’, ’plate’, ’oven’, ’pizza’, ’clock’, ’bird’, ’boat’,

16

Table 2: Architecture of the hashing network and the momentum-updated network. K/S/P
denotes kernel size/stride/padding.

LAYER K/S/P/Pool OUTPUT
conv1 11/4/0/2 64×27×27
conv2 5/1/2/2 256×13×13
conv3 3/1/1/0 256×13×13
conv4 3/1/1/0 256×13×13
conv5 3/1/1/2 256×6×6
full6 - 4096
full7 - 4096
full8 - code length

’airplane’, ’cake’, ’laptop’, ’book’, ’cup’, ’suitcase’, ’apple’, and so on. Following

the protocol in [32], 5,000 images are randomly sampled as the query set and

10,000 images are randomly selected as the training set. Other images are set

as the database set.

Evaluation Methodology. Following the setting of [62], Mean Average Precision

(MAP) is adopted to evaluate retrieval performance. Concretely, given a query

image xq, average precision (AP) is defined as [14]:

AP (xq) =
1

Rk

∑
k

P (k)I1(k), (11)

where Rk denotes the number of all relevant images. P (k) denotes the precision

at the cut-off k in the returned image list after retrieval. I1(k) is an indicator

function, which is equal to 1 if the k-th returned images is similar with xq and

is equal to 0 when the k-th returned images is dissimilar with xq. MAP is the

mean AP of all Q = {1, ..., q} queries:

MAP =
1

Q

∑
q

AP (xq). (12)

Particularly, for the NUS-WIDE dataset, the MAP is calculated within the

top 5,000 returned neighbors. For the single-label CIFAR-10 and Clothing1M

datasets, two images are treated as a similar pair (Sij = 1) when they come

from a same class, otherwise they are considered as a dissimilar pair. For the

multi-label NUS-WIDE and MS-COCO datasets, two images are regarded as a

similar pair if they share at least one common label.

17

(a) (b)

Figure 3: Loss and MAP curves during training on the CIFAR-10 dataset. Furthermore, the
MAP values of our method and Regu in the testing phase are 0.815 and 0.739, respectively.

5.2. Experimental Details

For a fair comparison with other state-of-the-art methods, we employ the

CNN-F network [63] pre-trained on ImageNet as the backbone of the hashing

network. As shown in Table 2, the CNN-F network consists of five convolutional

layers and three fully connected layers, where the last fully connected layer is

modified as the hashing layer with the length of hashing codes (12 bits, 24 bits,

32 bits, and 48 bits). The momentum-updated network has the same archi-

tecture as the hashing network. The input images are first resized to 256×256

resolution and then cropped to 224×224. Stochastic Gradient Descent (SGD)

is used as the optimizer with 1e-4 weight decay. The initial learning rate is

set to 0.05 and gradually reduced to 0.0005. The batch size is set to 128. The

momentum coefficient hyper-parameter α in Eq. (5) is set to 0.7, and the hyper-

parameters β and γ in Eq. (10) are set to 50 and 1, respectively. We determine

the values of β and γ by balancing the magnitude of the corresponding loss

term. All experiments are conducted on a single NVIDIA TITAN RTX GPU.

5.3. Evaluation of the Uncertainty-aware Hashing

In this subsection, we compare our proposed method against the traditional

regularization based method (denoted as Regu), whose optimization objective

is Eq. (4). The only difference between our method and Regu is the introduced

uncertainty, including its estimation and usage.

18

(a) CIFAR-10 (b) NUS-WIDE (c) MS-COCO

Figure 4: Top-5K precisions on the CIFAR-10, NUS-WIDE, and MS-COCO datasets.

Fig. 3 (a) depicts the loss curves of the two methods under different training

epochs on the CIFAR-10 dataset. Fig. 3 (b) plots the corresponding MAP curves

on the training set. Observing the results, we can see that the loss curve of our

method converges after about 50 epochs. Meanwhile, the MAP curve reaches

its peak and remains stable. By contrast, the loss curve of Regu converges much

slower. In particular, the MAP curve of Regu still sharply oscillates at the 90-

th epoch. The faster convergence of our method may be due to that we pay

more attention on the hashing bits with drastic value changes (benefiting from

the bit-level uncertainty) and the hard examples (benefiting from the image-

level uncertainty). In addition, although the two methods finally have a similar

MAP value in the training phase, our method obtains a much better MAP result

(0.815) than Regu (0.739) in the testing phase. This further demonstrates the

great generalization ability of our uncertainty based method.

5.4. Ablation Study

In this subsection, we compare our method against its three variants to

reveal the role of each component. Among them, w/o ui means removing the

optimization of uncertainty, i.e. the third term of Eq. (10). In such a case,

we no longer minimize the output discrepancy between the hashing network

and the momentum-updated network. w/o eui denotes discarding the bit-level

uncertainty eui in the second term of Eq. (10), which means that we ignore the

differences among hashing bits. w/o eūi+ūj represents removing the image-level

uncertainty in the first term of Eq. (10). At this point, all training images are

19

Table 3: Parameter analyses on CIFAR-10 dataset, including the trade-off parameters β and
γ in Eq. (10), and the momentum coefficient α in Eq. (5).

(a) β in Eq. (10)

β 12 bits 24 bits 32 bits 48 bits
30 0.764 0.808 0.815 0.819
40 0.769 0.810 0.818 0.822
50 0.772 0.815 0.822 0.826
60 0.767 0.811 0.819 0.820
70 0.765 0.809 0.817 0.816

(b) γ in Eq. (10)

γ 12 bits 24 bits 32 bits 48 bits
0.2 0.760 0.806 0.817 0.817
0.5 0.765 0.810 0.819 0.821
1 0.772 0.815 0.822 0.826
2 0.769 0.809 0.814 0.823
3 0.768 0.807 0.810 0.819

(c) α in Eq. (5)

α 12 bits 24 bits 32 bits 48 bits
0.5 0.766 0.807 0.813 0.821
0.6 0.768 0.810 0.817 0.822
0.7 0.772 0.815 0.822 0.826
0.8 0.772 0.813 0.819 0.825
0.9 0.769 0.810 0.815 0.819

treated equally during training.

Following the setting of [32], we report Top-5K precision curves to measure

retrieval performance on the CIFAR-10, NUS-WIDE, and MS-COCO datasets.

The comparison results are reported in Fig. 4. It is observed that our method

obtains the best retrieval performance. The improvements of our method over

w/o ui suggest the impact of the uncertainty minimizing, which assists in trans-

ferring the knowledge from the momentum-updated network to the hashing

network [19]. The gains of our method over w/o eui demonstrate the effective-

ness of the bit-level uncertainty. The hashing bits with drastic value changes

are given larger weights to stabilize their outputs. The improvements of our

method over w/o eūi+ūj prove the validity of the image-level uncertainty. It

enables the hard examples to receive more attention during optimization and

thereby helps to improve retrieval performance.

Furthermore, we also give detailed parameter analyses. Table 3 reports

the parameter study of the trade-off parameters β and γ in Eq. (10), and the

momentum coefficient α in Eq. (5). As can be seen from Tables 3 (a) and (b),

our method is not sensitive to β and γ in a large range. For example, the MAP

value of 24 bits only changes 0.007 when β is set from 30 to 70. Table 3 (c)

suggests that the optimal value of α is 0.7.

5.5. Comparisons with State-of-the-Art Methods

In this subsection, the proposed method is evaluated against a total of 11

state-of-the-art hashing methods, including iterative quantization (ITQ) [9], col-

umn sampling based discrete supervised hashing (COSDISH) [38], supervised

20

Table 4: MAP of different methods on the single-label datasets CIFAR-10 and Clothing1M.

Method
CIFAR-10 Clothing1M

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits
DMUH 0.772 0.815 0.822 0.826 0.315 0.371 0.389 0.401

DDSH 0.753 0.776 0.803 0.811 0.271 0.332 0.343 0.346
DSDH 0.740 0.774 0.792 0.813 0.278 0.302 0.311 0.319
DPSH 0.712 0.725 0.742 0.752 0.193 0.204 0.213 0.215
DSH 0.644 0.742 0.770 0.799 0.173 0.187 0.191 0.202
DHN 0.680 0.721 0.723 0.733 0.190 0.224 0.212 0.248
COSDISH 0.583 0.661 0.680 0.701 0.187 0.235 0.256 0.275
SDH 0.453 0.633 0.651 0.660 0.151 0.186 0.194 0.197
FastH 0.597 0.663 0.684 0.702 0.173 0.206 0.216 0.244
LFH 0.417 0.573 0.641 0.692 0.154 0.159 0.212 0.257
ITQ 0.261 0.275 0.286 0.294 0.115 0.121 0.122 0.125

discrete hashing (SDH) [64], fast supervised hashing (FastH) [6], latent factor

hashing (LFH) [61], deep supervised discrete hashing (DSDH) [65], deep discrete

supervised hashing (DDSH) [14], deep pairwise-supervised hashing (DPSH) [11],

deep supervised hashing (DSH) [15], deep hashing network (DHN) [66], and cen-

tral similarity quantization (CSQ) [67]. The brief introductions of these methods

are as follows:

- ITQ aims to search a rotation of zero-centered data to bridge the quanti-

zation discrepancy.

- COSDISH iteratively samples columns from the similarity matrix and

hashing codes are alternatively optimized without relaxation.

- SDH learns hashing codes for linear classification, which is solved by dis-

crete cyclic coordinate descent.

- FastH introduces decision trees as hashing coding functions, where the

decision trees are learned by a correlative two-step approach.

- LFH proposes to leverage latent factor models to learn similarity-preserving

binary hashing codes.

- DSDH takes advantages of both similarity and classification information

to learn hashing codes in a one-stream framework.

21

Table 5: MAP of different methods on the multi-label datasets NUS-WIDE and MS-COCO.
For the NUS-WIDE dataset, the MAP is calculated within the top 5,000 returned neighbors.

Method
NUS-WIDE MS-COCO

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits
DMUH 0.792 0.818 0.825 0.829 0.761 0.779 0.785 0.788

DDSH 0.776 0.803 0.810 0.817 0.745 0.765 0.771 0.774
DSDH 0.774 0.801 0.813 0.819 0.743 0.762 0.765 0.769
DPSH 0.768 0.793 0.807 0.812 0.741 0.759 0.763 0.771
DSH 0.712 0.731 0.740 0.748 0.696 0.717 0.715 0.722
DHN 0.771 0.801 0.805 0.814 0.744 0.765 0.769 0.774
COSDISH 0.642 0.740 0.784 0.796 0.689 0.692 0.731 0.758
SDH 0.764 0.799 0.801 0.812 0.695 0.707 0.711 0.716
FastH 0.726 0.769 0.781 0.803 0.719 0.747 0.754 0.760
LFH 0.711 0.768 0.794 0.813 0.708 0.738 0.758 0.772
ITQ 0.714 0.736 0.745 0.755 0.633 0.632 0.630 0.633

- DDSH enhances the feedback between hashing coding and deep feature

learning via a discrete optimization algorithm.

- DPSH performs joint learning of hashing codes and deep features in an

end-to-end framework.

- DSH relaxes binary hashing codes to be real-values and adopts a pairwise

training strategy to optimize Hamming distance.

- DHN employs both a pairwise cross-entropy loss and a pairwise quantiza-

tion loss to improve hashing quality.

- CSQ presents a global central similarity and encourages the hashing codes

of similar images to arrive at the corresponding centers.

The above state-of-the-art methods consist of three types of hashing learn-

ing approaches. ITQ is a representative unsupervised learning method. COS-

DISH, SDH, FastH, and LFH are non-deep supervised learning methods. DSDH,

DDSH, DPSH, DSH, DHN, and CSQ are deep supervised learning methods.

The comparison results of our method against the state-of-the-art methods

are tabulated in Table 4, Table 5, and Table 6, from which we obtain three

observations. First, the unsupervised method ITQ lags behind all of the super-

vised methods, suggesting the great advantage of the supervised information.

22

Table 6: Comparisons with CSQ. Since the code length of CSQ can only be 2n, where n ∈ (1,
2, 3, ...), we conduct experiments under 16 bits, 32 bits, and 64 bits that are consistent with
the settings in [67].

Method
CIFAR-10 Clothing1M NUS-WIDE MS-COCO

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits
DMUH 0.779 0.822 0.830 0.320 0.389 0.402 0.803 0.825 0.834 0.765 0.785 0.792
CSQ 0.501 0.533 0.572 0.302 0.308 0.317 0.755 0.783 0.791 0.670 0.681 0.707

Second, the performance of deep supervised hashing methods is generally better

than that of the non-deep supervised hashing methods. This indicates that the

features extracted by deep neural networks are better than the hand-crafted

features. Third, our method obtains the highest retrieval accuracy on all of the

four datasets. For example, on the CIFAR-10 dataset, our method surpasses

DDSH by 3.9% at 24 bits. On the NUS-WIDE dataset, we improve the best

MAP values of all bits at least 1.2%. On the MS-COCO dataset, we also get

an improvement of 1.6% at 12 bits. Specially, on the large-scale Clothing1M

dataset, the MAP value is significantly improved by 3.7%, 3.9%, 4.6%, and

5.5% in terms of 12, 24, 32, and 48 bits, respectively. Compared with the state-

of-the-art CSQ, our method also presents more superior performance, obtaining

at least 1.8% improvements on the four datasets. The compared deep supervised

hashing methods adopt a similar binary approximation that treats all hashing

bits equally, such as DSDH uses the activation function Tanh and DPSH uses

the regularization. With these in mind, we owe the gains of our method over

the competitors to the proposed uncertainty-aware learning approach. It applies

different attention weights for different hashing bits and input images according

to the magnitude of the bit-level and image-level uncertainty, respectively.

6. Conclusion

In this paper, we have proposed an uncertainty-aware deep supervised hash-

ing method that is named as DMUH. To begin with, we discover that the hashing

network has different uncertainty to different approximate hashing bits. Accord-

ing to this observation, we propose that hashing bits should be paid separate

attention during training, rather than being treated equally. Subsequently, we

23

introduce a momentum-updated network to assist in estimating such bit-level

uncertainty. In addition, the mean bit-level uncertainty of all bits in a hashing

code is seen as image-level uncertainty, which reflects the uncertainty of the

hashing network to the corresponding input image. The bit-level uncertainty

and image-level uncertainty are leveraged to guide the regularization of hashing

bits and facilitate the optimization of Hamming distance, respectively. Finally,

extensive experiments on the CIFAR-10, Clothing1M, NUS-WIDE, and MS-

COCO datasets demonstrate the superiority of our proposed method over state-

of-the-art counterparts, especially on the million-scale Clothing1M dataset.

In general, as far as we know, we are the first to study the uncertainty in

binary bits, which can bring some useful insights to deep hashing methods and

other similar discrete optimization problems. However, there is still room for

improvement in the proposed method, which optimizes approximate continued

values of binary bits rather than directly optimizing binary values. In the future,

we will focus more on the discrete coding procedure. Moreover, we also plan to

extend our method to cross-modal hashing due to its wide application prospects.

References

[1] Y. Bengio, A. Lodi, A. Prouvost, Machine learning for combinatorial op-

timization: a methodological tour d’horizon, European Journal of Opera-

tional Research.

[2] J. Yan, M. Cho, H. Zha, X. Yang, S. M. Chu, Multi-graph matching

via affinity optimization with graduated consistency regularization, IEEE

Transactions on Pattern Analysis and Machine Intelligence 38 (6) (2015)

1228–1242.

[3] O. Vinyals, M. Fortunato, N. Jaitly, Pointer networks, in: Advances in

Neural Information Processing Systems, 2015.

[4] R. Wang, J. Yan, X. Yang, Combinatorial learning of robust deep graph

24

matching: an embedding based approach, IEEE Transactions on Pattern

Analysis and Machine Intelligence.

[5] J. Wang, T. Zhang, J. Song, N. Sebe, H. T. Shen, A survey on learning

to hash, IEEE Transactions on Pattern Analysis and Machine Intelligence

40 (4) (2017) 769–790.

[6] G. Lin, C. Shen, Q. Shi, A. Van den Hengel, D. Suter, Fast supervised

hashing with decision trees for high-dimensional data, in: IEEE Conference

on Computer Vision and Pattern Recognition, 2014.

[7] R. He, B. Hu, X. Yuan, L. Wang, Robust recognition via information the-

oretic learning, 2014.

[8] R. He, B.-G. Hu, X.-T. Yuan, Robust discriminant analysis based on non-

parametric maximum entropy, in: Asian Conference on Machine Learning,

2009.

[9] Y. Gong, S. Lazebnik, Iterative quantization: A procrustean approach to

learning binary codes, in: IEEE Conference on Computer Vision and Pat-

tern Recognition, 2011.

[10] A. Gionis, P. Indyk, R. Motwani, Similarity search in high dimensions via

hashing, in: Very Large Data Bases, 1999.

[11] W.-J. Li, S. Wang, W.-C. Kang, Feature learning based deep supervised

hashing with pairwise labels, in: International Joint Conference on Artifi-

cial Intelligence, 2016.

[12] C. Fu, L. Song, X. Wu, G. Wang, R. He, Neurons merging layer: towards

progressive redundancy reduction for deep supervised hashing, in: Interna-

tional Joint Conference on Artificial Intelligence, 2019.

[13] R. Xia, Y. Pan, H. Lai, C. Liu, S. Yan, Supervised hashing for image re-

trieval via image representation learning, in: AAAI Conference on Artificial

Intelligence, 2014.

25

[14] Q.-Y. Jiang, X. Cui, W.-J. Li, Deep discrete supervised hashing, IEEE

Transactions on Image Processing 27 (12) (2018) 5996–6009.

[15] H. Liu, R. Wang, S. Shan, X. Chen, Deep supervised hashing for fast

image retrieval, in: IEEE Conference on Computer Vision and Pattern

Recognition, 2016.

[16] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense

object detection, in: IEEE International Conference on Computer Vision,

2017.

[17] C.-Y. Wu, R. Manmatha, A. J. Smola, P. Krahenbuhl, Sampling matters in

deep embedding learning, in: IEEE International Conference on Computer

Vision, 2017.

[18] K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsu-

pervised visual representation learning, in: IEEE Conference on Computer

Vision and Pattern Recognition, 2020.

[19] A. Tarvainen, H. Valpola, Mean teachers are better role models: Weight-

averaged consistency targets improve semi-supervised deep learning results,

in: Advances in Neural Information Processing Systems, 2017.

[20] G. French, M. Mackiewicz, M. Fisher, Self-ensembling for visual domain

adaptation, in: International Conference on Learning Representations,

2018.

[21] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny

images, Master’s thesis, University of Toronto.

[22] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y. Zheng, Nus-wide: a real-

world web image database from national university of singapore, in: ACM

International Conference on Image and Video Retrieval, 2009.

[23] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, C. L. Zitnick, Microsoft coco: Common objects in context, in:

European Conference on Computer Vision, 2014.

26

[24] T. Xiao, T. Xia, Y. Yang, C. Huang, X. Wang, Learning from massive noisy

labeled data for image classification, in: IEEE Conference on Computer

Vision and Pattern Recognition, 2015.

[25] J. Huang, M. Patwary, G. Diamos, Coloring big graphs with alphagozero,

arXiv preprint:1902.10162.

[26] R. Wang, J. Yan, X. Yang, Learning combinatorial embedding networks

for deep graph matching, in: IEEE International Conference on Computer

Vision, 2019.

[27] R. Wang, J. Yan, X. Yang, Neural graph matching network: Learning

lawler’s quadratic assignment problem with extension to hypergraph and

multiple-graph matching, IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence.

[28] J. Yan, S. Yang, E. R. Hancock, Learning for graph matching and related

combinatorial optimization problems, in: International Joint Conference

on Artificial Intelligence, 2020.

[29] J. Ma, X. Jiang, A. Fan, J. Jiang, J. Yan, Image matching from hand-

crafted to deep features: A survey, International Journal of Computer Vi-

sion 129 (1) (2021) 23–79.

[30] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov,

A. Smola, Deep sets, in: Advances in Neural Information Processing Sys-

tems, 2017.

[31] Y. Shen, Y. Shi, J. Zhang, K. B. Letaief, Lorm: Learning to optimize for

resource management in wireless networks with few training samples, IEEE

Transactions on Wireless Communications 19 (1) (2019) 665–679.

[32] Q.-Y. Jiang, W.-J. Li, Asymmetric deep supervised hashing, in: AAAI

Conference on Artificial Intelligence, 2018.

27

[33] H. Liu, R. Ji, Y. Wu, W. Liu, Towards optimal binary code learning via

ordinal embedding, in: AAAI Conference on Artificial Intelligence, 2016.

[34] W. Liu, C. Mu, S. Kumar, S.-F. Chang, Discrete graph hashing, in: Ad-

vances in Neural Information Processing Systems, 2014.

[35] F. Shen, C. Shen, Q. Shi, A. Van Den Hengel, Z. Tang, Inductive hash-

ing on manifolds, in: IEEE Conference on Computer Vision and Pattern

Recognition, 2013.

[36] D. Tian, D. Tao, Global hashing system for fast image search, IEEE Trans-

actions on Image Processing 26 (1) (2016) 79–89.

[37] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, S.-F. Chang, Supervised hashing with

kernels, in: IEEE Conference on Computer Vision and Pattern Recognition,

2012.

[38] W.-C. Kang, W.-J. Li, Z.-H. Zhou, Column sampling based discrete super-

vised hashing, in: AAAI Conference on Artificial Intelligence, 2016.

[39] W. Zhang, J. Yan, X. Wang, H. Zha, Deep extreme multi-label learning,

in: International Conference on Multimedia Retrieval, 2018.

[40] R. Xu, C. Li, J. Yan, C. Deng, X. Liu, Graph convolutional network hashing

for cross-modal retrieval, in: International Joint Conference on Artificial

Intelligence, 2019.

[41] E. Yang, T. Liu, C. Deng, W. Liu, D. Tao, Distillhash: Unsupervised deep

hashing by distilling data pairs, in: IEEE Conference on Computer Vision

and Pattern Recognition, 2019.

[42] J. Lu, V. E. Liong, Y.-P. Tan, Adversarial multi-label variational hashing,

IEEE Transactions on Image Processing 30 (2020) 332–344.

[43] C. Sun, X. Song, F. Feng, W. X. Zhao, H. Zhang, L. Nie, Supervised

hierarchical cross-modal hashing, in: International ACM SIGIR Conference

on Research and Development in Information Retrieval, 2019.

28

[44] C.-X. Li, T.-K. Yan, X. Luo, L. Nie, X.-S. Xu, Supervised robust discrete

multimodal hashing for cross-media retrieval, IEEE Transactions on Mul-

timedia 21 (11) (2019) 2863–2877.

[45] T.-K. Yan, X.-S. Xu, S. Guo, Z. Huang, X.-L. Wang, Supervised robust dis-

crete multimodal hashing for cross-media retrieval, in: ACM International

on Conference on Information and Knowledge Management, 2016.

[46] C. Deng, E. Yang, T. Liu, J. Li, W. Liu, D. Tao, Unsupervised semantic-

preserving adversarial hashing for image search, IEEE Transactions on Im-

age Processing 28 (8) (2019) 4032–4044.

[47] C. Deng, Z. Chen, X. Liu, X. Gao, D. Tao, Triplet-based deep hashing

network for cross-modal retrieval, IEEE Transactions on Image Processing

27 (8) (2018) 3893–3903.

[48] N. Li, C. Li, C. Deng, X. Liu, X. Gao, Deep joint semantic-embedding

hashing, in: International Joint Conference on Artificial Intelligence, 2018.

[49] C. Li, H. Tang, C. Deng, L. Zhan, W. Liu, Vulnerability vs. reliabil-

ity: Disentangled adversarial examples for cross-modal learning, in: ACM

SIGKDD International Conference on Knowledge Discovery & Data Min-

ing, 2020.

[50] Z. Li, J. Tang, L. Zhang, J. Yang, Weakly-supervised semantic guided

hashing for social image retrieval, International Journal of Computer Vision

128.

[51] L. Jin, Z. Li, J. Tang, Deep semantic multimodal hashing network for

scalable image-text and video-text retrievals, IEEE Transactions on Neural

Networks and Learning Systems.

[52] Z. Li, J. Tang, T. Mei, Deep collaborative embedding for social image

understanding, IEEE Transactions on Pattern Analysis and Machine Intel-

ligence 41 (9) (2018) 2070–2083.

29

[53] J. Chang, Z. Lan, C. Cheng, Y. Wei, Data uncertainty learning in face

recognition, in: IEEE Conference on Computer Vision and Pattern Recog-

nition, 2020.

[54] A. Kendall, V. Badrinarayanan, R. Cipolla, Bayesian segnet: Model uncer-

tainty in deep convolutional encoder-decoder architectures for scene under-

standing, in: British Machine Vision Conference, 2015.

[55] Y. Tang, Z. Ni, J. Zhou, D. Zhang, J. Lu, Y. Wu, J. Zhou, Uncertainty-

aware score distribution learning for action quality assessment, in: IEEE

Conference on Computer Vision and Pattern Recognition, 2020.

[56] Y. Gal, Z. Ghahramani, Dropout as a bayesian approximation: Represent-

ing model uncertainty in deep learning, in: International Conference on

Machine Learning, 2016.

[57] A. Kendall, Y. Gal, What uncertainties do we need in bayesian deep learn-

ing for computer vision?, in: Advances in Neural Information Processing

Systems, 2017.

[58] S. Wu, C. Rupprecht, A. Vedaldi, Unsupervised learning of probably sym-

metric deformable 3d objects from images in the wild, in: IEEE Conference

on Computer Vision and Pattern Recognition, 2020.

[59] T. Yu, D. Li, Y. Yang, T. M. Hospedales, T. Xiang, Robust person re-

identification by modelling feature uncertainty, in: IEEE International

Conference on Computer Vision, 2019.

[60] Z. Zheng, Y. Yang, Rectifying pseudo label learning via uncertainty esti-

mation for domain adaptive semantic segmentation, International Journal

of Computer Vision 129 (4) (2021) 1106–1120.

[61] P. Zhang, W. Zhang, W.-J. Li, M. Guo, Supervised hashing with latent

factor models, in: International ACM SIGIR Conference on Research and

Development in Information Retrieval, 2014.

30

[62] H. Lai, Y. Pan, Y. Liu, S. Yan, Simultaneous feature learning and hash cod-

ing with deep neural networks, in: IEEE Conference on Computer Vision

and Pattern Recognition, 2015.

[63] K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil

in the details: Delving deep into convolutional nets, in: British Machine

Vision Conference, 2014.

[64] F. Shen, C. Shen, W. Liu, H. Tao Shen, Supervised discrete hashing, in:

IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[65] Q. Li, Z. Sun, R. He, T. Tan, A general framework for deep supervised

discrete hashing, International Journal of Computer Vision 128 (8) (2020)

2204–2222.

[66] H. Zhu, M. Long, J. Wang, Y. Cao, Deep hashing network for efficient

similarity retrieval, in: AAAI Conference on Artificial Intelligence, 2016.

[67] L. Yuan, T. Wang, X. Zhang, F. E. Tay, Z. Jie, W. Liu, J. Feng, Central

similarity quantization for efficient image and video retrieval, in: IEEE

Conference on Computer Vision and Pattern Recognition, 2020.

31

	1 Introduction
	2 Related Work
	2.1 Learning of Combinatorial Optimization
	2.2 Hashing Retrieval
	2.3 Uncertainty in Deep Learning

	3 Preliminaries
	3.1 Notation
	3.2 Problem Definition

	4 Method
	4.1 Overall Framework
	4.2 Hashing Learning Revisit
	4.3 Uncertainty Estimation
	4.4 Uncertainty-aware Hashing Learning

	5 Experiments
	5.1 Datasets and Protocols
	5.2 Experimental Details
	5.3 Evaluation of the Uncertainty-aware Hashing
	5.4 Ablation Study
	5.5 Comparisons with State-of-the-Art Methods

	6 Conclusion

