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Abstract

Clustering algorithms play a fundamental role as tools in decision-making and sensible automation processes.
Due to the widespread use of these applications, a robustness analysis of this family of algorithms against
adversarial noise has become imperative. To the best of our knowledge, however, only a few works have
currently addressed this problem. In an attempt to fill this gap, in this work, we propose a black-box
adversarial attack for crafting adversarial samples to test the robustness of clustering algorithms. We
formulate the problem as a constrained minimization program, general in its structure and customizable by
the attacker according to her capability constraints. We do not assume any information about the internal
structure of the victim clustering algorithm, and we allow the attacker to query it as a service only. In the
absence of any derivative information, we perform the optimization with a custom approach inspired by the
Abstract Genetic Algorithm (AGA). In the experimental part, we demonstrate the sensibility of different
single and ensemble clustering algorithms against our crafted adversarial samples on different scenarios.
Furthermore, we perform a comparison of our algorithm with a state-of-the-art approach showing that we are
able to reach or even outperform its performance. Finally, to highlight the general nature of the generated
noise, we show that our attacks are transferable even against supervised algorithms such as SVMs, random
forests and neural networks.

Keywords: Clustering, Adversarial machine learning, Secure machine learning, Unsupervised learning.

1. Introduction

The state of the art in machine learning and computer vision has greatly improved over the course of
the last decade, to the point that many algorithms are commonly used as effective aiding tools in security
(spam/malware detection [, face recognition [2]) or decision making (road-sign detection [3], cancer detection
[], financial sentiment analysis [5]) related tasks. The increasing pervasiveness of these applications in our
everyday life poses an issue about the robustness of the employed algorithms against sophisticated forms of
non-random noise.

Adversarial learning has emerged over the past few years as a line of research focused on studying and
addressing the aforementioned robustness issue. Perhaps, the most important result in this field is the
discovery of adversarial noise, a wisely crafted form of noise that, if applied to an input, does not affect
human judgment but can significantly decrease the performance of the learning models [0} [7]. Adversarial
noise has been applied with success to fool models used in security scenarios such as spam filtering [8|, 9] [10]
or malware detection [I1], but also in broader scenarios such as image classification [12].

The vast majority of the works done so far in this field deals with supervised learning. However,
its unsupervised counterpart is equally present in sensible applications, such as fraud detection, image
segmentation, and market analysis, not to mention the plethora of security-based applications for detecting

dangerous or illicit activities [13] 14} [15] [16 [17].
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It follows that the robustness of unsupervised algorithms used by those applications is crucial to give
credibility to the results provided. Among the unsupervised tasks, in this work, we focus our attention on
instance clustering with feature and image data.

The majority of clustering algorithms are not differentiable, thus adversarial gradient-based approaches —
widely used in supervised settings — are not directly applicable. Since, in general, the machine learning field is
currently dominated by gradient-based methods, this may represent a possible reason for the limited interest
in this field. Nonetheless, the problem has been addressed in a complete white-box setting in [I8| [Tl [19],
where some gradient-free attack algorithms have been proposed. In these works, the authors usually leverage
the internal behavior of the clustering methods under study to craft ad-hoc adversarial noise. To the best of
our knowledge, little work has been done against black-box algorithms. The design of black-box adversarial
attacks, not only can help in finding common weaknesses of clustering algorithms but can also pave the
road towards general rules for the formulation of robust clustering algorithms. In this work, we propose an
algorithm to craft adversarial examples in a gradient-free fashion, without knowing the identity of the target
clustering method. We assume that the attacker can only perform queries to it. Furthermore, we argue
that, due to its general nature, the noise generated by our adversarial algorithm can also be applied to fool
effectively supervised methods.

The main contributions of our work are as follows: (a) We design a new black-box gradient-free optimization
algorithm to fool data clustering algorithms, and provide convergence guarantees. (b) We propose a new
objective function that takes into consideration the attacker’s capability constraints, motivating its suitability
in this setting. (c) We perform experiments on three different datasets against different clustering methods,
showing that our algorithm can significantly affect the clustering performance. (d) Following the work of
[20], we perform a transferability analysis, showing that our crafted adversarial samples are suitable to fool
supervised algorithms.

2. Related Work

Several works use clustering for extracting data patterns in a given dataset. For instance, the work of
[21] proposed Malheur, a tool for behavioral malware detection that combines clustering and classification
for detecting novel malware categories. [I4] have proposed AnDarwin, a software for detecting plagiarism in
Android applications. In this approach, clustering is used to handle large numbers of applications, unlike
previous methods that compare apps pairwise. More recently, [22] have presented a tool for anomaly detection
in networking by using a clustering algorithm. Despite the greater need to have robust clustering algorithms,
only a few works address their security problems.

The first works on the analysis of adversarial manipulations against clustering algorithms were proposed
in [18] and [23]. The authors observed that some samples could be misclustered by positioning them close to
the original cluster boundary, so that a new fringe cluster is formed.

[11] provided a theoretical formulation for the adversarial clustering problem and proposed a perfect-
knowledge attack to fool single-linkage hierarchical clustering. In particular, the authors defined two different
attack strategies: poisoning and obfuscation. The former infects data to violate the system availability and
deteriorate the clustering results. The latter taints a target set of samples to violate the system integrity. In
our threat model, we share the same aims of the poisoning strategy; however, differently from what has been
done in [I1], we extend the application of poisoning by allowing the attacker to manipulate already existing
samples in the dataset instead of injecting new ones. Later on, in [24], the previous work was extended by
proposing a threat model against complete-linkage hierarchical clustering. [19] defined a threat algorithm to
fool DBSCAN-based algorithms by selecting and then merging arbitrary clusters.

All the aforementioned works assume that the attacker has perfect knowledge about the clustering
algorithm under attack. In our work, we overcome this assumption by proposing a gradient-free algorithm
to fool clustering algorithms in a generalized black-box setting, meaning that the attacker has no prior
knowledge about the clustering algorithm and its parameters. We design our algorithm as an instance of an
Abstract Genetic Algorithm [25], in which the adversarial noise improves generation by generation.

Recently, a similar problem has been addressed in [26], where it has been proposed a derivative-free,
black-box attack strategy to target clustering algorithms working on linearly separable tasks. The approach
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consists of manipulating only one specific input sample feature-by-feature to corrupt the clustering decision
boundary. However, our method is still different, since:

e It has been designed for attacking generic clustering algorithms (not only linearly separable ones).

e We propose a way to address multi-clustering problems by allowing the attacker to manipulate samples
coming from different clusters.

e We prove that our algorithm has significant convergence properties to find the optimal perturbation for
multiple samples and features at the same time.

e We penalize our solutions by considering the number of manipulated features in addition to the
maximum acceptable noise threshold.

3. Methodology

Let X € R™*? denote a feature matrix representing the dataset to be poisoned, where n is the number
of samples and d is the number of features. We define C : R"*% — {1,..., K}" to be the target clustering
algorithm, that separates n samples into K different classes (1 < K < n). We remark that by querying the
clustering algorithm, the attacker can retrieve the number of clusters, and they may also change during the
evaluation.

We consider the problem of crafting an adversarial mask €, to be injected into X, such that the clustering
partitions C(X) and C(X + €) are different to a certain degree. In real scenarios, the attacker may follow some
policies on the nature of the attack, usually imposed by intrinsic constraints on the problem at hand [27]. We
model the scenario in which the attacker may want to perturb a specific subset of samples T'C {1,...,n},
in such a way that the attack is less human-detectable. i.e. by constraining the norm of € [28, [29]. In our
work, the attacker’s capability constraints [27] are thus defined by (a) an attacker’s mazimum power ¢, which
is the maximum amount of noise allowed to be injected in a single entry x;;, (b) an attacker’s mazimum
effort «, which is the maximum number of manipulable entries of X. Further, we assume the attacker has
access to the feature matrix X, and she can query the clustering algorithm C under attack. Similarly to [26]
the adversary exercises a causative influence by manipulating part of the data to be clustered without any
further information about the victim’s algorithm C.

Given these considerations, an optimization program for our task is proposed as follows:

. én}}l” #(C(X),C(X +¢€)) (1)

where ¢ is a similarity measure between clusterings, and
Ers={vER™ |v|w <AV, =0VigT} (2)

is the adversarial attack space, which defines the space of all possible adversarial masks that satisfy the
maximum power constraints and perturb only the samples in T'. A problem without such capability constraints
can be denoted with £x . Note that v is not directly referenced in Er s but is bounded by T itself, namely
v=IT]-d.

We further elaborate Program [1| by searching for low Power & Effort (P&E) noise masks, in order to
enforce the non-detectability of the attack. To this end, we adopt a similar strategy as in [30], which adds a
penalty term Al|€]|, to the cost function, usually with p = 0,2 or co. Following this approach, we reformulate
Program [1] by including a penalty term that takes into consideration both the attacker’s P&E which leverages
the co and 0 norms, respectively. The optimization program becomes:

eénglm $(C(X),C(X +€)) + Allelloll€lloo (3)

This choice keeps the optimization program interpretable since it establishes a straightforward connection to
our minimization desiderata (low P&E). In addition, our penalty term can be seen as a proxy function for
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|l€ll, granting similar regularization properties to the optimization. Indeed the P&E penalty is an upper
bound to the single norm term, as the following lemma shows:

Lemma 1. Let x € R", and p,q € RU {400} such that 1 <p < g < 400 then:

1x[lp < lIxllolIxlg (4)

Proof. The case x = 0 is trivial. Suppose that Vi, x; # 0, then for a known result on the equivalence of
norms in R™ [31] we know that ||x||, < n1/P=1/9|x]|,, thus:

x|l < n(l/p_l/Q)HXHq < nl/pHXHq < nllxlq

= [[xllolIx[lq ()

Suppose now, without loss of generality that x = (z1,...,%m,0,...,0)T, such that Vi € {1,...,m}, 2; #0 .
Consider its projection x’ onto the axes 1,...,m, then Vp > 0, ||x||, = ||x||,- Thus Equation [5| holds since:

1l = 1%, < mlxllq = lIxlollxllq

3.1. Threat Algorithm

The approach we used to optimize Program , takes its inspiration from Genetic Algorithms (GA) [32].
These methods nicely fit our black-box setting since they do not require any particular property on the
function to be optimized. Furthermore, our algorithm possesses solid convergence properties. In Section (3.3
we show that our algorithm is an instance of the Abstract Genetic Algorithm (AGA), as presented in [33] 25],
and we give a proof of its convergence.

An additional constraint, usually imposed in real-world scenarios, is represented by the limited number
of queries that can be performed to the algorithm under attack [34]. Classical approaches in GAs usually
create large, fixed-size populations at each generation, and this, in turn, requires to compute the fitness score
multiple times, querying C for each individual in the population, thereby making the process query-inefficient.
To address this issue, we propose a growing size population approach. We start with a population © of size
equal to 1 and, generation by generation, we grow it by producing a new individual. To still harness the
explorative power of GAs, we use a high mutation rate, and we allow the population set © to grow by keeping
trace of all the previously computed individuals. In the case of memory-aware applications, our method
can be extended by controlling the size of O, in particular, by pruning low-fitness candidates. However, in
our experiments, we adopted a different technique aimed to speed up the convergence of the optimization
algorithm by reducing the number of generations (cf. Section .

Algorithm 1 Black-box poisoning

Input: X e R"*¢ C.§6,T,G,1
Output: optimal adversarial mask €*

Initialize €(© € Er,s randomly

0 = {0}

for g=0to G—1do
eiﬁfl) = choice(0,1)
elgtt) = crossover(el9), eiﬁfl))
elotl) = mutation(e£$+1), 5,T)
0 =0uU/{elthy

: end for

: return: € = argmin g [(€)

_ e =




Algorithm [I] describes our optimization approach. It takes as input the feature matrix X, the clustering
algorithm C, the target samples T, the maximum attacker’s power §, the total number of generations G (the
attacker’s budget in term of queries) and the attacker’s objective function ! (which in our case is the one
defined in Program ) The resulting output is the optimal adversarial noise mask €* that minimizes [. At
each generation, a new adversarial mask €91 is generated and added to a population set © containing all
previous masks.

The core parts of our optimization process are the stochastic operators — choice, crossover and mutation
— that we use for crafting new candidate solutions with a better fitness score. In the following, we describe
their implementation.

Choice. The choice operator is used to decide which candidates will be chosen to generate offspring. We
adopt a roulette wheel approach [32], where only one candidate is selected with a probability proportional
to its fitness score, which in turn is inversely proportional to the attacker’s objective function [. Given a
candidate €, its probability to be chosen for the production process p(e(i)) is equal to:

exp(—I(e)
5 eco oxp(—1(e))

We remark that our choice operator picks just one adversarial noise mask that is then used in the crossover
step.

p(e) = (6)

Crossover. The crossover operator simulates the reproduction phase, by combining different candidate
solutions (parents) for generating new ones (offspring). Commonly, crossover operators work with binary-
valued strings, however, since our candidates are matrices in £ 5, we propose a variant. Given two candidates
€,€’ € Ep s, the new offspring is generated starting from €', then with probability equal to p. each entry 1, j
is swapped with the entry ¢, j in €. The crossover operator has probability p. of being applied; in the case
of failure, €’ itself is chosen as an offspring.

Mutation. The mutation is a fundamental operator, usually applied to the offspring generated by the
crossover, to introduce genetic variation in the current population. Our operator mutates each entry e;;
s.t. ¢ € T with probability p,, by adding an uniformly distributed random noise in the range [—¢,d]. The
resulting perturbation matrix, is subsequently clipped to preserve the constraints dictated by Er 5.

Moreover, to enforce the low attacker’s effort desiderata, we also perform zero-mutation, meaning that
each entry of the mask is set to zero with probability p,.

Time complexity analysis

In this section we provide a time complexity analysis for Algorithm [I} In step 8, the objective function
is computed, requiring, in turn, to execute the clustering algorithm C with complexity O(C(nd)). Step 9
performs a cross-over between two adversarial masks, in O(nd) time. The mutation of Step 10 is similarly
computed in O(nd) time. The overall time complexity is, thus, given by O(G(C(nd) 4+ 2nd)) = O(GC(nd)),
with G equal to the number of generations. The complexity of the clustering algorithm C(nd) is a key
point in the efficiency of the attack. As an example, considering K-means, we have a polynomial-time of
O(G(ndKt+ 2n)) = O(GndKt), with K being the number of clusters and ¢ the number of iterations for the
clustering algorithm.

3.2. Speeding up the convergence

By just generating a new individual at each generation, our proposed method has the major drawback of
being slow at converging. To counter this problem, inspired by the work of [35], we decided to “imprint”
a direction to the generated adversary mask to move the adversarial samples towards the target cluster.
Since we lack the gradient information, the centroids information is leveraged instead. We propose the
following approach: each adversarial mask € € £ is generated with the additional constraint that Vi, j

€;; > 0. After this, the mask is multiplied by a direction matriz 1 with ¢;; = sgn(cg»t) — cgv))7 c¢® and ¢
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being respectively the target and victim cluster centroids estimated from the victim data. The estimation
is performed averaging the samples in the corresponding cluster. This variant can be easily implemented
by changing the initialization of €(® and the mutation step only. It follows that the resulting adversarial
attack space is now reduced to S’T’ s C Er,5. We still grant that the capability constraints are respected and
the convergence properties hold, although the quality of the found optimum may be inferior. In addition,
we noticed that, without using this strategy, the optimization algorithm was more sensitive to the choice
of hyper-parameters. Therefore, we have decided to adopt this strategy, which makes our algorithm more
efficient and less sensitive to the choice of hyper-parameters.

3.8. Convergence properties

In general, GAs do not guarantee any convergence property [36]. However, under some more restrictive
assumptions, it can be shown that they converge to an optimum. In this section, we show that our
algorithm can be thought of as an instance of the Abstract Genetic Algorithm (AGA) as presented in [25] 33].
Subsequently, we give a proof of convergence. Below, we show the AGA pseudo-code:

Algorithm 2 Abstract Genetic Algorithm (pseudo-code)

1: Make initial population

while not stopping condition do

Choose parents from population

Let the selected parents Produce children

Extend the population by adding the children to it

Select elements of the extended population to survive for the next cycle
8: end while
9: Output the optimum of the population

In [25] 83], the authors show that methods such as classical Genetic Algorithms and Simulated Annealing
can be thought of as instances of Algorithm Further, they prove their probabilistic convergence to a
(global) optimum. Following the same theoretical framework, we show that our algorithm indeed satisfies all
the conditions for convergence. Before doing so, we first present the framework and adapt our algorithm in
order to comply with it.

Let S be a set of candidates and S* be a set of finite lists over S, representing all the possible finite
populations. A neighborhood function is a function N : S — S* that assigns neighbors to each individual
in S. A parent-list, is a list of candidates able to generate offspring, with P C S* denoting the set of
all parent-list. In our algorithm, a population is represented by a list [€(?), ..., €], therefore S = Ers,
S* =& 5 P= {[€®,eW)] | €®, €l ¢ Er.s}.

Let f: X — Y be a function belonging to F, the set of all functions from X to Y. Further, let (2, A, P)
be a probability space and ¢ : 2 — F be random variable. We define the randomized f to be the function
f(w,z) = g(w)(z). Following this definition and [25], Algorithm [2| can be then detailed as follows:



Algorithm 3 Abstract Genetic Algorithm

Create an x € S*

1:

2:

3: while not stopping condition do
4: draw «a, 8 and v

5 q= fc(a7 l’)

6 y:Uzequ(ﬂvz)

7. 2 =zUy

8: = fs (’Ya Z‘/)

9: end while

10: output the actual population

with f.: A x §* — P(P) being the choice function, f, : B x P — P(S) being the production function
and fs : C x S* — S* being the selection function. In our case, we define:
(a) fo(a,z) = {[choice(w,x),x_1]}, Va € A
(b) fp(B,[s1,2]) = mutation(B, crossover(B, s1,s2))), VB € B
(¢) fs(y,2") =2’ (Note that our selection is deterministic)

Where x_1 is the most recent candidate in the population. In the above pseudo-code, we have explicitly stated
the randomization of our procedures choice, mutation, crossover for clarity. The stochastic processes
regulating the drawings of «, 8, and v always maintain the same distributions regardless of the current
generation, meaning that the probability of generating a new population x,., from another one x,4 does
not change over the generations.

We now introduce and extend some definitions presented in [25):

1. A neighborhood structure is connective if: Vs € S,Vt € S : s — t, where — stands for the transitive
closure of the relation {(s,¢) € S x S|t € N(s)}.

2. A choice function is generous if: (a) {[s,t] | s,t € S} C P and (b) Vz € S*, Vs1,s2 € x : P([s1,52] €
fela, ) > 0.

3. A production function is generous if: Vsq1,s2 € S, Vt € N(s1) UN(s2) : P(t € f,(B,[s1,s2])) > 0.

4. A selection function is generous if: Vo € S*, Vs € z : P(s € fs(v,z)) > 0.

5. A selection function is conservative if: M, N fo(vy,x) # 0, with M, = {s €z |Vt €z : f(s) < f(t)}.

In [25] pag. 10, the authors further make a little technical assumption about the sets A, B, and C, requiring
them to be countable, with positive probability for all their members. This is easily achieved in real
applications considering the finiteness of the floating point representations.

Now we are ready to prove the following theorem:

Theorem 3.1. Algorithm[3 almost surely reaches a global optimum.

Proof. Given the previous considerations, the following statements hold:

1. Our neighborhood structure is connective: by the definition of our mutation operator, it holds that
N(G(Z)) = 5T75,V€(i) S gT)(;.

2. Our choice function is generous: this follows from (a) the definition of P, and from (b) the positivity

of the softmax function in Equation 6.

Our production function is generous: See point 1.

Our selection function is generous: we allow all the candidates to survive with probability 1.

Our selection function is conservative: see point 4.

O W

The proof then follows from Theorem 3 in [33], adjusting the generousness definitions with our versions
presented above. The globality of the optimum comes from the fact that our algorithm performs a global
search, instead of a local one. O

The same conclusions can be drawn for the speed-up heuristic, by just replacing each instance of £r s,
with & ;.



4. Experimental results

In this section, we present an experimental evaluation of the proposed methodology of attack.

4.1. Robustness analysis

We ran the experiments on three real-world datasets: FashionMNIST [37], CIFAR-10 [38] and 20 News-
groups [39]. We focused our analysis on both two- and multiple-way clustering problems. For FashionMNIST
and 20 Newsgroups, we simulated the former scenario in which an attacker wants to perturb samples of one
victim cluster C,, towards a target cluster C;. For CIFAR-10, we allowed the attacker to move samples from
multiple victim clusters towards a target one by simply running multiple times our algorithm with a different
victim cluster for each run. In the experiments, we chose T' to contain the s|C,| nearest neighbors belonging
to the currently chosen victim cluster, with respect to the centroid of the target cluster. In particular, for
FashionMNIST we used 20 different values for s and 4, in the intervals [0.01,0.6] and [0.05, 1] respectively; for
CIFAR-10 we used 20 different values for s and §, in the intervals [0.01,0.6] and [0.01, 1.5] respectively; for
20 Newsgroups we used 15 different values for s and 0, in the intervals [0.01,0.3] and [0.001, 0.3] respectively.

We tested the robustness of three standard clustering algorithms: hierarchical clustering using Ward’s
criterion [40], K-means++ [41] and the normalized spectral clustering [42] as presented in [43], with the [44]
similarity measure. The code has been written in PyTorch [45] and it available at

For the optimization program, we set A = —'— with o = 255 as penalty term for our cost function.
In addition, in the optimization algorithm, we set the probability of having crossover p, = 0.85, mutation
pm = 0.05 and zero-mutation p, = 0.001. The total number of generations G, which correspond to the
number of queries, was always set to 110, using the heuristic proposed in Section In addition, we repeated
these experiments for five times, reporting the mean with the standard error.

In Program , we indicate with ¢ a function for measuring the similarity between two clustering
partitions. In the literature, we can find several metrics used for the evaluation of clusterings [406] 47, [48], 49];
in addition, [1T] proposed to adopt the following measure for the evaluation: d(Y,Y’) = |[YY ' — Yy'" I,
where || - |7 is the Frobenius norm, and Y, Y’ € R™** are one-hot encodings of the clusterings C(X) and
C(X + €) respectively. In our work, we decided to use the Adjusted Mutual Information (AMI) Score,
proposed in [49] since it makes no assumptions about the cluster structure and, as highlighted in [50], it
works well even in the presence of unbalanced clusters. Indeed, the clustering partition over the poisoned
dataset might also create unbalanced clusters, especially if the attacker wants to move samples only from one
towards the others.

The AMI score between two clustering partitions U and V' is given by:

MI(U,V) —E[MI(U,V)]
max {H(U), H(V)} — E[MI(U, V)]

AMI(U,V) = (7)
where MI(U, V) measures the mutual information shared by the two partitions, E[]MI(U, V')] represents its
expected mutual information and max {H(U), H(V)} is the maximum between the two entriopies, which is
an upper bound for MI(U,V). AMI is equal to 1 when the two clustering partitions are identical, and 0
when they are independent, that is, sharing no information about each other.

The reader can refer to Section where a comparison analysis between different similarity functions is
offered.

4.1.1. FashionMNIST

The FashionMNIST contains 70000 grayscale images of size 28 x 28 pixels [37]. In our experiments
we randomly sampled 800 images for class Ankle boot (victim cluster) and 800 for class Shirt (target
cluster). In Figure 1| (left), we report the obtained results. We observe that the three algorithms have similar
behavior and their clustering accuracy consistently decreases with the increment of the adversarial noise

Thttps://github.com/Cinofix/poisoning-clustering
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Figure 1: Robustness analysis with FashionMNIST (left), CIFAR-10 (middle), 20 Newsgroups (right). The plots depict the
decay of AMI by adversarially perturbing the datasets, with an increasing noise.

level. In this case, K-means++ shows better performance than spectral clustering, therefore the spectral
embedding of data samples seems less robust than raw features only. This fact may suggest that some
embedding procedures devised for improving clustering accuracy do not necessarily guarantee robustness
against adversarial attacks. However, we reserve further discussion on this in future work.

4.1.2. CIFAR-10

The CIFAR-10 contains 60000 colour images of size 32 x 32 pixels [3§]. We randomly sampled 1600
images from classes airplane, frog and automobile. We addressed the multi-way scenario by first moving
samples from airplane and then from frog, always towards the target cluster automobile. Moreover, we
used a ResNet50 for features extraction, and we performed clustering on the resulting feature space, obtaining
better initial results in terms of AMI. In Figure [I| (middle), we show the performance of the three clustering
algorithms under adversarial manipulations. We observe that our attacks significantly decrease the clustering
quality for the three algorithms. Even if the ResNet50 features allow cluster algorithms to achieve better
performance, they are still vulnerable to adversarial noise. Further, note how the gap in performance of
spectral clustering and K-means+-+ has even increased when adopting a DNN-generated embedding.

We provide, in Figure 2] a visual representation of poisoning samples for CIFAR-10. We reconstructed
the poisoning samples from the feature space using the feature collision strategy adopted in [51], where the
target is exactly our poisoning sample.

4.1.8. 20 Newsgroups

The 20 Newsgroups is a dataset commonly used for text classification and clustering, which contains 20 000
newspaper articles divided into 20 categories. The experiments were conducted with two highly unrelated
categories of news, rec.sport.baseball (victim cluster) and talk.politics.guns (target cluster). We
applied the a combination of TF-IDF [52] and LSA [53] to embed features into a lower dimensional space. The
resulting feature matrix had dimension 1400 x 80. In this case, we tested our method against two ensemble
clustering algorithms, derived from K-means and spectral clustering algorithms (hierarchical clustering was
not giving good enough clustering performance). The two algorithms use the Silhouette value [54], and the
clustering with the maximum silhouette score is selected as the best one. In particular, we ran 20 instances
of the K-means algorithm with random centroids initializations, while, for spectral clustering, we ran 3
instances of the algorithm proposed in [43] with 3 different similarity measures. Given a sample pair x; and
x;, the measures are:

T
X; X5
T Ixill2lixs 2
Sij = (Xi - X)T(xj _ 5{) (9)

[xi — %[[2]lx; — X[l

Sij = dmaz - ”Xz - XjH2 (10)



Figure 2: (Top row) clean samples from CIFAR-10. (Bottom row) the corresponding poisoning samples with § = 0.1.
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Figure 3: Robustness analysis on FashionMNIST by changing the similarity measure ¢ (left), and crafting the poisoning samples
employing a surrogate dataset (right).

Equation |8 represents the cosine similarity between two samples x; and x;. Equation El is the Pearson
correlation coefficient, with X being the sample mean. Moreover, we introduced a sparsification technique,
clamping to 0 all negative values, which improved the clustering performance. Finally, in Equation [10| we
define dmax = ImaX;; ||Xi — Xj”g.

Figure 1| (right) reports the performance of two clustering algorithms under adversarial manipulation.
Ensemble methods are known to be more robust against random noise with respect to the normal behavior of
the corresponding algorithms [55], 56]; however, our attacking model was able to fool them and significantly
decreased their clustering performance. In this case, in low noise regime, spectral clustering seems to benefit
the ensembling technique, however its behavior follows previous experiments.

4.1.4. Choice of the cost function

In our optimization program, we employed the AMI both for the cost function ¢ and the evaluation
measure. Indeed, our optimization being not derivative-dependent, we could adopt the same function for the
optimization and evaluation tasks. We decided to analyze the impact of the clustering similarity function
¢, with FashionMNIST, and see if there were significant differences among each other. In Figure [3| (left),
shows the variation of results with ¢ equals to ARI [46], AMI [49] and the negated distance proposed in [11]
(referred as “Frob”). The plot shows no substantial difference among the choices of ¢, suggesting that this
hyperparameter does not significantly impact the optimization process.

4.1.5. Surrogate data
We ran additional experiments on a more challenging scenario by relaxing the knowledge assumption of
the target data. In this scenario, the attacker does not have access to the target data and can only sample a
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METHOD llello le]]2 |l€]] oo #MISS-CLUST

SPILL-OVER 413 872.8 146.8 2
SPILL-OVER clamp 412 828.2 146.8 2
OUuRs (§ = 73.43) 151 £19.2 551.9+36.3 73.4+1.4 12.0£0.0
OURS (§ = 146.87) 30+7.6 479.1 £62.5 145.0 + 3.7 12.0 0.0
OURS (6 = o0) 29+ 13.8 757.1+203.2 246.25+16.8 14.3+24

Table 1: Comparison on MNIST with digits 3&2.

METHOD llel]o llel|2 llell oo #MISS-CLUST
SPILL-OVER 152 585.3 159.7 11
SPILL-OVERciamp 151 463.2 131.7 9
OUuRS (6 = 79.86) 117+7.8 52844+30.1 79.8+2.8 9.1+04
OuRs (6 =159.72) 75+224 782.7+124.2 159.3+1.3 12.0£4.5
OURS (§ = o0) 46 +£19.4 902.7 £ 205 248.3 £8.8 14.6 £4.5

Table 2: Comparison on MNIST with digits 4&1.

METHOD lle]lo llell2 llell oo #MISS-CLUST
SPILL-OVER 54 15.70 9.44 21
SPILL-OVERclamp 54 15.70 9.44 21
Ours (6§ =4.72) 124+1.20 11.49+1.25 4.7£0 21+£0.0
OURS (6 =9.44) 7T£285 13.86£296 8.12+1.24 21+0.0
OURS (§ = o0) 4+1.74 15.18+3.16 10.94+1.49 21+£0.0

Table 3: Comparison on Digits with digits 8&9.

surrogate dataset from the same distribution. To this end, we have randomly sampled two subsets of 1600
images, each extracted from FashionMNIST as detailed in Section We use the first one to create the
poisoning samples and then evaluate their effectiveness on the other one. Figure 3| (right) shows that our
attack is strong enough to decrease the clustering performance even when the attacker has no access to the
target dataset.

4.2. Comparison

To the best of our knowledge, the only work dealing with adversarial clustering in a black-box way is
[26]. In this work, the authors presented a new type of attack called spill-over, in which the attacker wants
to assign as many samples as possible to a wrong cluster by poisoning just one of them. They proposed a
threat model against linearly separable clusters to generate such kind of adversarial noise.

To have a fair comparison, we performed spill-over attacks on the same settings of the aforementioned
work, comparing the performance on MNIST and UCI Handwritten Digits datasetsﬂ [57], targeting Ward’s
hierarchical clustering algorithm. Further details can be found in Appendix.

For MNIST, we considered the digit pairs 4&1 and 3&2, while for Digits, we considered the digit pairs
4&1, and 8&9. Our algorithm was run with the § = A which is the maximum acceptable noise threshold
found by the authors, with § = A/2 and with § = co. We found the value of A used in [26] by looking
at the source code. We imposed to attack just one sample (|T'| = 1), namely the nearest neighbor to the
centroid of the target cluster. We performed our experiments 20 times, reporting mean and std values.
The results are presented in Table along with more details on the experiments. Although our algorithm
achieves its best performance by moving more samples at once, we were able to match, or even exceed, the
number of spill-over samples (#Miss-clust) achieved in [26], even when halving the attacker’s maximum
power proposed by the authors. Moreover, the results show also that we were able to craft adversarial noise
masks €, which were significantly less detectable in terms of ¢p, £ .

2A dataset containing 5620 grayscale images of size 8 x 8, with intensities in the range [0, 16]
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METHOD llello llell2 llell oo #MISS-CLUST

SPILL-OVER 14 23.93 11.89 24
SPILL-OVERciamp 11 16.28 9.93 21
OURS (6 =5.94) 134+1.70 16.27 +1.20 5.94 + 0.0 24+ 0.0
Ours (§ =11.89) 7+203 19.84+1.96 11.13+0.79 24 4+0.0
OURS (§ = o0) 7+£236 21.06+£236 12.79+4.34 2440.0

Table 4: Comparison on Digits with digits 4&1.

METHOD llello |lel|2 llell oo #MISS-CLUST
SPILL-OVER 7 0.42 0.30 2
Ours (6 =0.15) 3+0.79 0.14£0.04 0.10+0.03 2.0+£0.0
Ours (6 =0.30) 3+0.76 0.28 +£0.09 0.21 £ 0.06 2.0+0.0

Table 5: Comparison for Seeds.

Target Sample Spill-over [26] QOurs
200 300 200
:
200 .
100 =t 100
10q "
» L]
0 0 0

Figure 4: Spill-over samples for MNIST. The target sample (left), the corresponding adversarial sample crafted with the attack
proposed in [26] (middle), and our adversarial sample with 6 = 146.87

(right).
Target Sample Spill-over [26] Qurs
15 15
20
10 10
5 10 5
0 0 0

Figure 5: Spill-over samples for Digits. The target sample (left), the corresponding adversarial sample crafted with the attack
proposed in [26] (middle), and our adversarial sample with § = 11.89 (right).

In Table we report a comparison for the K-means++ algorithm with UCI Wheat Seeds [58] and
MoCap Hand Postures [59] dataset, repeating the same experimental setting of [26]. We obtain the same
number of spill-over samples (#Miss-Clust) with significant lower Power & Effort.

Finally, in Figure [4 and [5} we show a qualitative assessment of the crafted adversarial spill-over samples.
Note that the crafted adversarial examples of [26] do not preserve box-constraints commonly adopted for
image data. Indeed, pixel intensities exceed 255 and 16 for MNIST and Digits, respectively. We also evaluated
the performance of [26] by clamping the resulting adversarial examples (Spill-over amp), and we observe
that the number of spill-over samples is reduced.

In conclusion, [26] aims to find A, which does not lead to the attack being considered an outlier using the
, Coordinate-wise Min-Mahalanobis-Depth (COMD) measure, at the expense of existing box-constraints.
Whereas our purpose consists of proposing an algorithm that can effectively corrupt a black-box clustering
algorithm’s performance by minimizing the attacker’s power and effort (P&E). Indeed, our attacks, as shown
in Table show lower ¢y and ¢, compared to the attack obtained with [26]. These results suggest that
our algorithm can craft effective poisoning attacks, even stronger than [26], with less P&E and satisfying the
box-constraints
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METHOD llello llell2 ll€ll oo #MISS-CLUST

SPILL-OVER 9 44.42 20.0 5
OURS (6 =10) 1+0.48 5.13+1.86 5.0+ 1.86 5.0£0.0
OUuRs (6 =20) 1+1.14 8.50+6.61 7.74+5.18 5.0+ 0.0
Table 6: Comparison for MoCap Hand Postures.
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Figure 6: Ablation study for mutation rate (x-axis) and zero rate (y-axis) for MNIST 3&2. (left) Number of miss clustered
samples, (right) attacker’s effort, i.e., number of manipulated pixels.

Ablation study

We provide an ablation study for the mutation and zero rate parameters, p,, and p, respectively, keeping
the crossover rate p. set to 0.85 for the two pairs of MNIST digits. The high crossover rate is a common
choice in Genetic Algorithms [60]. We use the same setting described in Sectionwith dataset MNIST
3&2 and MNIST 4&1.

Fig. [0] and Fig. [7] reveal how the two hyperparameters affect the attacker’s effort and the strength
of the attacks created. An increment of the zero rate implies attacks with less effort, while an increment
of the mutation inverts this tendency thus generating more powerful attacks. From Figure |§|-|z| (left), we
observe that the yellow regions at the bottom left determine a good compromise on having a small effort
and good attack effectiveness. However, by increasing the attacker’s effort, we can generate even more
effective attacks. The results of the ablation study with the two pairs of digits are similar, suggesting that
the same set of hyperparameters can be chosen without significant differences, as also suggested by the
wide bottom-left regions of Figure |§|-|f| (left) where the number of miss-clustered observations is constant.
This behavior suggests that we do not really need an extensive hyperparameters tuning procedure to obtain
effective poisoning attacks.

The results obtained against [26] use a combination of hyperparameters that allows the attacker’s
effort to be kept low while still maintaining outstanding comparison results. However, a better choice of
hyperparameters would have allowed us to further improve our results in terms of miss-clustered points and
the attacker’s effort.

4.3. Empirical convergence

In addition to the theoretical results on convergence provided in Section [3.3] we propose an empirical
analysis of convergence. In particular, for a pre-set configuration of § and s, we performed a series of attacks
on the FashionMNIST dataset, with an increasing number of generations/queries, evaluating the trend of
objective function presented Program . The results are reported in Figure 8| It can be seen that our
algorithm requires a relatively low number of queries to converge to a minimum, with the exception of
K-means++ that presents a slower convergence than spectral clustering, most probably due to the nature of
the feature embeddings used.
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Figure 7: Ablation study for mutation rate (x-axis) and zero rate (y-axis) for MNIST 4&1. (left) number of miss clustered
samples, (right) attacker’s effort, i.e., number of manipulated pixels.
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Figure 8: Convergence of objective function on FashionMNIST. § = 0.2, s = 0.25.

4.4. Transferability

In [20], the authors defined the concept of transferability of adversarial examples. In particular, an
adversarial example generated to mislead a model f is said to be transferable if it can mislead other models
f'. It was further observed that if the attacker has limited knowledge about the model under attack, she may
train a substitute model, craft adversarial samples against it, and then devise them to fool the target model.

The authors analyzed this property only between classification algorithms. We extend this analysis
showing that even adversarial samples crafted against clustering algorithms are suitable and can be transferred
to fool supervised models successfully. To the best of our knowledge, this is the first work that proposes an
analysis of transferability between unsupervised and supervised algorithms. We evaluated the transferability
properties of our noise by attacking the K-means++ algorithm on 2000 testing samples taken from labels
FashionMNIST (Ankle boot, Shirt). In particular, we used the crafted adversarial samples to test the
robustness of several classification models, trained on 60,000 samples of FashionMNIST. The tested model
are a linear and an RBF SVM [61], two random forest [62] with 10 and 100 trees respectively?’} and the
Carlini & Wagner (C&W) deep net proposed in [64], following the same training setting. Table [7|shows the
test accuracy on the full dataset and only for classes Ankle boot and Shirt. We report the results in Figure
[0 where the accuracy over the poisoned samples only is reported. The results show clear evidence on the
transferability of our adversarial noise, crafted against K-means++, to the tested classifiers. Note further

3For both the SVM and the Forest, we used the implementation proposed in the scikit-learn [63] library.
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Figure 9: Transferability of adversarial examples against supervised classification models. By progressively incrementing the
P&E of the perturbation matrix, our algorithm crafts adversarial samples that effectively decrease the performance of the
algorithm evaluated on the two target classes.

MODEL ALL CLASSES TWO CLASSES
LINEAR SVM 0.846 0.753
RBF SVM 0.882 0.8025
R. FOREST 10 0.856 0.739
R. FOREST 100 0.875 0.769
C&W NET 0.915 0.866

Table 7: Test accuracies on FashionMNIST test dataset, for the chosen classifiers. The middle column presents the overall
performance of the trained models. The right column presents the accuracy evaluated on the two target classes (Ankle boot
and Shirt).

that the C&W net is the most accurate model, performing slightly better than the RBF SVM, and the latter
seems to be more sensitive to our adversarial noise.

5. Conclusions and Future Work

In this work, we have proposed a new black-box, derivative-free adversarial methodology to fool clustering
algorithms and an optimization method inspired by genetic algorithms, able to find an optimal adversarial
mask efficiently. We have conducted several experiments to test the robustness of classical single and ensemble
clustering algorithms on different datasets, showing that they are vulnerable to our crafted adversarial noise.
We have further compared our method with a state-of-the-art black-box adversarial attack strategy, showing
that we outperform its results both in terms of attacker’s capability requirements and misclustering error.
Finally, we have also seen that the crafted adversarial noise can be applied successfully to fool supervised
algorithms too, introducing a new transferability property between clustering and classification models.

In our work, we have brought attention to many possible topics of research, which we summarize in the
following. First of all, since our proposed method can be easily adaptable to more challenging problems, we
plan to address the evasion problem on supervised models. Furthermore, to better characterize the robustness
against different kinds of datasets, we plan to analyze the relationship between the sparsity of the data
and the robustness of the clustering algorithms. Finally, as the work considers only the clustering problem,
our analysis can be extended to different unsupervised tasks, such as unsupervised image segmentation,
widespread in sensible applications as well.
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Appendix

For the sake of completeness and reproducibility of the experimental setting, in the following, we report
a detailed list of all hyperparameters used in our experiments. In particular Table [§ and [0 present all the
hyperparameters used in our method for the comparison with [26].

METHOD G A pe Pm Pz METHOD G A pe Pm Pz
OuRs (§ = 73.43) 150 1 0.85 0.2 0.35 OuRs (§ = 73.43) 150 1 0.85 0.2 0.35
Ours (6 = 146.87) 150 1 0.85 0.01 0.20 Ours (6§ = 146.87) 150 1 0.85 0.01 0.20
OURS (6 = o) 150 1 0.85 0.001 0.25 OURS (6 = o0) 150 1 0.85 0.001 0.25

Table 8: Comparison parameters for Digits dataset with digits 8&9 (left) and 4&1 (right).

METHOD G A pe Pm Pz METHOD G A pe Pm P2
OuRrs (§ =73.43) 150 1 0.85 0.015 0.10 OuRs (6§ =73.43) 150 1 0.85 0.02 0.05
OuRs (§ = 146.87) 150 1 0.85 0.015 0.25 Ours (§ = 146.87) 150 1 0.85 0.01 0.10
OURS (6 = 0) 150 1 0.85 0.005 0.25 OURS (§ = o) 150 1 0.85 0.001 0.15

Table 9: Comparison parameters for MNIST dataset with digits 3&2 (left) and 1&4 (right).

Table [10] contains the hyperparameters used by our algorithm during the comparison.

METHOD G AN pc Pm Pz METHOD G AN pc pPm Pz
Ours (6 =0.15) 20 1 0.85 0.01 0.10 Ours (6 =10) 50 1 0.85 0.15 0.20
Ours (6 =0.30) 20 1 0.85 0.01 0.10 Ours (6§ =20) 50 1 0.85 0.15 0.20

Table 10: Comparison parameters for Seeds (left) and MoCap Hand Postures (right).
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