

Delft University of Technology

Kernelized support tensor train machines

Chen, Cong; Batselier, Kim; Yu, Wenjian; Wong, Ngai

DOI
10.1016/j.patcog.2021.108337
Publication date
2022
Document Version
Final published version
Published in
Pattern Recognition

Citation (APA)
Chen, C., Batselier, K., Yu, W., & Wong, N. (2022). Kernelized support tensor train machines. Pattern
Recognition, 122, Article 108337. https://doi.org/10.1016/j.patcog.2021.108337

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.patcog.2021.108337
https://doi.org/10.1016/j.patcog.2021.108337

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Pattern Recognition 122 (2022) 108337

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Kernelized support tensor train machines

Cong Chen

a , Kim Batselier b , Wenjian Yu

c , ∗, Ngai Wong

a , ∗

a Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
b Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
c Department of Computer Science and Technology, Tsinghua University, Beijing 10 0 084, China

a r t i c l e i n f o

Article history:

Received 13 September 2020

Revised 15 September 2021

Accepted 18 September 2021

Available online 20 September 2021

Keywords:

Image classification

Tensor

Support tensor machine

a b s t r a c t

Tensor, a multi-dimensional data structure, has been exploited recently in the machine learning commu-

nity. Traditional machine learning approaches are vector- or matrix-based, and cannot handle tensorial

data directly. In this paper, we propose a tensor train (TT)-based kernel technique for the first time,

and apply it to the conventional support vector machine (SVM) for high-dimensional image classifica-

tion with very small number of training samples. Specifically, we propose a kernelized support tensor

train machine that accepts tensorial input and preserves the intrinsic kernel property. The main con-

tributions are threefold. First, we propose a TT-based feature mapping procedure that maintains the TT

structure in the feature space. Second, we demonstrate two ways to construct the TT-based kernel func-

tion while considering consistency with the TT inner product and preservation of information. Third, we

show that it is possible to apply different kernel functions on different data modes. In principle, our

method tensorizes the standard SVM on its input structure and kernel mapping scheme. This reduces the

storage and computation complexity of kernel matrix construction from exponential to polynomial. The

validity proof and computation complexity of the proposed TT-based kernel functions are provided elabo-

rately. Extensive experiments are performed on high-dimensional fMRI and color images datasets, which

demonstrates the superiority of the proposed scheme compared with the state-of-the-art techniques.

© 2021 Elsevier Ltd. All rights reserved.

1

r

r

h

p

a

f

N

s

d

m

d

i

l

a

t

s

Y

s

m

f

f

m

F

s

f

a

t

c

t

d

m

fi

s

r

h

0

. Introduction

Many real-world data appear in tensor format. In medical neu-

oimaging, functional magnetic resonance imaging (fMRI) is natu-

ally a three-way tensor. However, fMRI images are often with very

igh dimensions, at the same time with a small number of sam-

les considering the difficulty of collecting data. This is also known

s the small sample size problem. On the other hand, it is pre-

erred to process fMRI data on edge devices for fast diagnosis [1] .

evertheless, due to the limitation of storage and computation re-

ources, it is troublesome to deploy complicated models, such as

eep learning networks, on edge devices. Alternatively, traditional

achine learning models become more popular in such a scenario

ue to their lightweight nature and good generalization ability [2] .

To make the traditional vector or matrix-based machine learn-

ng algorithms better processing tensor data, it has been popu-

ar recently to extend them to their tensorial formats. For ex-

mple, neighborhood preserving embedding (NPE) was extended

o tensor neighborhood preserving embedding (TNPE) in Dai and
∗ Corresponding authors.

E-mail addresses: chencong@eee.hku.hk (C. Chen), k.batselier@tudelft.nl (K. Bat-

elier), yu-wj@tsinghua.edu.cn (W. Yu), nwong@eee.hku.hk (N. Wong).

a

p

u

l

ttps://doi.org/10.1016/j.patcog.2021.108337

031-3203/© 2021 Elsevier Ltd. All rights reserved.
eung [3] , support vector machines (SVMs) [4] to support ten-

or machines (STMs) in Tao et al. [5] , and restricted Boltzmann

achines to their tensorial formats in Nguyen et al. [6] . By re-

ormulating the machine learning algorithms into their tensorial

rameworks, a performance improvement can be observed. The

ain reasons for this improvement can be summarized as follows.

irstly, these tensor algorithms can naturally utilize the multi-way

tructure of the original tensor data, which is believed to be use-

ul in many machine learning applications such as visual question

nswering systems [7] and image completion [8] . Secondly, vec-

orizing tensor data leads to high-dimensional vectors, which may

ause overfitting especially when the training sample size is rela-

ively small [9] . On the contrary, tensor-based approaches usually

erive a more structural and robust model that commonly involves

uch fewer model parameters, which not only alleviates the over-

tting problem but also saves a lot of storage and computation re-

ources [10,11] .

This paper focuses on developing an efficient classification algo-

ithm to solve the small sample size problem with limited storage

nd computation resources. Although deep learning models show

owerful capability on the image classification task, their size is

sually linearly dependent on the data dimension (possibly mil-

ions in the case of fMRI), which leads to a huge storage and com-

https://doi.org/10.1016/j.patcog.2021.108337
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108337&domain=pdf
mailto:chencong@eee.hku.hk
mailto:k.batselier@tudelft.nl
mailto:yu-wj@tsinghua.edu.cn
mailto:nwong@eee.hku.hk
https://doi.org/10.1016/j.patcog.2021.108337

C. Chen, K. Batselier, W. Yu et al. Pattern Recognition 122 (2022) 108337

p

a

s

u

t

u

t

t

g

g

w

i

c

t

M

d

n

(

t

d

t

e

m

n

t

t

T

s

t

K

f

t

l

m

l

n

c

k

s

b

2

S

b

r

d

i

w

h

a

p

e

t

e

o

t

w

d

p

a

i

a

p

p

i

c

t

n

S

a

S

t

t

t

s

e

l

t

l

S

s

d

n

e

p

t

v

o

m

t

t

i

i

n

N

C

o

e

t

3

o

m

utation consumption. Moreover, deep learning models often need

 large amount of data for training, which is not a good fit in the

cenario we considered. Few-shot learning [12] is a recently pop-

lar technique to deal with small sample size problems. In [12] ,

he authors proposed DeepFMRI, in which a pre-trained CNN is

tilized to extract features to facilitate the subsequent training on

he given small number of training samples. We note that the pre-

rained is trained on extra generated data. However, there is no

uarantee that those extra data have a similar distribution as the

iven training data. Therefore, the pre-trained model may not work

ell for some specific datasets. Moreover, the overall deep model

n DeepFMRI needs to be carefully designed, which is also time-

onsuming. In this paper, we propose a kernelized support tensor

rain machine (K-STTM), which only has O(M) parameters, where

is the training sample number, and it is not related to the data

imension at all. Moreover, no pre-training and manual design are

eeded. In the proposed K-STTM, we first employ the tensor train

TT) decomposition [13] to decompose the given tensor data so

hat a more compact and informative representation of it can be

erived. Secondly, we define a TT-based feature mapping strategy

o derive a high-dimensional TT in the feature space. This strategy

nables us to apply different f eature mappings on different data

odes, which naturally provides a way to leverage the multi-mode

ature of tensorial data. Thirdly, we propose two ways to build

he kernel matrix efficiently with the consideration of the consis-

ency with the TT inner product and preservation of information.

he constructed kernel matrix is then used by kernel machines to

olve the image classification problems.

The proposed K-STTM is a tensorial extension of the conven-

ional SVM. Different from the existing SVM tensorial extensions,

-STTM preserves three advantages.

• K-STTM is naturally a nonlinear classifier. Commonly, real-life

data are not linearly separable. However, most existing SVM

tensorial extensions are often based on a linear model (no ker-

nel trick) and cannot deal with nonlinear classification prob-

lems.
• The proposed tensorial kernel mapping scheme is valid and we

provide the proof for the first time (refer to Section 4.4). This is

a theoretical guarantee for the successful training of a kernel-

ized support tensor machine. However, this proof is absent in

existing tensorial extensions of SVM.
• Due to the non-uniqueness of tensor decomposition, the kernel

mappings of two similar tensors may be very different, which

may lead to different predicting results (refer to Section 4.6).

This is obviously unwanted. To solve this, for the first time, we

propose a data decomposition scheme to make sure that sim-

ilar tensors would have similar kernel mappings in the high-

dimensional feature domain.

The superiority of our methods is validated through extensive

MRI and color image classification experiments. It is observed

hat our methods have significant improvements over other re-

ated state-of-the-art classification methods, including traditional

achine learning methods (vector or tensor-based) and 3D convo-

utional neural networks. Furthermore, we propose an efficient ker-

el matrix construction method, which reduces the computational

omplexity from O(M

2 I d) to O(dI R 4 + M

2 R 2
d
I d) . Applying different

ernel functions on different data modes is also investigated and

hows more than 10% accuracy improvement compared with the

aselines on most datasets.

. Related works

As one of the most typical supervised learning algorithms,

VM [4] has achieved enormous success in pattern classification

y minimizing the Vapnik–Chervonenkis dimensions and structural
2
isk. However, a standard SVM can not deal with tensorial input

irectly. The first work that extends SVM to handle tensorial input

s [5] . More precisely, a supervised tensor learning (STL) scheme

as proposed to train a support tensor machine (STM), where the

yperplane parameters are modeled as a rank-1 tensor instead of

 vector. For the parameter training, they employed the alternating

rojection optimization method.

Although STM is capable to classify tensorial data directly, the

xpressive power of a rank-1 weight tensor is limited, which of-

en leads to a poor classification accuracy. To increase the model

xpression capacity, several works were proposed recently based

n the STL scheme. Ref. [14] employs a more general tensor struc-

ure, i.e., the canonical polyadic (CP) format, to replace the rank-1

eight tensor in STM. However, it is an NP-complete problem to

etermine the CP-rank. In [15] , the STM is generalized to a sup-

ort Tucker machine (STuM) by representing the weight parameter

s a Tucker tensor. Nevertheless, the number of model parameters

n STuM is exponentially large, which often leads to a large stor-

ge and computational complexity. To overcome this, Ref. [16] pro-

osed a support tensor train machine (STTM), which assumes the

otential weight tensor format is a TT. By doing so, the correspond-

ng optimization problem is more scalable and can be solved effi-

iently. The aforementioned works are all based on the assumption

hat the given tensorial data are linearly separable. However, this is

ot the case in most real-world data. It is worth noting that though

TTM sounds like the linear case of the proposed K-STTM, they

re totally different when the linear kernel is applied on K-STTM.

pecifically, K-STTM and STTM use two totally different schemes

o train the corresponding model. For K-STTM, it first constructs

he kernel matrix with the proposed TT-based kernel function, and

hen solves the standard SVM problem. However, in STTM, it as-

umes the parameter in the classification hyperplane can be mod-

led as a TT, and only updates one TT-core at a time by reformu-

ating the training data.

To extend the linear tensorial classifiers to the nonlinear case,

he authors in He et al. [17] proposed a nonlinear supervised

earning scheme called dual structure-preserving kernels (DuSK).

pecifically, based on the CP tensor structure, they define a corre-

ponding kernel trick to map the CP format data into a higher-

imensional feature space. Through the introduction of the ker-

el trick, DuSK can achieve a higher classification accuracy. How-

ver, there is no proof to show that the proposed kernel map-

ing scheme is valid, i.e., there exists a feature space in which

he inner product result is equivalent to the kernel function

alue of the original data space. We note that this is the the-

retical guarantee for the successful training of an SVM-based

ethod. Moreover, since DuSK is based on the CP decomposi-

ion, the non-deterministic polynomial (NP)-complete problem on

he rank determination still exists. Through introducing a kernel-

zed CP tensor factorization technique, the same research group

n He et al. [17] further proposed the Multi-way Multi-level Ker-

el model [18] and kernelized support tensor machine model [19] .

evertheless, the validity of the kernel mapping scheme and the

P-rank determination issues still exists.

To avoid the above issues, we propose the K-STTM, which not

nly introduces the customized kernel function to handle nonlin-

ar classification problems, but also achieves an efficient model

raining since the scalable TT format is employed.

. Preliminaries

In this section, we review some basic tensor notations and

perations, together with the related tensor train decomposition

ethod.

C. Chen, K. Batselier, W. Yu et al. Pattern Recognition 122 (2022) 108337

Fig. 1. (a) depicts the graphical representation of a scalar a , vector a , matrix A , and

third-order tensor A . (b) shows the index contraction between two 3-way tensors

A and B.

3

a

s

A
i

m

t

n

l

r

i

i

m

t

i

t

D

i

o

a

C

o

t

t

t

b

D

t

B

B

w

p

D

R

〈

D

t

3

t

t

Fig. 2. The TT cores of a 3-way tensor A are two matrices A

(1) , A

(3) and a 3-way

tensor A

(2) .

Fig. 3. Tensor train decomposition of a d-way tensor A into d 3-way tensors

A

(1) , A

(2) . . . , A

(d) .

Fig. 4. The inner product between two d-way tensor trains.

A

t

A

w

i

d

r

h

r

o

s

c

a

T

i

W

c

D

t

s

t

3

b

d

v

S

.1. Tensor basics

Tensors in this paper are multi-dimensional arrays that gener-

lize vectors (first-order tensors) and matrices (second-order ten-

ors) to higher orders. A dth-order or d-way tensor is denoted as

 ∈ R

I 1 ×I 2 ×... ×I d and the element of A by A (i 1 , i 2 . . . , i d) , where 1 ≤
 k ≤ I k , k = 1 , 2 , . . . , d. The numbers I 1 , I 2 , . . . , I d are called the di-

ensions of the tensor A . We use boldface capital calligraphic let-

ers A , B,...to denote tensors, boldface capital letters A , B ,...to de-

ote matrices, boldface letters a , b,...to denote vectors, and roman

etters a , b,...to denote scalars. An intuitive and useful graphical

epresentation of scalars, vectors, matrices and tensors is depicted

n Fig. 1 (a). The unconnected edges, also called free legs, are the

ndices of the tensor. Therefore scalars have no free legs, while a

atrix has 2 free legs. We will employ these graphical representa-

ions to visualize the tensor networks and operations in the follow-

ng sections whenever possible and refer to Orús [20] for more de-

ails. We now briefly introduce some important tensor operations.

efinition 1 (Tensor index contraction) . A tensor index contraction

s the sum over all possible values of the repeated indices in a set

f tensors.

For example, the following contraction of two 3-way tensors A

nd B

(i 1 , i 2 , i 4 , i 5) =

I 3 ∑

i 3 =1

A (i 1 , i 2 , i 3) B(i 3 , i 4 , i 5) ,

ver the i 3 index produces a four-way tensor C. We also present

he graphical representation of this contraction in Fig. 1 (b), where

he summation over i 3 is indicated by the connected edge. After

his contraction, the tensor diagram contains four free legs indexed

y i 1 , i 2 , i 4 , i 5 , respectively.

efinition 2 (Tensor mode-. k product) The mode- k product of a

ensor A ∈ R

I 1 ×... ×I k ×... ×I d with a matrix U ∈ R

P k ×I k is denoted as

 = A ×k U and defined by

 (i 1 , . . . , i k −1 , j, i k +1 , . . . , i d) =

I k ∑

i k =1

U (j, i k) A (i 1 , . . . , i k , . . . , i d) ,

here B ∈ R

I 1 ×... ×I k −1 ×P k ×I k +1 ×... ×I d . We note that Tensor mode- k

roduct is a special case of tensor index contraction.

efinition 3 (Tensor inner product) . For two tensors A , B ∈

I 1 ×I 2 ×... ×I d , their inner product 〈A , B〉 is defined as

A , B〉 =

I 1 ∑

i 1 =1

I 2 ∑

i 2 =1

. . .

I d ∑

i d =1

A (i 1 , i 2 , . . . , i d) B(i 1 , i 2 , . . . , i d) .

efinition 4 (Tensor Frobenius norm) . The Frobenius norm of a

ensor A ∈ R

I 1 ×I 2 ×... ×I d is defined as ||A|| F =

√ 〈A , A〉 .
.2. Tensor train decomposition

Here we briefly introduce the tensor train (TT) decomposition

hat will be utilized in the proposed K-STTM. A TT decomposi-

ion [13] represents a d-way tensor A as d 3-way tensors A

(1) ,
3

(2) ,..., A

(d) such that a particular entry of A is written as the ma-

rix product

 (i 1 , . . . , i d) = A

(1) (: , i 1 , :) . . . A

(d) (: , i d , :) , (1)

here A

(k) (: , i k , :) is naturally a matrix since we fix the second

ndex. Each tensor A

(k) , k = 1 , . . . , d, is called a TT-core and has

imensions R k × I k × R k +1 . Storage of a tensor as a TT therefore

educes from

∏ d
i =1 I i down to

∑ d
i =1 R i I i R i +1 . In order for the left-

and-side of (1) to be a scalar we require that R 1 = R d+1 = 1 . The

emaining R k values are called the TT-ranks . A simple illustration

f utilizing TT decomposition to factorize a 3-way tensor A is

hown in Fig. 2 . Note that the first and last TT cores are matri-

es since R 1 = R 4 = 1 . A specific element in A is then computed

s a vector-matrix-vector product. Fig. 3 demonstrates the general

T-decomposition of a d-way tensor A , where the edges connect-

ng the different circles indicate the matrix-matrix products of (1) .

e define the simplifying notation T T (A) , which denotes a TT de-

omposition of a d-way tensor A with user-specified TT-ranks.

efinition 5 (TT inner product) . The inner product between two

ensor trains T T (A) and T T (B) is denoted as 〈 T T (A) , T T (B) 〉 .
The tensor network diagram of the inner product of two TTs is

hown in Fig. 4 . The lack of unconnected edges in Fig. 4 implies

hat 〈 T T (A) , T T (B) 〉 is a scalar.

.3. Support vector machines

Since this work is based on traditional SVM, we therefore

riefly review the main idea of an SVM. Assume we have a

ataset D = { x i , y i }
M

i =1
of M labeled samples, where x i ∈ R

n are the

ectorized data samples with labels y i ∈ {−1 , 1 } . The goal of an

VM is to find a discriminant hyperplane

f (x) = w

T x + b (2)

C. Chen, K. Batselier, W. Yu et al. Pattern Recognition 122 (2022) 108337

t

b

v

m

t

d

h

l

s

T

w

m

s

o

α

w

x

l

v

t

r

α

w

c

t

b

4

l

4

{

a

t

p

b

r

s

F

w

g

H

�

W

c

T

a

s

w

t

m

α

w

s

p

i

4

w

w

a

m

t

φ

s

1

w

s

d

p

t

hat maximizes the margin between the two classes where w and

are the weight vector and bias, respectively. However, an SVM is

ery sensitive to noise since it requires all the training samples to

eet the hard margin constraint. In that case, the trained model

ends to overfit. To solve this, slack variables ξ1 , . . . , ξM

are intro-

uced to allow some certain samples to be misclassified, thus en-

ancing the robustness of the trained model. We can express the

earning problem as a quadratic optimization problem

min

w,b,ξ

1
2
‖ w‖

2
F + C

∑ M

i =1 ξi

ubject to y i
(
w

T x i + b
)

≥ 1 − ξi ,

ξi ≥ 0 , i = 1 , . . . , M.

(3)

he parameter C controls the trade-off between the size of the

eight vector w and the size of the slack variables. It is more com-

on to solve the dual problem of (3) , especially when the feature

ize n is larger than the sample size M. The dual problem format

f (3) is

min

1 ,α2 , ... ,αM

∑ M

i =1 αi − 1
2

∑ M

i, j=1 αi α j y i y j 〈 x i , x j 〉
subject to

∑ M

i =1 αi y i = 0 ,

0 ≤ αi ≤ C, i = 1 , . . . , M,

(4)

here 〈 x i , x j 〉 represents the inner product between vector x i and

 j and αi (i = 1 , . . . , M) are the Lagrange multipliers.

To solve a nonlinear classification problem with SVM, a non-

inear mapping function φ is introduced that projects the original

ectorial data onto a much higher-dimensional feature space. In

he feature space, the data generally become more (linearly) sepa-

able. By doing so, the optimization in (4) is transformed into

min

1 ,α2 , ... ,αM

M ∑

i =1

αi −
1

2

M ∑

i, j=1

αi α j y i y j 〈 φ(x i) , φ(x j) 〉 (5)

ith the same constraints as in (4) . The kernel trick allows us to

ompute the inner product term 〈 φ(x i) , φ(x j) 〉 with a kernel func-

ion k(x i , x j) , thus avoiding the explicit construction of the possi-

ly infinite-dimensional φ(x i) vectors.

. Kernelized support tensor train machines

In this section, we first demonstrate the tensor-based kernel

earning problem and then introduce the proposed K-STTM.

.1. Problem statement

Given M tensorial training data and their labels, i.e., dataset D =

X i , y i } M

i =1
, where X i ∈ R

I 1 ×I 2 ×... ×I d and y i ∈ {−1 , 1 } , we want to find

 hyperplane

f (X) = 〈W, X 〉 + b (6)

hat separates the tensorial data into two classes. W is the hyper-

lane weight tensor with the same dimensions as X i and b is the

ias. Similar to the primal problem in SVM, we can derive the cor-

esponding primal optimization problem for (6)

min

W,b,ξ

1
2
‖W‖

2
F + C

∑ M

i =1 ξi

ubject to y i (〈W, X i 〉 + b) ≥ 1 − ξi ,

ξi ≥ 0 , i = 1 , . . . , M.

(7)

ollowing the scheme of the kernel trick for conventional SVMs,

e introduce a nonlinear feature mapping function �(·). Then,

iven a tensor X ∈ R

I 1 ×I 2 ×... ×I d , we assume it is mapped into the

ilbert space H by

(·) : R

I 1 ×I 2 ×... ×I d → R

H 1 ×H 2 ×... ×H d . (8)

e need to mention that the dimension of projected tensor �(X)

an be infinite depending on the feature mapping function �(·).
4
he resulting Hilbert space is then called the tensor feature space

nd we can further develop the following model

min

W,b,ξ

1
2
‖W‖

2
F + C

∑ M

i =1 ξi

ubject to y i (〈W, �(X i) 〉 + b) ≥ 1 − ξi ,

ξi ≥ 0 , i = 1 , . . . , M,

(9)

ith parameter tensor W ∈ R

H 1 ×H 2 ×... ×H d . To obtain the

ensor-based kernel optimization model, we need to transfer

odel (9) into its dual, namely

min

1 ,α2 , ... ,αM

∑ M

i =1 αi − 1
2

∑ M

i, j=1 αi α j y i y j 〈 �(X i) , �
(
X j

)〉
subject to

∑ M

i =1 αi y i = 0 ,

0 ≤ αi ≤ C, i = 1 , . . . , M,

(10)

here αi are the Lagrange multipliers. The key task we need to

olve is to define a tensorial kernel function K(X i , X j) that com-

utes the inner product 〈 �(X i) , �(X j) 〉 in the original data space

nstead of the feature space.

.2. Customized kernel mapping schemes for TT-based data

Although tensor is a natural structure for representing real-

orld data, there is no guarantee that such a representation works

ell for kernel learning. Instead of the full tensor, here we employ

 TT for data representation due to the following reasons:

1. Real-life data often contain redundant information, which is not

useful for kernel learning. The TT decomposition has proven to

be efficient for removing the redundant information in the orig-

inal data and provides a more compact data representation.

2. Compared to the Tucker decomposition whose storage scales

exponentially with the core tensor, a TT is more scalable (pa-

rameter number grows linearly with the tensor order d), which

reduces the computation during kernel learning.

3. Unlike the CP decomposition, determining the TT-rank is eas-

ily achieved through a series of singular value decompositions

(TT-SVD [13]). Moreover, instead of decomposing many tenso-

rial data sample by sample, it is possible to stack them together

and decompose the stacked tensor with TT-SVD in one shot.

This naturally leads to a faster data transformation to the TT

format.

4. It is convenient to implement different operations on different

tensor modes when data is in the TT format. Since a TT de-

composition decomposes the original data into many TT cores,

it is possible to apply different kernel functions on different TT

cores for better classification performance. Furthermore, we can

emphasize the importance of different tensor modes by putting

different weights on those TT cores during the kernel mapping.

For example, a color image is a 3-way (pixel-pixel-color) tensor.

The color mode can be treated differently with the two pixel

modes since they contain different kinds of information, as will

be exemplified later.

In the following, we demonstrate the proposed TT-based feature

apping approach. Specifically, we map all fibers in each TT-core

o the feature space through

i (·) : R

I i → R

H i , i = 1 , . . . , d,

uch that

φi

(
X

(i) (r i , : , r i +1)
)

∈ R

H i

 ≤ r i ≤ R i , 1 ≤ r i +1 ≤ R i +1 , i = 1 , . . . , d,
(11)

here X

(i) and R i are the i th TT-core and TT-rank of T T (X) , re-

pectively. The fibers of each TT-core are vectors as the rank in-

ices r i , r i +1 are fixed to a specific value, hence the feature map-

ing works in the same way as for the conventional SVM. We

hen represent the resulting high-dimensional TT, which is in the

C. Chen, K. Batselier, W. Yu et al. Pattern Recognition 122 (2022) 108337

t

�

I

f

d

c

u

4

c

w

t

T

c

〈

W

i

�

fi

w

s

k

c

K

A

k

t

s

c

w

4

f

u

K

t

[

t

a

m

t

c

s

h

e

s

r

i

t

K

4

p

o

n

α

α
s

4

w

s

m

s

K

S

d

T

t

t

B

A

r

p

a

T

f

L

m

i

P

d{

f

B

p

t

n

I

a

T

R

f

ensor feature space, as �(T T (X)) ∈ R

H 1 ×H 2 ×... ×H d . We stress that

(T T (X)) is still in a TT format with the same TT-ranks as T T (X) .

n this sense, the TT format data structure is preserved after the

eature mapping.

After mapping the TT format data into the TT-based high-

imensional feature space, we then propose two approaches for

omputing the inner product between two mapped TT format data

sing kernel functions.

.2.1. K-STTM-Prod

The first method is called K-STTM-Prod since we implement

onsecutive multiplication operations on d fiber inner products,

hich is consistent with the result of an inner product between

wo TTs. Assuming �(T T (X)) and �(T T (Y)) ∈ R

H 1 ×H 2 ×... ×H d with

T-ranks R i and

ˆ R i , i = 1 , 2 , . . . , d, respectively, their inner product

an be computed from

 �(TT (X)) , �(TT (Y)) 〉 =

∑ R 1
r 1 =1

· · · ∑ R d
r d =1

∑ ˆ R 1
ˆ r 1 =1

· · · ∑ ˆ R d
ˆ r d =1 (∏ d

i =1 〈 φi

(
X

(i) (r i , : , r i +1)
)
, φi

(
Y

(i)
(

ˆ r i , : , ̂ r i +1

))〉). (12)

e remark that (12) derives the exact same result as Fig. 4 (assum-

ng X = A and Y = B) when an identity feature mapping function

(·) is used, namely �(T T (X)) = T T (X) . What is more, since each

ber of a mapped TT-core is naturally a vector, we have

〈 φi (X

(i) (r i , : , r i +1)) , φi (Y

(i) (̂ r i , : , ̂ r i +1)) 〉
= k i (X

(i) (r i , : , r i +1) , Y

(i) (̂ r i , : , ̂ r i +1)) , (13)

here k i (·) can be any kernel function used for a standard SVM,

uch as a Gaussian radial basis function (RBF) kernel, polynomial

ernel, linear kernel etc. Combining (12) and (13) , we obtain the

orresponding TT-based kernel function

(T T (X) , T T (Y)) =

R 1 ∑

r 1 =1

. . .

R d ∑

r d =1

ˆ R 1 ∑

ˆ r 1 =1

. . .

ˆ R d ∑

ˆ r d =1

(
d ∏

i =1

k i (X

(i) (r i , : , r i +1) , Y

(i) (̂ r i , : , ̂ r i +1))) . (14)

s mentioned before, in K-STTM setting, different kernel functions

 i can be applied on different tensor modes i . One possible applica-

ion is in color image classification, where one could apply Gaus-

ian RBF kernels k 1 and k 2 on its first two spatial modes, while

hoosing a linear or polynomial kernel k 3 for the color mode. This

ill be investigated in the experiments.

.2.2. K-STTM-Sum

The second method we propose to construct a TT kernel

unction is called K-STTM-Sum. Instead of implementing contin-

ous multiplication operations on d fiber inner products like in

-STTM-Prod, K-STTM-Sum performs consecutive addition opera-

ions on them. This idea is inspired by Houthuys and Suykens

21] which argues that the product of inner products can lead to

he loss/misinterpretation of information. Take the linear kernel as

n example, the inner product between two fibers of the same

ode could be negative, which indicates a low similarity between

hose two fibers. However, by implementing consecutive multipli-

ations of d fiber inner products, highly negative values could re-

ult in a large positive value. In that case, the overall similarity is

igh which is clearly unwanted. This situation also appears when

mploying Gaussian RBF kernels. A nearly zero value would be as-

igned to two non-similar fibers, which could influence the final

esult significantly. To this end, we propose the K-STTM-Sum. Sim-

lar to K-STTM-Prod, we can obtain the corresponding kernel func-

ion as

(T T (X) , T T (Y)) =

R 1 ∑

r 1 =1

. . .

R d ∑

r d =1

ˆ R 1 ∑

ˆ r 1 =1

. . .

ˆ R d ∑

ˆ r d =1
5
(
d ∑

i =1

k i (X

(i) (r i , : , r i +1) , Y

(i) (̂ r i , : , ̂ r i +1))) . (15)

.3. Kernel optimization problem

After defining the TT-based kernel function, we can then re-

lace the term 〈 �(X i) , �(X j) 〉 in (10) with (14) or (15) , and derive

ur final kernel optimization problem based on the TT structure,

amely,

min

1 ,α2 , ... ,αM

∑ M

i =1 αi − 1
2

∑ M

i, j=1 αi α j y i y j K

(
TT (X i) , TT

(
X j

))
subject to

∑ M

i =1 αi y i = 0 ,

0 ≤ αi ≤ C, i = 1 , . . . , M.

(16)

After solving (16) , we can get the unknown model parameters

1 , α2 , . . . , αM

and the resulting decision function is then repre-

ented as

f (X) = sign (
M ∑

i =1

αi y i K(T T (X i) , T T (X)) + b) . (17)

.4. Kernel validity

According to Mercer’s condition, a kernel function is valid

hen the constructed kernel matrix is symmetric and positive

emi-definite on the given training data. This guarantees that the

apped high-dimensional feature space is truly an inner product

pace. Therefore, we provide Theorem 1 to show the validity of

-STTM-Prod and K-STTM-Sum. In the actual implementation of K-

TTM-Prod and K-STTM-Sum, it is extremely inefficient to use TT

ecomposition to decompose each tensorial sample one by one.

he way we did it is by first stacking all the d-way samples and

hen compute a TT decomposition on the resulting (d + 1) -way

ensor directly. This procedure is explained in detail in Section 4.5 .

y doing so, all TT-based training samples have the same TT-ranks.

lso in the case where we compute the TT decomposition sepa-

ately for each sample, we can still set the TT-ranks of all sam-

les to be identical. That means R i is equal to ˆ R i , i = 1 , 2 , . . . , d for

ll the TT-based training samples. This setting is also assumed in

heorem 1 and its proof.

Before we show Theorem 1 and its proof, we first prove the

ollowing lemma, which is helpful in the proof of Theorem 1 .

emma 1. The summation and Hadamard product between two sym-

etric and positive semi-definite matrices A and B ∈ R

n ×n still results

n a symmetric and positive semi-definite matrix.

roof. According to the definition of symmetric and positive semi-

efinite matrix, we have

A = A

T , u

T Au ≥ 0

B = B

T , u

T Bu ≥ 0 ,

or every non-zero column vector u ∈ R

n .

For the summation case, obviously we can conclude that (A +

) T = A + B ; u

T (A + B) u ≥ 0 , namely A + B is still symmetric and

ositive semi-definite.

For the Hadamard product case, we refer to the Schur product

heorem [22] and we can easily obtain u

T (A � B) u ≥ 0 , for every

on-zero column vector u ∈ R

n , where � is the Hadamard product.

t is obvious that (A � B) T = (A � B) . Thus A � B is still symmetric

nd positive semi-definite. �

We then demonstrate Theorem 1 and its proof here.

heorem 1. Given a tensorial training dataset {X i } M

i =1
, where X i ∈

I 1 ×I 2 ×... ×I d , and assumed TT-ranks R 1 , . . . , R d , the proposed kernel

unctions K-STTM-Prod and K-STTM-Sum are valid kernel functions

C. Chen, K. Batselier, W. Yu et al. Pattern Recognition 122 (2022) 108337

a

c

P

S

d

w

n

a

K

A

u

b

i

b

K

T

H

b

E

L

p

E

R

r

i

n

d

K

r

n

i

c

s

v

4

m

t

i

e

S

fi

c

T

k

w

T

o

(

X

w

m

d

X

A

o

w

h

d

f

fi

I

r

t

a

1

i

d

X

w

f

o

n

o

b

p

s

a

(

i

t

b

s

c

p

k

m

r

T

t

r

t

o

fl

t

a

d

t

i

n

R

h

S

m

t

K

c

c

c

nd they produce symmetric and positive semi-definite kernel matri-

es.

roof. We first demonstrate the kernel function validity of K-

TTM-Prod. For any tensor X , Y ∈ {X 1 , X 2 , . . . , X M

} , they are first

ecomposed into their TT formats, namely T T (X) and T T (Y) , after

hich Eq. (14) is applied. Assuming all the indices over
∑

and

∏

,

amely r 1 , . . . , r d , ̂ r 1 , . . . , ̂ r d and i , are fixed, Eq. (14) can be written

s

(T T (X) , T T (Y)) = k i (X

(i) (r i , : , r i +1) , Y

(i) (̂ r i , : , ̂ r i +1)) . (18)

s we mentioned before, k i (·, ·) can be any valid kernel function

sed for a standard SVM. Therefore, the kernel matrix constructed

y Eq. (18) is symmetric and positive semi-definite. When only the

ndices over
∑

, namely r 1 , . . . , r d , ̂ r 1 , . . . , ̂ r d , are fixed, Eq. (14) can

e written as the following product kernel

(T T (X) , T T (Y)) = (
d ∏

i =1

k i (X

(i) (r i , : , r i +1) , Y

(i) (̂ r i , : , ̂ r i +1))) . (19)

he kernel matrix constructed by Eq. (19) can be regarded as

adamard products of the d valid kernel matrices constructed

y Eq. (18) when i = 1 , . . . , d. Since the matrix constructed by

q. (18) is symmetric and positive semi-definite, according to

emma 1 , the matrix constructed by Eq. (19) is also symmetric and

ositive semi-definite.

Similarly, we notice that the kernel matrix constructed by

q. (14) can be regarded as the summation of R 1 × . . . × R d ×
ˆ
 1 × . . . × ˆ R d kernel matrices constructed by Eq. (19) when

 1 , . . . , r d , ̂ r 1 , . . . , ̂ r d are varied from 1 to their corresponding max-

mum values. According to Lemma 1 , we conclude that the ker-

el matrix constructed by Eq. (14) is symmetric and positive semi-

efinite, namely K-STTM-Prod is a valid kernel function.

The validity proof for K-STTM-Sum is similar to the proof for

-STTM-Prod. The kernel matrix constructed by Eq. (15) can be

egarded as the summation of R 1 × . . . × R d × ˆ R 1 × . . . × ˆ R d × d ker-

el matrices constructed by Eq. (18) when r 1 , . . . , r d , ̂ r 1 , . . . , ̂ r d and

 are varied from 1 to their corresponding maximum values. Ac-

ording to Lemma 1 , the kernel matrix constructed by Eq. (15) is

ymmetric and positive semi-definite. Therefore, K-STTM-Sum is a

alid kernel function. �

.5. Efficient implementation for kernel matrix construction

The main computation bottleneck in K-STTM lies in the kernel

atrix construction. In Eqs. (14) and (15) , there are both 2 d + 1

imes consecutive summation or multiplication operations, which

s time-consuming if we use 2 d + 1 for-loops to compute each el-

ment in the final kernel matrices of K-STTM-Prod and K-STTM-

um. Therefore, we propose an efficient implementation. Here we

rst demonstrate the implementation detail of K-STTM-Prod. The

omputation of Eq. (14) is first separated into d parts, one for each

T-core. For example, the i th part calculates the following values

 i (X

(i) (r i , : , r i +1) , Y

(i) (̂ r i , : , ̂ r i +1)) , (20)

here 1 < r i < R i , 1 < ̂ r i <

ˆ R i and 1 < r i +1 < R i +1 , 1 < ̂ r i +1 <

ˆ R i +1 .

his leads to a matrix with dimensions R i R i +1 × ˆ R i ̂ R i +1 . Copies

f this matrix are repeated into a matrix X i of dimensions

 R 1 . . . R d) × (̂ R 1 . . . ˆ R d). All parts are then combined through

 prod

= X 1 � X 2 � . . . � X d , (21)

here � is the hadamard product. We then sum over all the ele-

ents in X prod

, which generates the results of Eq. (14) .

The implementation detail of K-STTM-Sum is similar. The only

ifference with K-STTM-Prod is that Eq. (21) is replaced by
6
 sum

= X 1 + X 2 + . . . + X d . (22)

fter summing over all the elements in X sum

, we obtain the result

f Eq. (15) .

The above implementations all make use of matrix operations,

hich leans itself well to software platforms such as MATLAB or

ardware acceleration platforms such as a GPU. There are two ad-

itional ways to accelerate the construction of the kernel matrix

urther.

First, assuming the given dataset consists of M samples X i , we

rst stack them together into a tensor X stack with dimensions

 1 × I 2 × . . . × I d × M. We then decompose X stack with assumed TT-

anks R 1 , . . . , R d into d TT cores, namely X

(i)

stack
, i = 1 , . . . , d, where

he last TT-core X

(d)

stack
has dimensions R d × I d × M. We note that

ll the training samples share the same d − 1 TT cores X

(i)

stack
, i =

 , . . . , d − 1 . The dth TT-core of each sample is derived by select-

ng the corresponding slices of X

(d)

stack
through fixing the third

imension, namely X

(d)

stack
(: , : , sampleIndex) . With this property,

 i , i = 1 , . . . , d − 1 in Eqs. (21) and (22) are the same no matter

hich two training samples are employed to compute the kernel

unction value. Therefore, we only need to compute the cores X i

nce instead of M

2 times.

Second, we can compute the kernel matrix in a parallel man-

er. Specifically, we compute the kernel function values between

ne sample and all other training samples in one shot. This can

e easily achieved by computing K(T T (X i) , T T (X stack)) . The com-

utation is also separated into d parts and each part is computed

imilarly as we discussed for Eq. (20) , but the resulting matrices

re repeated to larger-size matrices X i , i = 1 , . . . , d with dimensions

 R 1 . . . R d) × (̂ R 1 . . . ˆ R d M). Those X i , matrices are then combined us-

ng Eqs. (21) and (22) to generate X prod

or X sum

, respectively. We

hen sum over the elements of X prod

or X sum

block by block with

lock size (R 1 . . . R d) × (̂ R 1 . . . ˆ R d), which leads to a row vector of

ize 1 × M. This produces one row of the final kernel matrix.

After explaining the efficient implementation of kernel matrix

onstruction, we compare the difference in computational com-

lexity in flops (considering multiplication only) between the naive

ernel matrix construction (using 2 d + 1 times consecutive sum-

ation or multiplication) and our efficient way. Given a tenso-

ial training dataset {X i } M

i =1
, where X i ∈ R

I 1 ×I 2 ×... ×I d , and assumed

T-ranks R 1 , . . . , R d , we need O(dM

2 IR 2 d) and O(M

2 IR 2 d) flops for

he kernel matrix construction of K-STTM-Prod and K-STTM-Sum

espectively when employing the naive way, where I and R are

he maximum values of I i and R i , i = 1 , 2 , . . . d, respectively. Using

ur aforementioned method the computation of X i costs O(dIR 4)

ops and O(M

2 R 2
d
I d) flops for computing X d . For K-STTM-Sum,

he overall computation is then O(dIR 4 + M

2 R 2
d
I d) , where I and R

re the maximum values of I i and R i , i = 1 , 2 , . . . d − 1 . The re-

uction in computational cost is primarily from the reduction of

he R 2 d factor to R 4 . For K-STTM-Prod, the overall computation

s O(dIR 4 + M

2 R 2
d
I d + M

2 R 2 d + MdR 2 d) , I i and R i , i = 1 , 2 , . . . d. We

ote that real-world data is commonly low-rank, so the TT-ranks

 i are generally small. Moreover, their dimensions I i are commonly

igh. Therefore, the computational cost for the computation of K-

TTM-Prod and K-STTM-Sum are similar as they have the same

ultiplication factor on I, which is much smaller than the case in

he naive way. We also investigate this in our Section 5.2 , in which

-STTM-Prod and K-STTM-Sum cost similar time on kernel matrix

onstruction.

The actual implementation of the kernel matrix construction

an be found in our open-source MATLAB code at: https://github.

om/git2cchen/KSTTM.git

https://github.com/git2cchen/KSTTM.git

C. Chen, K. Batselier, W. Yu et al. Pattern Recognition 122 (2022) 108337

4

t

p

c

c

p

t

c

t

X

X
w

t

t

c

T

t

e

h

n

p

d

w

t

u

o

c

a

c

s

m

t

m

c

p

d

i

fi

s

t

t

t

m

w

r

c

X

X

w

t

n

f

t

e

p

m

p

n

m

p

A

I

O

a

t

t

a

a

w

t

4

o

s

d

o

s

t

d

a

p

1

d

T

c

.6. Non-uniqueness of TT-SVD

In this paper, we employ the TT-SVD [13] algorithm to convert

he data into the TT format. However, we note that the TT decom-

osition of a tensor is not unique. This is not an issue for tensor

ompression, but it affects the classification result when using TT

ores. Specifically, referring back to the definition of TT decom-

osition, namely Eq. (1) , we can derive a specific TT decomposi-

ion of a d-way tensor X , namely T T 1 (X) . However, the TT de-

omposition for X is not unique. If we apply an invertible linear

ransformation U ∈ R

R k +1 ×R k +1 on the third mode of X

(k) , namely

(k) ×3 U

T , and apply U

−1 on the first mode of X

(k +1) , namely

(k +1) ×1 U

−1 , we derive another TT decomposition of X , which

e call T T 2 (X) . T T 1 (X) and T T 2 (X) are different TT decomposi-

ions of the same tensor X . If we compute K(T T 1 (X) , T T 2 (X)) ,

he result may be different with K(T T 1 (X) , T T 1 (X)) . This is be-

ause the kernel function in K-STTM is evaluated in the fibers of

T cores, which are different between T T 1 (X) and T T 2 (X) due

o the applied linear transformation. The extreme case occurs for

ven tensor order d when all TT cores X

(i) , i = 1 , . . . , d in T T 1 (X)

ave opposite signs with the TT cores ˆ X

(i) , i = 1 , . . . , d in T T 2 (X) ,

amely X

(i) = − ˆ X

(i) , i = 1 , . . . , d. In this case, when we com-

ute k(X

(i) (r i , : , r i +1) , ˆ X

(i) (r i , : , r i +1)) , we would derive a totally

ifferent result with k(X

(i) (r i , : , r i +1) , X

(i) (r i , : , r i +1)) , which is un-

anted since we may get different predicted labels for two iden-

ical tensors in the classification task just because of the non-

niqueness of TT-SVD. We note that this issue also appears in

ther kernelized support tensor machines, such as DuSK [17] , be-

ause the CP decomposition of a tensor is only unique up to an

rbitrary scale indeterminacy. However, this problem was not dis-

ussed in He et al. [17] and no solution was provided either.

To solve the above issue, we stack all the training tensorial

amples together into X stack and decompose it into its TT for-

at by TT-SVD in one shot. By doing so, all the samples have

he same first d − 1 TT cores, thus would not suffer the above

entioned issues. Apart from the training data, we also need to

onstrain that the TT format of validation and testing data em-

loy the same first d − 1 TT cores as the TT format of training

ata. Specifically, assuming the stacked training tensor is X trainStack ,

ts TT format T T (X trainStack) can then be derived. We contract its

rst d − 1 TT cores and reshape it into a matrix P with dimen-

ion (I 1 . . . I d−1) × R d . P can also be regarded as a projection ma-

rix, which projects the training, validation and testing data into

he same tensorial space. We further reshape the stacked valida-

ion and testing tensorial data as X validStack and X testStack with di-

ensions (I 1 . . . I d−1) × (I d N) and (I 1 . . . I d−1) × (I d O) , respectively,

here N and O are the number of validation and testing samples,

espectively. The dth TT-core of validation and test data are then

omputed as follows

(d)
validStack

= reshape (P † X validStack , [R d , I d , N]) , (23)

(d)
testStack

= reshape (P † X testStack , [R d , I d , O]) , (24)

here P † is the pseudo-inverse of P . Apart from the last TT-core,

he first d − 1 TT cores are identical to the ones in T T (X trainStack) ,

amely X

(i)
validStack

= X

(i)
testStack

= X

(i)
trainStack

, i = 1 , . . . , d − 1 .

We note that the TT decomposition for X trainStack is not unique

or the same reason as mentioned above. Therefore, with the same

raining samples, we may still get different trained K-STTMs. How-

ver, as long as we constrain the training, validation and test sam-

les to employ the same first d − 1 TT cores, similar tensors (which

ay belong to the same classification category) would be decom-

osed into similar TTs. This ensures the success of TT-based ker-

el learning tasks, which is empirically confirmed through experi-

ents.
7
The training algorithm of the K-STTM-Prod/Sum is described as

seudo-code in Algorithm 1 using a Gaussian RBF kernel as an ex-

lgorithm 1 K-STTM-Prod/Sum algorithm.

nput: Training dataset {X i ∈ R

I 1 ×... ×I d , y i ∈ {−1 , 1 } } M

i =1
; Vali-

dation dataset {X j ∈ R

I 1 ×... ×I d , y j ∈ {−1 , 1 } } N
j=1

; The pre-

set TT-ranks R 1 , R 2 , . . . , R d+1 ; The range of the perfor-
mance trade-off parameter C and kernel width parame-
ter σ , namely [C min , C max] , and [σmin , σmax] .

utput: The Lagrange multipliers α1 , α2 , . . . , αM

; The bias b.

1: Stack the tensors in training dataset together as
X trainStack ; stack the tensors in validation dataset to-
gether as X validStack .

2: Compute the TT approximation T T (X trainStack) with

the given TT-ranks using TT-SVD, which produces
X

(i)
trainStack

, i = 1 , . . . , d, and where the last TT-core

X

(d)
trainStack

has dimensions R d × I d × M.
3: Compute the TT approximation T T (X validStack) , in which

the first d − 1 TT-core are same as the first d − 1 cores
in T T (X trainStack) , and the last TT-core is computed with

~(23).
4: for C from C min to C max do

5: for σ from σmin to σmax do

6: Construct the K-STTM-Prod kernel matrix~(14) or
K-STTM-sum kernel matrix~(15).

7: Solve~(16) using the resulting kernel matrix.
8: Compute the classification accuracy on validation

set.
9: end for

10: end for
11: Find the best C and σ according to the classification ac-

curacy on validation set.
12: Train the K-STTM with the best C and σ by imple-

menting step 6 and 7. Thus the Lagrange multipliers
α1 , α2 , . . . , αM

and the bias b are obtained.

mple. Hyperparameters can be tuned through a grid search or

hrough cross-validation. If other kernel functions are employed,

he grid search for σ in step 5 can be replaced accordingly. Gener-

lizing the binary classification to multi-classification can be easily

chieved by utilizing an one-vs-one or one-vs-all strategy, namely,

e can build several binary classifiers to do multi-class classifica-

ion.

.7. Convergence and complexity

In this section we discuss convergence of our proposed meth-

ds and compare the storage and computation complexity with the

tandard SVM.

For the convergence rate analysis, it is same as it in the stan-

ard SVM problem [23,24] . We already show the kernel validity

f (14) and (15) in Theorem 1 . With a valid kernel matrix, we can

olve a quadratic programming problem to get the Lagrange mul-

ipliers αi and bias b, which is same as the procedure in the stan-

ard SVM. Consequently, the convergence analysis is exactly same

s it in standard SVM.

For the storage complexity analysis, the original tensorial sam-

le storage is O (MI d) , where I is the maximum value of I i , i =
 , 2 , . . . , d. After representing the original tensorial data as TTs, the

ata storage becomes to O (dIR 2 + MI d R d) , where R is the maximum

T-rank of I i , i = 1 , . . . , d − 1 . This shows a great reduction espe-

ially when the data order d is large.

C. Chen, K. Batselier, W. Yu et al. Pattern Recognition 122 (2022) 108337

t

m

o

s

m

m

a

T

c

p

5

K

d

t

f

d

c

l

t

t

t

m

t

a

Fig. 5. fMRI images from [17] . (a) An illustration of a 3-way tensor (fMRI image),

(b) Visualization of an fMRI image.

r

n

s

K

w

q

{

C

i

t

s

R

i

t

t

f

p

s

t

t

s

(

p

r

m

p

t

5

r

d

t

o

F

a

5

6

(

c

‘

f

The computational complexity of constructing the kernel ma-

rix in standard SVM is O (M

2 I d) , where n is the maximum di-

ension of I i , i = 1 , 2 , . . . d. As for the computational complexity

f K-STTM-Prod and K-STTM-Sum, the overall results of them are

imilar as we discussed in Section 4.5 . When applying the above

entioned accelerating implementation of K-STTM-Sum, its kernel

atrix computation complexity is O (dIR 4 + M

2 I d R
2
d
) , where I and R

re the maximum values of I i and R i , i = 1 , 2 , . . . d − 1 , respectively.

herefore our proposed method is more efficient than its vector

ounterpart since the computation complexity is reduced from ex-

onential to polynomial.

. Experiments

We evaluate the effectiveness of the two proposed schemes,

-STTM-Prod and K-STTM-Sum, on real-world small-size tensorial

atasets. We note that the classification model may not be well-

rained with a very small number of training samples. However, we

ocus on the efficiency of the classification method itself. Therefore,

ata-level improvement skills, such as data augmentation, are not

onsidered. We also do not consider the recently popular transfer

earning and few-shot learning methods [12] . The reason is that

hey commonly need a pre-trained deep model for feature ex-

raction or parameter initialization, and the pre-trained model is

rained on a large number of data. To summarize, the compared

ethods we consider use only the given training data and are

rained from scratch. We list the 7 compared methods as follows.

• SVM : SVM [4] is one of the most widely used vector-based

method for classification. What is more, the proposed K-STTM

is a tensorial extension of SVM, so SVM is selected as a base-

line. We employ the widely used convex optimization solver

CVX

1 to solve the quadratic programming problem.
• STM : STM [5] is the first method which extends SVM to

the tensorial format, which employs alternating optimization

scheme to update the weight tensors and outperforms kernel

SVM in some tasks.
• STuM : STuM [15] is a linear support tensor machine and it is

based on the Tucker decomposition. Its training procedure is

similar to the one in STM.
• STTM : STTM [16] assumes the weight tensor is a scalable tensor

train, which enables STTM to deal with high-dimensional data

classification. STM, STuM, and STTM are all tensor-based linear

classifiers. In the very small sample size problem, sometimes

linear classifiers are observed to achieve a better classification

accuracy than nonlinear classifier [17] since a linear classifier

is commonly less complex and more stable, thus can be better

trained than nonlinear classifiers.
• DuSK : DuSK [17] is a kernelized support tensor machine using

the CP decomposition. Through introducing the kernel trick, it

can deal with nonlinear classification tasks.
• 3D CNN : CNN is one of the most powerful structure for image

classification. The 3D CNN we employ here is an extension of

the 2D version in Gupta et al. [25] . We replace the 2D convolu-

tional kernels with 3D ones and keep other settings the same.

Though 3D CNN is a relatively simple CNN model, it has an ad-

vantage in dealing with small sample size problems since it can

be trained better than the complicated CNN model.
• TT Classifier : As an updated tensor classification method, TT

classifier [26] trains a TT as a polynomial classifier and achieves

good results on tensorial image classification tasks.

For simplicity, all of the kernel-based methods, i.e., SVM, DuSK,

nd K-STTM, employ the Gaussian RBF kernel. The optimal pa-
1 http://cvxr.com/cvx/

8
ameters, namely the performance trade-off parameter C, RBF ker-

el parameter σ , hidden layer size in 3D CNN, plus the corre-

ponding tensor rank R i in STuM, STTM, DuSK, TT classifier and

-STTM, are determined through a grid search. We provide a

ide search range of C and σ such that it can fulfill the re-

uirement for all methods. Specifically, we select C and σ from

 10 −6 , 10 −5 , . . . , 10 8 , 10 9 } . We select the hidden layer size of 3D-

NN from { 10 , 30 , 50 , 100 , 150 , 200 } .
As for the tensor rank R i , though STM is a tensor-based method,

t assumes its weight tensor to be rank-one, thus there is no need

o determine the tensor rank. STuM and the polynomial TT clas-

ifier assume the same rank over all tensor modes, namely R 1 =

 2 = . . . = R d = R . Therefore, the upper bound of the Tucker rank

n STuM is limited to the smallest data dimension. In the first

wo fMRI datasets, the smallest dimensions are 8 and 23 respec-

ively. Thus the tensor rank search range of STuM in the first two

MRI datasets is relatively smaller than other methods. As for the

olynomial TT classifier, although it is based on the scalable TT

tructure, we could not set a high tensor rank since this increases

he memory consumption a lot and makes the training speed ex-

remely slow due to their model setting. We summarize the ten-

or rank search range of different methods on different datasets

details presented later) in Table 1 . For more details about hyper-

arameter search, we refer the reader to the supplementary mate-

ial.

Due to the very small number of training samples, we imple-

ent a 5-fold cross-validation on all experiments. We repeat this

rocess 50 times for all methods and report the average classifica-

ion accuracy of each method for stable learning.

.1. fMRI datasets

Here we consider three high-dimensional functional magnetic

esonance imaging (fMRI) datasets, namely the StarPlus fMRI

ataset, 2 the CMU Science 2008 fMRI dataset (CMU2008) [27] and

he ADNI fMRI dataset 3 to evaluate the classification performance

f different models. An fMRI image is essentially a 3-way tensor.

ig. 5 from [17] illustrates the tensorial structure of the fMRI im-

ge.

.1.1. StarPlus fMRI dataset

The fMRI images in the StarPlus dataset are with dimensions

4 × 64 × 8 that contains 25 to 30 anatomically defined regions

called “Regions of Interest”, or ROIs). To achieve a better classifi-

ation accuracy, we only consider the following ROIs: ‘CALC’ ‘LIPL’

LT’ ‘LTRIA’ ‘LOPER’ ‘LIPS’ ‘LDLPFC’. After extracting those ROIs, we

urther normalize the data of each subject. StarPlus fMRI dataset
2 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
3 http://adni.loni.usc.edu/

http://cvxr.com/cvx/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
http://adni.loni.usc.edu/

C. Chen, K. Batselier, W. Yu et al. Pattern Recognition 122 (2022) 108337

Table 1

Tensor ranks search range of different methods on different datasets.

Dataset StarPlus CMU2008 ANDI Caltech-101

STuM R : {2, 3, . . . , 8} R : {2, 3, . . . , 23} R : {10, 20, . . . , 60} R : {2, 3}

STTM R 2 : {60, 80, . . . , 200} R 2 : {10, 20, . . . , 100} R 2 : {10, 20, . . . , 100} R 2 : {10, 20, . . . , 100}

R 3 : {2, 4, 6, 8} R 3 : {2, 4, . . . , 20} R 3 : {10, 20, . . . , 60} R 3 : {3}

DuSK R : {60, 80, . . . , 200} R : {10, 20, . . . , 90} R : {10, 20, . . . , 100} R : {10, 20, . . . , 90}

TT classifier R : {2, 3,..., 20 } R : {2, 3,..., 20 } R : {2, 3,..., 20 } R : {2, 3,..., 20}

K-STTM- Prod/Sum R 3 : {60, 100, . . . , 200} R 2 : {10, 20, . . . , 100} R 2 : {10, 20, . . . , 60} R 2 : {10, 20, . . . , 100}

R 2 : {2, 4, 6, 8} R 3 : {2, 4, . . . , 20} R 3 : {10, 20, . . . , 100} R 3 : {3}

Table 2

Classification accuracy of different methods for different subjects in StarPlus fMRI datasets.

Subject SVM STM STuM STTM DuSK 3D CNN TT classifier K-STTM-Prod K-STTM-Sum

04799 50 . 00% 37 . 14% 34 . 97% 38 . 01% 47 . 88% 51 . 79% 56 . 13% 68 . 28 % 66 . 55%

04820 50 . 00% 42 . 97% 32 . 66% 46 . 55% 45 . 65% 44 . 57% 53 . 81% 70 . 65 % 64 . 87%

04847 50 . 00% 38 . 30% 17 . 71% 48 . 40% 53 . 99% 54 . 69% 60 . 48% 65 . 46% 66 . 02 %

05675 50 . 00% 38 . 56% 29 . 78% 34 . 38% 56 . 58% 48 . 43% 54 . 98% 60 . 13 % 59 . 57%

05680 50 . 00% 37 . 49% 39 . 39% 41 . 64% 62 . 95% 68 . 74% 60 . 21% 72 . 01% 76 . 25 %

05710 50 . 00% 39 . 11% 31 . 54% 44 . 45% 55 . 63% 48 . 70% 54 . 12% 58 . 31 % 58 . 13%

c

h

e

t

d

5

h

s

t

h

p

t

c

n

c

c

s

i

a

a

5

b

d

e

i

t

c

t

i

S

p

i

a

i

T

c

m

d

r

c

n

o

h

a

3

a

a

5

N

o

I

t

m

T

c

p

r

m

t

g

r

t

5

v

d

i

e

t

a

l

a

e

3

(

p

f

p

t

t
ontains the brain images of 6 human subjects. The data of each

uman subject is partitioned into trials, and each subject has 40

ffective trials. Here we only use the first 4 s of each trial since

he subject was shown one kind of stimulus (sentence or picture)

uring the whole period. The fMRI images were collected every

00 ms, thus we can utilize 8 fMRI images in each trial. Overall, we

ave 320 fMRI images: one half of them were collected when the

ubject was shown a picture, the other half were collected when

he subject was shown a sentence.

The classification results are listed in Table 2 . Due to the very

igh-dimensional and sparse data, SVM fails to find a good hy-

erparameter setting and classifies all test samples into one class,

hus can not do classification. Since fMRI data are very compli-

ated, those linear classifiers, namely STM, STuM and STTM, can

ot achieve acceptable performance, and the classification accura-

ies of them are all lower than 50% . The classification result of TT

lassifier is poor on several subjects. DuSK also performs poorly on

ubjects ‘04799’ and ‘04820’. Due to the small number of train-

ng samples and high-dimensional data size, the 3D CNN overfits

nd can not be well trained, while our proposed two methods still

chieve the highest classification accuracy on all human subjects.

.1.2. CMU2008

The second fMRI dataset we consider is CMU2008. It shows the

rain activities associated with the meanings of nouns. During the

ata collection period, the subjects were asked to view 60 differ-

nt word-picture from 12 semantic categories. There are 5 pictures

n each category and each image is shown to the subject for 6

imes. Therefore, we can get 30 fMRI images for each semantic

ategory, and each fMRI image is with dimensions 51 × 61 × 23 . In

his experiment, we consider all the ROIs thus the classified fMRI

mages are relatively denser than the images we classified in the

tarPlus example. Considering the extremely small number of sam-

les in each category, we therefore follow the experiment settings

n Kampa et al. [28] , which combines two similar categories into

n integrated class. Specifically, we combine categories animal and

nsect as class Animals , and categories tool and f urniture as class

ools . By doing so, we have 60 samples in both Animals and Tools

lasses.

Table 3 shows the binary classification results of different

odels. We notice that SVM can perform classification on this

ataset since we include all ROIs, which facilitates the hyperpa-

ameter searching procedure. However, its classification accura-

ies on two subjects are lower than 50% . The linear and poly-

omial models, namely STM, STuM, STTM, and TT classifier, can
9
nly achieve acceptable performance on a few subjects. Due to the

igh-dimensional data size, DuSK fails to find a good CP-rank in

cceptable time and can not achieve a good classification accuracy.

D CNN still performs poorly due to the very few training samples

nd high-dimensional feature size. Our proposed two methods still

chieve the best classification results on all subjects.

.1.3. ANDI fMRI dataset

ANDI fMRI dataset is collected from the Alzheimer’s Disease

euroimaging Initiative. It contains the resting-state fMRI images

f 33 subjects. The subject includes patients (with Mild Cognitive

mpairment (MCI) or Alzheimer’s Disease (AD)) and normal con-

rols. Overall we have 33 fMRI images and each image is with di-

ensions 61 × 73 × 61 . We further separate them into two classes.

he positive class includes normal controls, while the negative

lass includes patients with MCI or AD. Since the number of sam-

les is very small, we run all the experiment 50 times and the

esults are reported by averaging the accuracy over these runs.

Table 4 lists the classification results of the seven compared

ethods and the proposed K-STTM-Prod/Sum. We can observe that

he performance of SVM, STM, STuM and TT classifier is still not

ood. STTM and DuSK achieve slightly better performance than

andom classification. The proposed K-STTM-Prod/Sum achieves

he best accuracy over all compared methods.

.2. Caltech-101 binary-classification

In this experiment, we use the Caltech-101 dataset [29] to in-

estigate the fourth claim in Section 4.2 , namely, we can perform

ifferent kernel functions on different tensor modes. Caltech-101

s an image dataset, which includes 101 object categories. How-

ver, the number of images in each category differs a lot, about 40

o 800 images per category. We note that this paper cares more

bout small sample size classification problems. We therefore se-

ect 5 class pairs to implement binary-classification experiments

nd each category includes 50 colorful images. Since the size of

ach image differs also, we resize all the images into 200 × 300 ×
 . We note that each color image is naturally a three-way tensor

pixel-pixel-color), and the first two tensor modes are related to

ixel intensity, therefore we utilize the same Gaussian RBF kernel

or the first two tensor modes and try a different kernel (linear or

olynomial) for the third mode when implementing the classifica-

ion with the proposed K-STTM-Prod/Sum. The parameters c, d in

he polynomial kernel k(x , y) = (x T y + c) d were empirically set to

C. Chen, K. Batselier, W. Yu et al. Pattern Recognition 122 (2022) 108337

Table 3

Classification accuracy of different methods for different subjects in CMU2008 fMRI datasets.

Subject SVM STM STuM STTM DuSK 3D CNN TT classifier K-STTM-Prod K-STTM-Sum

#1 65 . 55% 66 . 30% 67 . 31% 64 . 93% 45 . 77% 49 . 76% 29 . 40% 69 . 06% 71 . 54 %

#2 52 . 35% 50 . 88% 58 . 77% 68 . 62% 55 . 48% 57 . 48% 43 . 60% 75 . 41% 83 . 72 %

#3 50 . 24% 60 . 40% 57 . 90% 65 . 05% 58 . 09% 55 . 33% 61 . 13% 66 . 43% 68 . 98 %

#4 50 . 62% 59 . 79% 58 . 29% 56 . 31% 53 . 26% 58 . 05% 56 . 38% 76 . 11 % 70 . 62%

#5 56 . 72% 59 . 01% 65 . 10% 66 . 04% 44 . 82% 58 . 11% 56 . 55% 72 . 62 % 72 . 17%

#6 43 . 57% 59 . 03% 46 . 27% 45 . 78% 53 . 86% 55 . 70% 49 . 81% 69 . 30 % 67 . 65%

#7 49 . 75% 52 . 26% 48 . 83% 51 . 66% 50 . 81% 60 . 61% 59 . 84% 67 . 40% 71 . 56 %

Table 4

Classification accuracy of different methods in ADNI fMRI dataset.

SVM STM STuM STTM DuSK 3D CNN TT classifier K-STTM-Prod K-STTM-Sum

50 . 63% 57 . 78% 42 . 43% 55 . 90% 50 . 37% 60 . 08% 51 . 25% 71 . 03 % 64 . 83%

Table 5

Classification accuracy of SVM, STM, STuM, STTM, DuSK, 3D CNN, TT classiifer for different Caltech-101 class

pairs.

Class pair SVM STM STuM STTM DuSK 3D CNN TT classifier

brain, cup 70 . 74 % 50 . 00% 70 . 26% 67 . 47% 70 . 05% 42 . 39% 45 . 28%

brain, soccer_ball 50 . 04% 50 . 00% 35 . 36% 42 . 35% 50 . 65% 54 . 62 % 51 . 18%

butterfly, watch 82 . 76% 50 . 00% 57 . 43% 75 . 81% 84 . 34% 89 . 78 % 42 . 58%

cup, soccer_ball 61 . 90% 50 . 00% 64 . 65 % 60 . 19% 54 . 33% 56 . 69% 49 . 54%

soccer_ball, umbrella 60 . 80% 50 . 00% 39 . 57% 57 . 16% 63 . 19 % 58 . 19% 47 . 17%

Table 6

Classification accuracy of K-STTM-Prod and K-STTM-Sum with different kernel functions for different Caltech-101 class pairs.

Class

pair

K-STTM-Prod K-STTM-Sum

RBF-RBF-RBF RBF-RBF-Poly RBF-RBF-Linear RBF-RBF-RBF RBF-RBF-Poly RBF-RBF-Linear

brain, cup 81 . 00% 67 . 24% 91 . 22 % 77 . 72% 78 . 49% 79 . 13%

brain, soccer_ball 71 . 35% 65 . 92% 81 . 04 % 72 . 41% 77 . 49% 77 . 20%

butterfly, watch 89 . 94% 87 . 85% 86 . 63% 90 . 28% 90 . 96% 91 . 75 %

cup, soccer_ball 69 . 89% 69 . 10% 75 . 69% 72 . 52% 77 . 01% 80 . 82 %

soccer_ball, umbrella 72 . 09% 67 . 15% 75 . 27% 83 . 74 % 72 . 48% 82 . 86%

c

i

p

W

r

m

s

R

o

w

t

c

S

t

t

o

t

s

C

S

s

b

o

p

t

S

T

Table 7

Time consumption with respect to kernel matrix construction and tenso-

rial data preparation.

Time consumption (s) SVM DuSK K-STTM-Prod/Sum

tensorial data preparation – 1517.04 1 . 16 / 1 . 15

kernel matrix construction 6.62 7.86 0 . 21 / 0 . 28

n

c

a

1

K

c

D

6

a

E

S

B

t

h

b

c

o

 = 1 and d = 2 . The baseline case is when the Gaussian RBF kernel

s applied to all tensor modes.

Tables 5 and 6 lists the classification results of the seven com-

ared methods and the proposed K-STTM-Prod/Sum respectively.

e observe that K-STTM-Prod/Sum almost achieves the best accu-

acy on all class pairs. And by applying a linear kernel on the color

ode, the classification accuracy of K-STTM-Prod/Sum achieves

imilar or better performance than the baseline case (RBF-RBF-

BF) on all class pairs, which demonstrates the potential benefit

f employing different kernel functions on different tensor modes

hen they contain different kind of information. As for applying

he polynomial kernel on the color mode, the classification ac-

uracy decreases a little compared with RBF-RBF-RBF case in K-

TTM-Prod. This indicates that RBF-RBF-Linear may be a better set-

ing when classifying color images.

Apart from the classification accuracy, we further investigate

he kernel matrix construction time of three kernel-based meth-

ds, namely SVM, DuSK and K-STTM, to show the efficiency of

he proposed accelerating implementation (i.e., Section 4.5) of con-

tructing kernel matrix for K-STTM. For fair comparison, we set the

P-rank as 30 for DuSK, and TT-rank as R 2 = 10 and R 3 = 3 for K-

TTM. By doing so, the overall computation of kernel matrix con-

truction for DuSK and K-STTM is similar, which can be observed

y comparing their kernel matrix construction equations. More-

ver, we also compare the time consumption for tensorial data

reparation in DuSK and K-STTM, in which DuSK decomposes the

ensorial data into their CP format sample by sample, while K-

TTM stacks those data together and decomposes them into their

T format in one shot.
10
Table 7 lists the result of time consumption with respect to ker-

el matrix construction and tensorial data preparation in binary

lassification for brain and cup . K-STTM-Prod and K-STTM-Sum cost

 similar time on the two metrics. We notice that DuSK consumes

300 × more time on tensorial data preparation than the proposed

-STTM-Prod/Sum. What is more, the proposed K-STTM-Prod/Sum

osts 23 × and 28 × less time on kernel construction than SVM and

uSK, respectively. This indicates the high efficiency of K-STTM.

. Conclusions and future works

This paper has proposed a tensor train (TT)-based kernel trick

nd devised a kernelized support tensor train machine (K-STTM).

xtensive experiments have demonstrated the superiority of K-

TTM for tensorial data classification in few-sample size scenarios.

y employing TT structure, we reduce the storage and computa-

ion complexity from exponential to polynomial. Theoretical proof

as been given to demonstrate the validity of the proposed tensor-

ased kernel mapping scheme for the first time. Moreover, as a

ommon issue in tensor-based kernel learning, the non-uniqueness

f tensor decomposition is well explained and addressed herein.

C. Chen, K. Batselier, W. Yu et al. Pattern Recognition 122 (2022) 108337

A

a

m

s

t

i

s

p

w

a

c

s

c

p

s

a

m

p

a

d

f

D

c

i

A

G

C

I

6

S

f

R

[

[

[

[

[

[

[

[

[

[

[

[

[

C
T

t
c

K

P
2

n
o

W

U
v

p
s

r

N

g

s
a

t
r

i

pplying different kernel functions on different tensor modes is

lso investigated empirically, and we observe a consistent improve-

ent compared with the baselines in which all modes employ the

ame kernel function.

We further envision three future research directions based on

he K-STTM framework. Firstly, in our paper, we treat each fMRI

mage as an independent sample. However, those fMRI images are

ampled in a continuous time period and therefore they have some

articular correlation on the time axis. In our future work, we

ould investigate the short-time series analysis on fMRI images

nd address the possible time bias issue in it. Secondly, instead of

onstructing a kernel matrix in the K-STTM formula, we will con-

ider building a kernel tensor. We believe that the kernel matrix

onstructed for each mode can contain different information. Sim-

ly multiplying or adding this information may not be the best

olution. Subsequently, we propose to stack this information into

 3-way kernel tensor and develop a better way to exploit infor-

ation in each of the modes. Thirdly, we will embed the pro-

osed kernel mapping trick into other kernel-based methods such

s LSSVM [30] , kernel PCA [31] etc., such that these methods can

irectly deal with tensorial data and achieve potentially better per-

ormance.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

cknowledgments

This work is partially supported by the Hong Kong Research

rants Council under Project 17246416, the University Research

ommittee of The University of Hong Kong, Tsinghua University

nitiative Scientific Research Program, and NSFC under grant no.

1872206 .

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.patcog.2021.108337 .

eferences

[1] C. Dou , S. Zhang , H. Wang , L. Sun , Y. Huang , W. Yue , ADHD fMRI short-time
analysis method for edge computing based on multi-instance learning, J. Syst.

Archit. 111 (2020) 101834 .
[2] G. Luca , P. Gennaro , R. Pierluigi , T. Francesco , V. Mario , Trends in IoT based

solutions for health care: moving AI to the edge, Pattern Recognit. Lett. 135
(2020) 346–353 .

[3] G. Dai, D.-Y. Yeung, Tensor embedding methods, Association for the Advance-

ment of Artificial Intelligence (2006) 330–335.
[4] B.E. Boser , I.M. Guyon , V.N. Vapnik , A training algorithm for optimal margin

classifiers, in: The Fifth Annual Workshop on Computational Learning Theory,
1992, pp. 144–152 .

[5] D. Tao , X. Li , W. Hu , S. Maybank , X. Wu , Supervised tensor learning, in: IEEE
International Conference on Data Mining, 2005, p. 8 .

[6] T.D. Nguyen , T. Tran , D. Phung , S. Venkatesh , Tensor-variate restricted Boltz-

mann machines, Association for the Advancement of Artificial Intelligence,
2015 .

[7] B. Zongwen , L. Ying , W. Marcin , Z. Meili , L. Di , Decomvqanet: decomposing
visual question answering deep network via tensor decomposition and regres-

sion, Pattern Recognit. 110 (2021) 107538 .
[8] M. Yang , W. Ping , L. Liangfu , Z. Xuyun , Q. Lianyong , Weighted tensor nuclear

norm minimization for tensor completion using tensor-SVD, Pattern Recognit.

Lett. (2020) 4–11 .
[9] A. Soheil , R. Mansoor , Generalized low-rank approximation of matrices based

on multiple transformation pairs, Pattern Recognit. 108 (2020) 107545 .
11
[10] L. Jiani , Z. Ce , L. Zhen , H. Huyan , L. Yipeng , Low-rank tensor ring learning for
multi-linear regression, Pattern Recognit. 113 (2021) 107753 .

[11] K. Piotr , W. Lei , C. Anoop , Tensor representations for action recognition, IEEE
Trans. Pattern Anal. Mach. Intell. (2021) 1 .

12] A. Riaz , M. Asad , S.M.R. Al Arif , E. Alonso , D. Dima , P. Corr , G. Slabaugh , Deep
fMRI: an end-to-end deep network for classification of fMRI data, in: IEEE In-

ternational Symposium on Biomedical Imaging, 2018, pp. 1419–1422 .
[13] I.V. Oseledets , Tensor-train decomposition, SIAM J. Sci. Comput. 33 (5) (2011)

2295–2317 .

[14] I. Kotsia , W. Guo , I. Patras , Higher rank support tensor machines for visual
recognition, Pattern Recognit. 45 (12) (2012) 4192–4203 .

[15] I. Kotsia , I. Patras , Support Tucker machines, in: IEEE Conference on Computer
Vision and Pattern Recognition, 2011, pp. 633–640 .

[16] C. Chen , K. Batselier , C.-Y. Ko , N. Wong , A support tensor train machine, in:
International Joint Conference on Neural Networks, 2019, pp. 1–8 .

[17] L. He , X. Kong , P.S. Yu , X. Yang , A.B. Ragin , Z. Hao , Dusk: a dual structure-p-

reserving kernel for supervised tensor learning with applications to neuroim-
ages, in: SIAM International Conference on Data Mining, 2014, pp. 127–135 .

[18] L. He , C.-T. Lu , H. Ding , S. Wang , L. Shen , P.S. Yu , A.B. Ragin , Multi-way multi-
-level kernel modeling for neuroimaging classification, in: IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 356–364 .
[19] L. He , C.-T. Lu , G. Ma , S. Wang , L. Shen , P.S. Yu , A.B. Ragin , Kernelized sup-

port tensor machines, in: International Conference on Machine Learning, 2017,

pp. 1442–1451 .
20] R. Orús , A practical introduction to tensor networks: matrix product states and

projected entangled pair states, Ann. Phys. 349 (2014) 117–158 .
21] L. Houthuys , J.A.K. Suykens , Tensor learning in multi-view kernel PCA, in: In-

ternational Conference on Artificial Neural Networks, 2018, pp. 205–215 .
22] J. Schur , Bemerkungen zur theorie der beschränkten bilinearformen mit un-

endlich vielen veränderlichen, J. Reine Angew. Math. 1911 (140) (1911) 1–28 .

23] I. Steinwart , Support vector machines are universally consistent, J. Complex. 18
(3) (2002) 768–791 .

24] I. Steinwart , C. Scovel , et al. , Fast rates for support vector machines using Gaus-
sian kernels, Ann. Stat. 35 (2) (2007) 575–607 .

25] A. Gupta , M. Ayhan , A. Maida , Natural image bases to represent neuroimaging
data, in: International Conference on Machine Learning, 2013, pp. 987–994 .

26] Z. Chen , K. Batselier , J.A. Suykens , N. Wong , Parallelized tensor train learning

of polynomial classifiers, IEEE Trans. Neural Netw. Learn. Syst. 29 (10) (2017)
4621–4632 .

27] T.M. Mitchell , S.V. Shinkareva , A. Carlson , K.-M. Chang , V.L. Malave , R.A. Ma-
son , M.A. Just , Predicting human brain activity associated with the meanings

of nouns, Science 320 (5880) (2008) 1191–1195 .
28] K. Kampa , S. Mehta , C.-A . Chou , W.A . Chaovalitwongse , T.J. Grabowski , Sparse

optimization in feature selection: application in neuroimaging, J. Global Optim.

59 (2–3) (2014) 439–457 .
29] L. Fei-Fei , R. Fergus , P. Perona , Learning generative visual models from few

training examples: an incremental Bayesian approach tested on 101 object
categories, in: IEEE Conference on Computer Vision and Pattern Recognition

Workshop, 2004, p. 178 .
30] J.A. Suykens , J. Vandewalle , Least squares support vector machine classifiers,

Neural Process. Lett. 9 (3) (1999) 293–300 .
31] B. Schölkopf , A. Smola , K.-R. Müller , Nonlinear component analysis as a kernel

eigenvalue problem, Neural Comput. 10 (5) (1998) 1299–1319 .

ong Chen received the M.S. degree in Electrical and Electronic Engineering from

he University of Hong Kong, Hong Kong, in 2018, where he is currently pursuing

he Ph.D. degree. His current research interests include tensor computation, image
ompletion and model compression.

im Batselier received the M.S. degree in Electro-Mechanical Engineering and the

h.D. Degree in Engineering Science from the KULeuven, Belgium, in 2005 and
013 respectively. He is currently an Assistant Professor at Delft University of Tech-

ology. His current research interests include linear and nonlinear system the-
ry/identification, algebraic geometry, tensors, and numerical algorithms.

enjian Yu received the B.S. and Ph.D. degrees in computer science from Tsinghua

niversity, Beijing, China, in 1999 and 2003, respectively. He joined Tsinghua Uni-
ersity, in 2003, where he is an Associate Professor with the Department of Com-

uter Science and Technology. His current research interests include modeling and
imulation of complex systems (integrated circuits and others), numerical algo-

ithms, and their applications.

gai Wong received his B.Eng. and Ph.D. degrees in Electrical and Electronic En-

ineering from The University of Hong Kong, Hong Kong, in 1999 and 2003, re-

pectively. He is currently an Associate Professor with the Department of Electrical
nd Electronic Engineering, The University of Hong Kong. His current research in-

erests include linear and nonlinear circuit modeling and simulation, model order
eduction, passivity test and enforcement, and tensor-based numerical algorithms

n electronic design automation (EDA).

https://doi.org/10.13039/501100001809
https://doi.org/10.1016/j.patcog.2021.108337
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00517-3/sbref0031

	Kernelized support tensor train machines
	1 Introduction
	2 Related works
	3 Preliminaries
	3.1 Tensor basics
	3.2 Tensor train decomposition
	3.3 Support vector machines

	4 Kernelized support tensor train machines
	4.1 Problem statement
	4.2 Customized kernel mapping schemes for TT-based data
	4.2.1 K-STTM-Prod
	4.2.2 K-STTM-Sum

	4.3 Kernel optimization problem
	4.4 Kernel validity
	4.5 Efficient implementation for kernel matrix construction
	4.6 Non-uniqueness of TT-SVD
	4.7 Convergence and complexity

	5 Experiments
	5.1 fMRI datasets
	5.1.1 StarPlus fMRI dataset
	5.1.2 CMU2008
	5.1.3 ANDI fMRI dataset

	5.2 Caltech-101 binary-classification

	6 Conclusions and future works
	Declaration of Competing Interest
	Acknowledgments
	Supplementary material
	References

