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Abstract

Most modern face completion approaches adopt an au-
toencoder or its variants to restore missing regions in face
images. Encoders are often utilized to learn powerful repre-
sentations that play an important role in meeting the chal-
lenges of sophisticated learning tasks. Specifically, vari-
ous kinds of masks are often presented in face images in
the wild, forming complex patterns, especially in this hard
period of COVID-19. It’s difficult for encoders to capture
such powerful representations under this complex situation.
To address this challenge, we propose a self-supervised
Siamese inference network to improve the generalization
and robustness of encoders. It can encode contextual se-
mantics from full-resolution images and obtain more dis-
criminative representations. To deal with geometric varia-
tions of face images, a dense correspondence field is inte-
grated into the network. We further propose a multi-scale
decoder with a novel dual attention fusion module (DAF),
which can combine the restored and known regions in an
adaptive manner. This multi-scale architecture is benefi-
cial for the decoder to utilize discriminative representa-
tions learned from encoders into images. Extensive exper-
iments clearly demonstrate that the proposed approach not
only achieves more appealing results compared with state-
of-the-art methods but also improves the performance of
masked face recognition dramatically.

1. Introduction

Face completion (a.k.a face inpainting or face hole-
filling) aims at filling missing regions of a face image with
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plausible contents [7]. It is more difficult than general im-
age inpainting because there are high-level identity infor-
mation, pose variations, etc in face images. Face comple-
tion is a fundamental low-level vision task and can be ap-
plied to many downstream applications, such as photo edit-
ing and face verification [76, 5, 64]. The target of face com-
pletion is to produce semantically meaningful content and
reasonable structure information in missing areas.

There are many attempts for face completion, but they
usually treat it as a general image inpainting problem. Tra-
ditional image inpainting methods [5, 23, 73] (e.g., Patch-
Match) assume that the content to be filled comes from
the background area. Therefore, they gradually synthesize
plausible stationary contents by copying and pasting simi-
lar patches from known areas. The performances of these
methods are satisfying when dealing with background in-
painting tasks. But non-repetitive and complicated scenes,
such as faces and objects, are the Waterloo of these tra-
ditional methods because of the limited ability to capture
high-level semantics. Recently, deep convolutional neural
networks (CNNs) have made great progress in many com-
puter vision tasks [47, 35, 21, 46, 32, 56, 28]. Thus, many
deep learning-based methods have been proposed. Benefit-
ing from the powerful ability of representation learning of
CNNs, their performance has been significantly improved.
These approaches adopt autoencoder or its variant architec-
tures jointly trained with generative adversarial networks
(GANs) to hallucinate semantically plausible contents in
missing regions [76, 72, 44]. But these methods still suf-
fer from three problems:

Firstly, various kinds of masks are often presented in
face images in the wild, especially in this tough period
of COVID-19, which greatly increases the difficulty of
image inpainting. Previous image inpainting approaches
usually train an encoder and a decoder jointly with some
commonly-used loss functions (e.g., reconstruction loss,
style loss, etc). But encoders still struggle to learn powerful
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representations from images with various kinds of masks.
As a result, these CNN-based approaches will produce un-
satisfactory results with obvious artifacts. A naive solution
is to design a very deep network to obtain a large model
capacity for learning powerful representations. However, it
will increase the computational cost heavily and may not
help to learn accurate latent representations.

To cope with this limitation, we propose a self-
supervised Siamese inference network with contrastive
learning. We assume that two identical images with differ-
ent masks form a positive pair while a negative pair consists
of two different images. Contrastive learning aims to max-
imize (minimize) the similarities of positive pairs (negative
pairs) in a representation space. As explored in [27, 26],
contrastive learning can be regarded as training an encoder
to perform a dictionary look-up task. An encoded ‘query’
should be matched with its corresponding ‘key’ (token) and
different from others. The ‘keys’ (tokens) in the dictionary
are usually sampled from images, patches, or other data
types. In order to acquire a large and consistent dictionary,
we design a queue dictionary and a momentum-updated key
encoder. As demonstrated in MoCo [27], the proposed self-
supervised inference network can learn good features from
input images. Thus, the robustness and the accuracy of the
encoder can be improved.

Secondly, previous methods consider image inpainting
as a conditional image generation task. The roles of the en-
coder and decoder are recognizing high-level semantic in-
formation and synthesizing low-level textures [74], respec-
tively. These approaches, e.g., PConv [44] and LBAM [72],
focus more on missing areas and synthesize realistic al-
ternative contents by a well-designed architecture or some
commonly-used loss functions. However, there are either
obvious color contrasts or artificial edge responses, espe-
cially in the boundaries of results produced by these meth-
ods since they ignore the structural consistency. In fact, the
development of biology has revealed that the human visual
system is more sensitive to the topological distinction [13].
Therefore, we focus not only on the structural continuity of
restored images surrounding holes but also on generating
texture-rich images.

To properly suppress color discrepancy and artifacts in
boundaries, we propose a novel dual attention fusion mod-
ule (DAF) to synthesize pixel-wise smooth contents, which
can be inserted into autoencoder architectures in a plug-and-
play way. The core idea of the fusion module is to cal-
culate the similarity between the synthesized content and
the known region. Some methods are proposed to address
this problem, such as DFNet [29] and Perez’s method [57].
However, these methods lack flexibility in handling differ-
ent information types (e.g., different semantics), hindering
learning more discriminative representations. Our proposed
DAF is developed to adaptively recalibrate channel-wise

features by taking interdependencies between channels into
account and force CNNs to focus more on unknown regions.
DAF will predict an adaptive spatial attention map to blend
restored contents and original images naturally.

Finally, the verification performance heavily relies on the
pixel level similarity and feature level similarity according
to [83], which means that the geometric information of the
output results should be similar to the input. In practice,
face appearance will be influenced by a number of factors
such as meshes, wearing masks [43, 83, 10] and so on.
Masks can significantly destroy the facial shape and geo-
metric information, greatly increasing the difficulty of gen-
erating visually appealing results. Therefore, it inevitably
leads to a sharp decline in face verification performance.
For example, healthcare workers must wear sanitary masks
to avoid infection of diseases, and they will fail to pass
through the face verification system.

In this paper, we assume that the geometric information
of the input face image should be kept intact. Inspired by
recent advances in 3D face analysis [2, 1], a dense corre-
spondence field estimation is integrated into our network
since it contains the complete geometric information of the
input face. For simplicity, instead of using another net-
work to predict the dense correspondence field separately,
we make our decoder simultaneously predict the dense cor-
respondence field and feature maps at multi-scales. Thus,
we subtly employ a 3D supervision for our network pro-
vided by the dense correspondence field. Under this 3D
geometric supervision, our network can generate inpainting
results with reasonable structure information.

Qualitative and quantitative experiments are conducted
on multiple datasets to evaluate our proposed method. The
experimental results demonstrate that our proposed method
not only outperforms state-of-the-art methods in generating
high-quality inpainting results but also improves the perfor-
mance of masked face recognition dramatically.

This paper is an extension of our previous conference
publication [48]. We extend it in three folds: 1) A dense
correspondence field is proposed to be integrated into our
network for utilizing 3D prior information of human faces.
It can help our network to retain the facial shape and ap-
pearance information from the input. 2) We mainly con-
centrate on face image completion rather than other types
of images. We add an extra face dataset, Flickr-Faces-
HQ (FFHQ) [38], to demonstrate the effectiveness of our
method. 3) We conduct an identity verification evaluation
for face completion. It clearly shows the advantage of the
proposed method compared with state-of-the-art methods.

To sum up, the main contributions of this paper are as
follows:

• We propose a Siamese inference network based on
contrastive learning for face completion. It helps to
improve the robustness and accuracy of representation
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learning for complex mask patterns.

• We propose a novel dual attention fusion module that
can explore feature interdependencies in spatial and
channel dimensions and blend features in missing re-
gions and known regions naturally. Smooth contents
with rich texture information can be naturally synthe-
sized.

• To keep structural information of the input intact, the
dense correspondence field that binds 2D and 3D sur-
face spaces is estimated in our network, which can pre-
serve the expression and pose of the input.

• Our proposed method achieves smooth inpainting
results with rich texture and reasonable topologi-
cal structural information on three standard datasets
against state-of-the-art methods, and also greatly im-
proves the performance of face verification.

2. Related Work
2.1. Image Inpainting

Image inpainting aims to generate alternative contents
when a given image is partially occluded or corrupt. Early
traditional image inpainting methods are mainly diffusion-
based [7] or patch-based [5]. They often use the informa-
tion of the pixels (or image patches) around the occluded
area to fill the missing regions. Bertalmio et al. [7] pro-
posed an algorithm to fill missing regions with information
surrounding them automatically based on the principle that
isophote lines arriving at the boundaries of the regions are
completed inside. Barnes et a. [5] presented a fast nearest
neighbor searching algorithm named PatchMatch, to search
and paste the most similar image patches from the known
regions. These methods utilize low-level image features
to guide the feature propagation from known image back-
grounds or image datasets to corrupted regions. Crimin-
isi et al. [17] proposed an efficient algorithm, which com-
bined the advantages of ’texture synthesis’ techniques and
’inpainting’ techniques. Specifically, they designed a best-
first method to find the most similar patches and used them
to recover the corrupted regions gradually. These methods
work well when holes are small and narrow, or there are
plausible matching patches in uncorrupted regions. How-
ever, when suffering from complicated scenes, it is difficult
for these approaches to produce semantically plausible so-
lutions, due to a lack of semantic understanding of images.

Nowadays, deep learning techniques have made great
contributions to computer vision communities. In order to
accurately recover corrupted images, many methods adopt
deep convolutional neural networks (CNNs) [63, 20], espe-
cially generative adversarial networks (GANs) [24] in im-
age inpainting. Pathak et al. [54] formulates image in-
painting as a conditional image generation problem. Then,

they proposed a Context Encoder to recover corrupted re-
gions according to surrounding pixels. Iizuka et al. [34]
utilized two discriminators to improve the quality of the
generated images at different scales, facilitating both glob-
ally and locally consistent image completion. At the same
time, some approaches designed a coarse-to-fine framework
to solve the sub-problem of image inpainting in different
stages [75, 50, 58]. Nazeri et al. [50] proposed to firstly
recover the edge map of the corrupted image, then gener-
ate image textures in the second stage. Ren et al. [58]
proposed a method in which a structure reconstructor was
employed to generate the missing structures of the inputs
while a texture generator yielded image details. Zhang et
al. [79] proposed an iterative inpainting approach that con-
tained a corresponding confidence map in results. They
used this map as feedback and recovered holes by trusting
high-confidence pixels.

As a branch of image inpainting, face completion is dif-
ferent from general image inpainting since its target mainly
focuses on restoring the topological structure and texture
of the face input. Zhang et al. [83] argued that the perfor-
mance of verification relied on both the pixel level similarity
and the feature level similarity. Therefore, they proposed a
feature-oriented blind face inpainting framework. Cai et al.
[11] proposed a method named FCSR-GAN to perform face
completion and face super-resolution by multi-task learn-
ing where the generator was required to generate a high-
resolution face image without occlusion from the occluded
low-resolution face image. Zhou et al. [85] argued that pre-
vious works overlooked the serious impacts of inaccurate
attention scores. Thus, they integrated the oracle supervi-
sion signal into the attention module to produce reasonable
attention scores.

2.2. Unsupervised Representation Learning

Unsupervised learning has shown great potential to learn
powerful representations of images recently [27, 80, 15].
Compared with supervised learning, unsupervised learning
utilizes unlabeled data to learn representations, which can
go back to as far as the literature proposed by Becker and
Hinton[6]. Dosovitskiy et al. [22] proposed to discriminate
between a set of surrogate classes generated by applying a
number of transformations. Wu et al. [71] treated instance-
level discrimination as a metric learning problem. Then, the
discrete memory bank was utilized to store the features for
each instance. Zhuang et al. [88] maximized a dynamic
aggregation metric, which can move similar data instances
together in the embedding space and separate dissimilar in-
stances. He et al. [27] proposed a dynamic dictionary con-
sisting of a queue encoder and a moving-averaged encoder
from a perspective on contrastive learning and they called
this method MoCo. At the same time, Chen et al. [15]
also presented a simple framework with contrastive learn-
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Figure 1. The network architecture of our method. The self-supervised Siamese inference network consists of encoders Eq and Ek. This
inference network encodes the new key representations on-the-fly by using the momentum-updated encoderEk. We insert the dual attention
fusion module into several decoder layers, forming a multi-scale decoder. We allow the decoder to estimate the dense correspondence field
and the feature maps that are used for the DAF module at multi-scales simultaneously. The inference network is firstly trained with
contrastive learning. Then the pre-trained encoder Eq and the decoder are jointly trained with the fusion module.

ing for visual representations (SimCLR). Technically, they
simplified recent contrastive learning-based algorithms and
did not require specific structures and memory banks. Un-
supervised learning strategies are also used in many com-
puter vision tasks recently. Mustikovela et al. [49] used
self-supervised learning for viewpoint estimation by mak-
ing use of generative consistency and symmetry constraint.
Zhan et al. [81] utilized a mask completion network to pre-
dict occlusion ordering with a self-supervised learning strat-
egy.

2.3. Attention Mechanism

Attention mechanism is a hot topic in computer vision
and has been widely investigated in many works [65, 14, 51,
19]. The wildly-used attention mechanism can be coarsely
divided into two categories: spatial attention [65] and chan-
nel attention [30] for image inpainting. Yu et al. [75] ar-
gued that convolutional neural networks lacked the ability
to borrow or copy information from distant places, which
led to blurry textures in generated images. Thus, they pro-
posed a contextual attention module to calculate the spatial
attention scores between pixels in the corrupted region and
known region. Hong et al. [29] proposed a fusion block
to generate an adaptive spatial attention map α to combine
features in the corrupted region and known region. In this
paper, we investigate both spatial attention and channel at-
tention mechanism to further improve the performance of
face completion.

2.4. 3D Face Analysis

Nowadays, the famous 3DMM [8] is widely used to ex-
press facial shape and appearance information for face re-
lated tasks, such as facial attribute editing, face hallucina-
tion, etc [42, 61]. Roth et al. [59] proposed a photomet-
ric stereo-based method for unconstrained 3D face recon-
struction, which benefited from a combination of landmark
constraints and photometric stereo-based normals. Yin et
al. [22] proposed a generative adversarial network com-
bined with 3DMM, termed as FF-GAN, to provide shape
and appearance priors without requiring large training data.
2DASL [62] utilized 2D face images with noisy landmark
information in the wild to assist 3D face model learning.
It has become a popular method to establish the dense cor-
respondence field between the 2D and 3D space. Güler et
al. [2, 1, 12] proposed a UV correspondence field to build
pixel-wise correspondence between RGB color space and
3D surface space. These works show that the UV corre-
spondence field can retain geometric information of the hu-
man face.

3. Methodology

In this section, we first present our self-supervised
Siamese inference network. Subsequently, the details of the
dual attention fusion (DAF) module, the dense correspon-
dence estimation, and learning objectives in our method are
provided. The overall framework of our face completion
method is shown in Fig. 1.
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3.1. Self-Supervised Siamese inference network

Our proposed self-supervised Siamese inference net-
work consists of two identical encoders but not sharing pa-
rameters [27, 26, 66], noted as Eq and Ek, respectively.
The proposed inference network is trained with contrastive
learning, which can be viewed as training an encoder to per-
form a dictionary look-up task: a ’query’ encoded by Eq

should be similar with its corresponding ’key’ (i.e., posi-
tive key) represented by another encoder Ek and dissimi-
lar to others (i.e., negative keys). Two images with differ-
ent masks are required for the proposed inference network,
named as xq and xk, respectively. Thus, we can obtain a
query representation zq = Eq(xq) and a key representation
zk = Ek(xk), respectively. Following many previous self-
supervised works [88, 4], the contrastive loss is utilized as
the self-supervised objective function for training the pro-
posed inference network and can be written as:

L = −log
exp(zq.z

+
k /τ)∑K

i=0 exp(zq.zki/τ)
, (1)

where τ is the temperature hyper-parameter, and the loss
function will degrade into the original softmax when τ is
equal to 1. The output will be less sparse with τ increasing
[16]. The τ is set as 0.07 for the efficient training process
in this work. Specially, this loss, also known as InfoNCE
loss[27, 26], tries to classify zq as z+k . Here, zq and z+k
are encoded from a positive pair. K means the number of
negative samples.

High-dimensional continuous images can be projected
into a discrete dictionary by contrastive learning. There
are three general mechanisms for implementing contrastive
learning (i.e., end-to-end training [26], memory bank [71]
and momentum updating [27]), whose main differences are
how to maintain keys and how to update the key encoder.
Considering GPU memory size and powerful feature learn-
ing, we follow MoCo [27] to design a consistent dictionary
implemented by queue. Thus, the key representations of the
current batch data are enqueued into the dictionary while
the oldest representations are dequeued progressively. The
length of the queue is under control, which enables the dic-
tionary to contain a large number of negative image pairs.
Such a dictionary with large-scale negative pairs will facili-
tate representation learning. We set the length of the queue
as 65536 in this work.

It is worth noting that the encoder Ek is updated
by a momentum-updated strategy instead of direct back-
propagation. The main reason is that it’s difficult to prop-
agate the gradients to all keys in the queue. The updating
process of Ek can be formulated as follows:

θk ← mθk + (1−m)θq, (2)

where θq and θk denotes as the parameters of Eq and Ek,
respectively. θq is updated by back-propagation. m ∈ [0, 1)

is the momentum coefficient hyper-parameter and set as 0.9
in this paper. The momentum-update mechanism makes the
encoder Ek update smoothly relative to Eq , resulting in a
more consistent discrete dictionary.

3.2. Dual Attention Fusion Module

We now give more details about our proposed dual at-
tention fusion module (see Fig. 2), which contains a chan-
nel attention mechanism and a spatial attention mechanism.
This fusion module is embedded into the last several lay-
ers of the decoder and outputs face completion results with
multi-scale resolutions [37]. Thus, constraints can be im-
posed on multi-scale outputs for high-quality results.

Previous CNN-based image inpainting approaches treat
channel-wise features equally, thus hindering the ability of
the representation learning of the network. Meanwhile,
high-level and interrelated channel features can be consid-
ered as specific class responses. For more discriminative
representations, we first build a channel attention module in
our proposed fusion module.

𝐻𝐺𝑃 𝑊𝐷 𝑊𝑈 𝑓

𝐶 × ℎ × 𝑤

𝐶 × ℎ × 𝑤

𝑟𝑒𝑠𝑖𝑧𝑒

𝐹

𝑥𝑞
′

𝐴 𝐵

𝛼 ෠𝑌

𝐶𝑜𝑛𝑣

1 × 1

1 × 1

𝐶𝑜𝑛𝑣

𝑥𝑞

Figure 2. The architecture of the dual attention fusion module. It
firstly predicts an adaptive spatial attention map α with the learn-
able transformation function A. Then we can obtain final natural
face completion results with rich texture by the fusion function B.

As shown in Fig. 2, let a feature map F =
[f1, · · · , fc, · · · , fC ] be one of the inputs of the fusion mod-
ule, whose channel index is c and size is h × w. The chan-
nel descriptor can be acquired from the channel-wise global
spatial information by global averaging pooling. Then we
can obtain the channel-wise statistics zc ∈ Rc by shrinking
F :

zc = HGP (fc) =
1

h× w

h∑
i=1

w∑
j=1

fc(i, j), (3)

where zc is the c-th element of z. fc(i, j) is the value at
position (i, j) of c-th feature fc. HGP means the global
pooling function.

In order to fully explore the channel-wise dependencies
of the aggregated information, we introduce a gating mech-
anism. As illustrated in [30, 84], the sigmoid function can
be used as a gating function:

ω = σ(WUδ(WDz)), (4)

where σ(·) and δ(·) are the sigmoid gating and ReLU func-
tions, respectively. WD and WU are the weight sets of

5



Conv layers who set channel number as C/r and C, re-
spectively. Finally, the channel statistics ω are acquired and
used to rescale the input fc:

f̂c = wc · fc, (5)

where wc and fc are the scaling factor and feature map of
the c-th channel, respectively.

The long-range contextual information is essential for
discriminant feature representations. We propose a spatial
attention module that forms the final part of the proposed
fusion module. Given an input image with a mask xq , we
first get xq

′
that matches the size of the re-scaled feature

map F̂ ∈ Rc×h×w,

xq
′

= (WCxq) ↓, (6)

where WC and ↓ are the weight set of a 1× 1 convolutional
layer and downsample module, respectively.

Then the adaptive spatial attention map α ∈ RC×h×w is
given by,

α = σ(A(WK F̂ , xq
′
)), (7)

whereWK is the weight set of a 1×1 convolutional layer. It
sets channel number of F̂ to be same with xq

′
. A is a learn-

able transformation function implemented by three 3 × 3
convolutional layers. WK F̂ and xq

′
are first concatenated

and then fed into the convolutional layers. f(·) is the sig-
moid function that can make α an attention map to some
extent.

The final inpainting result Ŷ is obtained by,

Ŷ = B(α,WK F̂ , xq
′
) = α�WK F̂ + (1−α)� xq

′
, (8)

where � and B denote the Hadamard product and fusion
function, respectively. The adaptive spatial attention map α
can adjust the balance between the ground truth image and
the restored image to obtain a smoother transition. We can
eliminate obvious color contrasts and artifacts especially in
boundary areas, and get natural face completion results with
richer textures.

Figure 3. Visualization examples of the dense correspondence.
The face image is shown in the middle. The corresponding U map
and V map are shown in the left and right, respectively.

3.3. Dense Correspondence Field Estimation

Masks can dramatically destroy the facial shape and
structure information, such as viewing angles, facial expres-
sions, and so on, making it quite tough to achieve visually

appealing results. To keep the geometric information of the
human face intact during the face completion process, we
introduce a dense correspondence field that binds the 2D
and 3D surface spaces into our network.

The structure and texture information of the face image
can be disentangled by the dense correspondence field ac-
cording to [2, 1]. The geometrical information is stored in
the correspondence field while the texture map can repre-
sent the surface of a 3D face to some extent. In this pa-
per, we mainly concentrate on inferring the dense corre-
spondence field by our network. Technically, given an input
image x ∈ Rc×h×w, the dense correspondence field C =
(u; v) consists of maps in the UV space (u, v ∈ Rh×w). The
visual illustration is shown in Fig. 3 in which the minimum
is rendered as blue and the maximum is rendered as yellow.

We allow our decoder to predict the dense correspon-
dence fields and feature maps at multi-scales simultane-
ously, where the feature maps are fed into the proposed dual
attention fusion module (please see Sec. 3.2). Thanks to
the multi-scale network architecture, our decoder can obtain
context information better and maintain geometrical infor-
mation. In order to supervise C during training, we mini-
mize the pixel-wise error between the estimated result and
the ground truth C. It can be written mathematically as,

LUV = ||C
′
− C||2, (9)

where C
′

means the predicted dense correspondence field
result of an input image. We employ BFM [55], a 3D shape
estimation approach, to obtain the ground truth dense cor-
respondence field C similar with [42, 12]. We then ob-
tain coordinates of vertices by performing the model fitting
method [87]. Finally, those vertices are mapped to the UV
space by the cylindrical unwrapping according to [9].

3.4. Loss Functions

Following [20, 78, 39], for synthesizing richer texture
details and correct semantics, the element-wise reconstruc-
tion loss, the perceptual loss [36], the style loss and the ad-
versarial loss are used in our proposed method. Moreover,
we also employ the identity preserving loss function to en-
sure that the identity information of the generated images
remains unchanged.

Reconstruction Loss. It is calculated as L1-norm be-
tween the inpainting result Ŷ and the target image Y ,

Lrec = ||Y − Ŷ ||1. (10)

Style Loss. For getting richer textures, we also adopt
the style loss defined on the feature maps produced by the
pre-trained VGG-16. Following [72, 44], the style loss can
be calculated as the L1-norm between the Gram matrices of
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the feature maps,

Lstyle =
1

N

N∑
i=1

1

Ci · Ci
||Φi(Y )(Φi(Y ))T−Φi(Ŷ )(Φi(Ŷ ))T ||1,

(11)
where Ci denotes the channel number of the feature map at
i-th layer in the pre-trained VGG-16.

Identity Preserving Loss. To ensure the generated face
images belong to the same identity as the target face images,
we adopt LightCNN [70] to extract the features, then use the
mean square error to constrain the embedding spaces,

Lip = ||Ψ(Y )−Ψ(Ŷ )||2, (12)

where Ψ means the pre-trained LightCNN network [70].
Model Objective. The above loss functions can be

grouped into two categories: Structure Loss and Texture
Loss, respectively. The Structure Loss is given by,

Lk
struct = λrecLk

rec + λuvLk
uv, (13)

where λrec and λuv mean the weight factors and are set as
6 and 0.1 empirically. Lk

struct is calculated as the sum of
Lrec and Luv at the k-th layer of the decoder. Here, Luv

means the UV loss function (please see Sec. 3.3).
The Texture Loss is given by,

Lk
text = λstyleLk

style + λipLk
ip, (14)

where λstyle and λip are trade-off factors and are set as 240
and 0.1 empirically in this work.

Finally, the total model objective can be formulated as,

Ltotal =
1

|P |
∑
k∈P

Lk
struct +

1

|Q|
∑
k∈Q

Lk
text, (15)

where both P and Q are the selected decoder layer sets that
imposed constraints. We select P as {1, 2, 3, 4, 5, 6} and Q
as {1, 2, 3} respectively for better inpainting results. Note
that 1 represents the outermost layer.

4. Experiments
To demonstrate the superiority of our approach against

state-of-the-art methods, both quantitative and qualitative
experiments for face completion and face verification ex-
periments are conducted. In this section, we will introduce
the details of our experimental settings and the experimental
results one by one.

4.1. Datasets and Protocols

CelebA. The CelebFaces Attributes dataset [45] is
widely used for face hallucination, image-to-image transla-
tion, etc. It’s a large-scale face attributes dataset containing

more than 200k celebrity images, which includes face im-
ages with large occlusion and pose variations. We randomly
select 10,000 images for testing and the rest for training.

CelebA-HQ. It’s a high-resolution face images dataset
established by Karras et al. [37], which contains 30,000
high-quality face images. We divide the dataset into two
subsets: the training set of 28,000 images and the testing
set of 2,000 images.

FFHQ. The Flickr-Faces-HQ dataset [38] is a high-
quality dataset containing 70,000 face images at 1024 ×
1024 resolution. It also covers age, ethnicity, and image
background variations. We randomly choose 6,000 images
for testing and the rest for training.

Multi-PIE. It contains more than 750,000 images that
cover 15 viewpoints, 19 illumination conditions and a num-
ber of facial expressions of 337 identities [25]. We follow
Huang et al. [33] to split the dataset. In our experiments,
we only utilize the training set to train our network and the
compared methods for face recognition.

LFW. The Labeled Faces in the Wild [31] is a bench-
mark database commonly used for face recognition, which
contains 13,233 images of 5,749 people captured in uncon-
strained environments. LFW provides a standard protocol
for face verification that contains 6,000 face image pairs
(including 3,000 positive pairs and 3,000 negative pairs,
respectively). We use these standard face image pairs to
evaluate face verification performance via face completion.
Specially, face images in the gallery set remain the same
while the counterparts in the probe set are occluded by
masks. We firstly recover the occluded face images by our
proposed method and the state-of-the-arts. Then, we com-
pare the verification performance. It’s worth noting that we
only use LFW for testing.

L2SFO. It is a large-scale synthesized face-with-
occlusion dataset built by Yuan et al. [77]. We call it L2SFO
in which face images are occluded by six common objects
including masks, eyeglasses, sunglasses, cups, scarves, and
hands. All the occlusions are located on face images ac-
cording to segmentation information to augment the reality
of this dataset. It contains 991 different identities and more
than 73,000 images. We randomly select 891 identities as
the training set (about 66,000 images) and the rest as the
testing set (about 7,000 images).

IJB-C. IARPA Janus Benchmark C is a dataset consist-
ing of video still-frames and photos and used for face recog-
nition benchmark [69]. It contains 117,500 frames from
11,799 videos and 3,531 subjects with 31,300 still images.
We use the 1:1 protocol for face verification, whose probe
and gallery templates are combined using some images and
video frames for each subject. Same as the processing pro-
cedure of LFW, images in the probe set are occluded and
images in the gallery set remain unchanged. We firstly gen-
erate clean face images from occluded face images by using
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(a) Input (b) SPADE (c) GMCNN (d) CycleGAN (e) CUT (f) DFNet (h) Ours (i) GT(g) CANet

Figure 4. Qualitative results compared with state-of-the-arts on three datasets. From left to right, (a) are the input images with various kind
of masks. (b), (c), (d), (e), (f), (g) and (h) are the results generated by SPADE [53], GMCNN [67], CycleGAN [86], CUT [52], DFNet
[29], CANet [48] and ours method respectively. (i) is the ground truth.

Dataset CelebA CelebA-HQ FFHQ
Metric PSNR‡ SSIM‡ FID† PSNR‡ SSIM‡ FID† PSNR‡ SSIM‡ FID†

SPADE [53] 30.92 0.9640 1.8216 27.40 0.9321 30.07 26.27 0.9170 24.45
GMCNN [67] 29.91 0.9563 2.6205 26.10 0.9107 13.07 25.30 0.8963 8.72

CycleGAN [86] 24.47 0.9063 4.9871 21.94 0.8446 13.75 21.13 0.8239 11.26
CUT [52] 24.55 0.9115 5.4059 22.65 0.8690 15.58 21.68 0.8429 12.75

DFNet [29] 32.18 0.9706 4.2948 28.90 0.9494 8.40 29.33 0.9453 11.94
CANet [48] 32.49 0.9731 0.9778 29.89 0.9545 4.23 29.70 0.9501 2.12

Ours 33.26 0.9769 0.7981 30.67 0.9607 3.53 30.42 0.9580 1.75

Table 1. Quantitative comparison on the testing sets of CelebA, CelebA-HQ and FFHQ. †Lower is better. ‡Higher is better.
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(a) (b) (c) (d) (e) (f) (h)(g)

Figure 5. Face completion results in the wild. (a) is the inputs. (g) is the results generated by our method. (b) - (g) are results produced by
SPADE, GMCNN, CycleGAN, CUT, DFNet and CANet, respectively.

Methods SPADE GMCNN CycleGAN CUT DFNet CANet Ours
FID † 113.52 150.98 167.73 179.78 173.41 103.34 98.39

LPIPS † 0.0827 0.1065 0.1116 0.1303 0.1208 0.0812 0.0709
F1-Score ‡ 0.026 0.0139 0.0022 0.0034 0.0022 0.0219 0.0493
Realism ‡ 0.7613 0.7443 0.7089 0.6819 0.6759 0.7723 0.7883

Table 2. Quantitative comparison on the real world face dataset (RMFD). †Lower is better. ‡Higher is better.

our method and other compared methods and then compare
the face verification performance. IJB-C is also only used
for testing.

4.2. Implementation Details

In our experiments, face images are normalized to 256×
256 and 128× 128 for high-resolution face completion and
face verification, respectively. Following Wu et al. [70],
the landmarks in the centers of the eyes and mouth are used
for normalizing face images. The occluded face images are
generated by MaskTheFace proposed by Anwar and Ray-
chowdhury [3]. We randomly select mask types to occlude
face images during training. Some occluded face images
are shown in Fig. 4 and Fig. 8. For different experimental
settings, different datasets are utilized to train our network.
For face completion, we train our network on the training
sets of CelebA, CelebA-HQ, FFHQ and L2SFO, then test-
ing on their testing sets. As for face verification, we train
our network on the training sets of CelebA and Multi-PIE
and test on LFW and IJB-C.

Our proposed method can be broken down into two
stages. In the first stage, the inference network is trained
through contrastive learning until convergence. And in the
next stage, the pre-trained encoder and the decoder are
jointly trained with the fusion module. We use the SGD
optimizer with the learning rate as 0.015 for training the
Siamese inference network, and use the Adam optimizer
with the learning rate as 10−4 for jointly training the en-
coder and decoder. All the results are reported directly with-
out any additional post-processing. Our proposed method is

implemented by the Pytorch framework and trained on four
NVIDIA TITAN Xp GPUs (12GB).

4.3. Face Completion Quantitative Results

Peak signal-to-noise ratio (PSNR), structural similarity
index (SSIM), and Fréchet Inception Distance (FID) are
used as evaluation metrics. PSNR and SSIM measure the
similarity between the inpainting result and the target im-
age. As for FID, it measures the Wasserstein-2 distance
between real and inpainting images through the pre-trained
Inception-V3. We select ’cloth #333333’, ’KN95’, ’N95’,
’surgical blue’, ’cloth #515151’, ’surgical’, ’surgical green’,
’cloth #dadad9’ and ’cloth #929292’ masks to occlude the
testing images for experiments. These mask images are
shown in Fig. 4 from top to bottom.

We conduct quantitative experiments on the testing sets
of CelebA, CelebA-HQ and FFHQ occluded by the nine
kinds of masks, and report the averaged results. Table
1 shows the performance of our proposed method against
other state-of-the-art methods, which consists of two im-
age inpainting methods, GMCNN [67] and DFNet [29], and
three image-to-image translation methods: Spade [53], Cy-
cleGAN [86] and CUT [52]. In Table 1, we also conduct
the experiments to show the improvement of performance
compared to our prior conference work [48]. For simplic-
ity, we call it CANet, which can be regarded as a simplified
version of our proposed method in this paper without Dense
Correspondence Field Estimation and the identity preserv-
ing loss. We retrain all the compared methods on the train-
ing sets of CelebA, CelebA-HQ and FFHQ for the sake of
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Methods SPADE GMCNN CycleGAN CUT DFNet CANet Ours
PSNR ‡ 22.6 22.57 20.11 20.2 22.73 23.3 23.69
SSIM ‡ 0.8775 0.8785 0.8297 0.8292 0.8805 0.8975 0.9007
FID † 40.59 44.31 64.09 62.12 33.04 31.6 29.14
Table 3. Quantitative comparison on the L2SFO dataset. †Lower is better. ‡Higher is better.

Model Metric Masked SPADE GMCNN CycleGAN CUT DFNet CANet Ours

ArcFace
AUC 97.46 97.60 97.68 97.56 97.57 97.66 97.77 98.03

FPR=1% 80.07 80.98 81.60 81.18 81.14 81.61 82.23 84.38
FPR=0.1% 60.53 61.73 62.49 62.41 61.93 62.86 63.33 67.21

LightCNN
AUC 99.13 99.16 99.15 99.14 99.14 99.14 99.14 99.20

FPR=1% 93.50 93.90 93.70 93.68 93.56 93.68 93.88 94.62
FPR=0.1% 83.99 84.97 84.50 84.47 84.22 84.61 85.31 87.20

FaceNet
AUC 99.15 99.18 99.15 99.17 99.16 99.18 99.22 99.27

FPR=1% 91.76 92.11 91.67 91.73 91.82 91.86 92.40 92.94
FPR=0.1% 78.47 79.15 78.43 78.72 78.59 79.14 79.72 80.88

Table 4. Face verification results on IJB-C. ’Masked’ means face verification experiments are conducted between the masked probe set and
the unchanged gallery set directly.

fairness. As shown in Table 1, the proposed method and
CANet achieve the best and the second-best quantitative re-
sults in three metrics on all the testing sets. The results
suggest that the proposed method can generate very realis-
tic face images while the compared methods may not work
well encountered various kinds of masks. The main reasons
for the relatively low performance of the compared meth-
ods (excluding CANet) are that 1): face images with var-
ious kinds of masks dramatically increase the difficulty of
image inpainting, hindering the ability of the representation
learning of the encoder; 2): exiting methods take generat-
ing realistic images into account but ignore the structural
consistency of the generated image. The reason why the
performance of our method is higher than CANet may be
that Dense Correspondence Field Estimation keeps the ge-
ometric information of the human face intact during the face
completion process.

4.4. Face Completion Qualitative Results

We compare our proposed method with state-of-the-art
methods in terms of visual and semantic coherence. We
conduct qualitative experiments on the testing sets of three
datasets with various kinds of masks. As shown in Fig. 4,
we mask the testing images with the nine kinds of masks as
described in the last section.

Among all these compared methods, there are severe ar-
tifacts in results produced by SPADE, CUT, and DFNet.
Thus, the qualities of generated images are far from the
requirements. The reason is that various kinds of masks
hinder their networks to capture powerful representations.
There are no obvious artifacts in face images produced by
CycleGAN. But it fails to maintain the geometric informa-
tion of face images and produce obvious color contrasts.
The reason is that CycleGAN endeavors to translate the

input to its correspondence non-mask face image and ig-
nores the structural consistency. As for GMCNN, it pro-
duces relatively appealing results, but there are significant
differences in color at the edges. CANet produces better
results in which the facial geometric information is main-
tained but there are still artifacts, especially in the corners
of the mouth. Compared with other methods, our proposed
method can generate natural inpainting results with rea-
sonable semantics and richer textures with the help of the
self-supervised Siamese inference network, the dense cor-
respondence field, and the DAF module. It demonstrates
that our proposed method is superior to the compared meth-
ods in terms of consistent structures and colors.

4.5. Face Completion in the Wild

Furthermore, we also conduct experiments on a real-
world masked face dataset (RMFD) [68]. Note that there are
no ground truth images in it. Therefore, we directly use our
model and the compared models to evaluate on this dataset.
As shown in Fig. 5, although there is a huge domain gap
between our training sets and the real-world masked face
dataset, our method can still generate relatively satisfactory
results, which demonstrates the superiority of our proposed
method. At the same time, some compared methods can not
remove masks effectively, such as (d) and (e) in Fig. 5.

We also provide the corresponding quantitative compar-
ative experiments by using FID, Learned Perceptual Image
Similarity (LPIPS) [82], F1-Score and Realism in Table 2.
LPIPS measures the diversity of images by calculating the
similarity in the feature space from the pre-trained AlexNet
[40]. F1-Score is the harmonic mean of recall and preci-
sion, where precision is calculated by querying whether the
each generated image is within the estimated manifold of
real images and recall is calculated by querying whether
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Model Metric Masked SPADE GMCNN CycleGAN CUT DFNet CANet Ours

ArcFace [18]
AUC 97.51 98.02 97.78 97.65 97.88 97.50 98.09 98.38

FPR=1% 77.71 81.52 79.93 78.28 79.86 78.05 82.12 83.10
FPR=0.1% 44.85 45.56 43.33 44.38 46.43 45.79 50.07 56.84

LightCNN [70]
AUC 99.20 99.29 99.30 99.24 99.30 99.20 99.34 99.49

FPR=1% 91.04 92.56 92.63 91.95 92.36 76.87 93.40 94.41
FPR=0.1% 77.13 74.41 77.78 76.06 80.34 64.85 80.34 82.73

FaceNet [60]
AUC 98.98 99.08 99.03 99.02 99.03 98.98 99.10 99.30

FPR=1% 85.96 87.51 87.14 86.40 86.30 86.06 87.97 90.17
FPR=0.1% 55.56 57.07 53.10 54.31 56.06 55.72 56.03 57.85

Table 5. Face verification results on LFW. ’Masked’ means face verification experiments are conducted between the masked probe set and
the unchanged gallery set directly.

the each real image is within the estimated manifold of gen-
erated images [41]. Realism is a metric that reflects the dis-
tance between the image and the manifold: the closer the
image is to the manifold, the higher Realism is, and the fur-
ther the image is from the manifold, the lower Realism is
[41]. It clearly demonstrates the superiority of our proposed
method in dealing with masked face images in real world.

4.6. Face Completion on Free-Form Occlusions

In the above three sections, we mainly conduct quan-
titative and qualitative experiments on face images with
masks. In order to demonstrate the effectiveness of our
method, we conduct experiments on the L2SFO dataset [77]
in which face images are occluded by six common objects,
i.e, masks, eyeglasses, sunglasses, cups, scarves, and hands.
We conduct quantitative experiments on the testing set of
L2SFO, and report the averaged results. we also retrain
all the compared methods on the training sets of L2SFO
for the sake of fairness. Table 3 shows the performance
of our proposed method against other compared methods.
Our method outperforms all the other compared methods in
three metrics on the testing sets as shown in this table. The
results suggest that the proposed method can still extend to
other kinds of occlusions.

We also compare our proposed method with the state-of-
the-art methods in terms of the visual quality on the testing
set of L2SFO. As shown in Fig. 6, we find that SPADE
and GMCNN can remove occlusions, but there are serious
artifacts in the generated images. CycleGAN and CUT fail
to remove occlusions in some cases. Because they adopt
unsupervised learning and hardly handle face images with
complex occlusions. DFNet and CANet achieve relatively
high-quality results. However, there are still artifacts in the
generated face images produced by them. Different from all
the compared methods, the proposed method can generate
photo-realistic face images.

4.7. Face Verification Results

In order to quantitatively evaluate the feasibility of our
method for face verification, we compare the results of our

method and the compared methods on LFW and IJB-C fol-
lowing the testing protocol as described in Sec 4.1. Face
verification experiments are conducted between the recov-
ered probe set and the unchanged gallery set. Three publicly
released face recognition models are tested: the LightCNN
[70], ArcFace [18] and FaceNet [60]. We use the area under
the ROC curve (AUC), true positive rates at 1% and 0.1%
(TPR@FPR=1%, TPR@FPR=0.1%) as the evaluation met-
rics in the experiments. The results are reported in Table 5
and Table 4.

We use the masked probe set as a baseline to demon-
strate the influences of face completion on face verification.
From Table 5, we can see that our method brings dramatic
improvement to face verification. Because our method can
keep geometric information intact and generate face im-
ages with consistent structures and colors. Compared with
the baseline, our method can achieve an increase of more
than 10% in TPR@FPR=0.1% on LFW and an increase of
6.68% in TPR@FPR=0.1% on IJB-C, which demonstrates
that our proposed method can ameliorate the negative im-
pact of masks. Similar to our method, the compared meth-
ods endeavor to recover face images. However, we find
that the face verification performances of some compared
methods decrease actually, especially in TPR@FPR=0.1%.
For instance, the performance of CycleGAN drops from
77.13% to 76.06% on LFW, a drop of about 1% when tak-
ing the metric TPR@FAR=1% and using LightCNN as the
face feature extractor. From Table 4, we can also see that
the compared methods do not show obvious advantages
over the baseline (’Masked’) on IJB-C. For example, the
performance of CUT is 91.82%, a very limited improve-
ment of 0.006% over the baseline when taking the metric
TPR@FAR=1% and using FaceNet as the face feature ex-
tractor. For the poor performances of compared methods
on LFW and IJB-C, the reason may lie in two aspects. The
first reason is that the compared methods can not generate
high-quality face images. The other reason is that they can
not recover discriminative information of a face image due
to the great negative effects of masks. We also present the
ROC curves on LFW in Fig. 7. It is obvious that our method
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(a) Input (b) SPADE (c) GMCNN (d) CycleGAN (e) CUT (f) DFNet (h) Ours(g) CANet
Figure 6. Face completion results on the L2SFO dataset. From left to right, (a) are the input images. (b), (c), (d), (e), (f), (g) and (h) are the
results generated by SPADE, GMCNN, CycleGAN, CUT, DFNet, CANet and ours method respectively.

CL % ! % % ! ! % !

DAF % % ! % ! % ! !

UV map % % % ! % ! ! !
PSNR ‡ 29.71 31.04 31.82 31.11 32.02 32.20 32.40 32.82
SSIM ‡ 0.9568 0.9664 0.9674 0.9663 0.9702 0.9708 0.9723 0.9755
FID † 1.9657 1.4729 1.3899 1.5059 1.259 1.3806 0.9872 0.9040

Table 6. Ablation study experiments on the testing set of CelebA. †Lower is better. ‡Higher is better. CL means Contrastive Learning.

Figure 7. The ROC curves on the LFW dataset using LightCNN.

outperforms all the compared methods.

4.8. Time Complexity

We conduct the time complexity experiments on a single
GPU (TITAN Xp) and CPU, respectively. To evaluate the

inference time for different methods, we randomly sample
1,000 testing images and run forward one time for each im-
age. Then we report the mean inference time for one image.
As shown in Table 7, our proposed method achieves a pleas-
ing time performance compared with the other methods. It
runs the second fast on a single TITAN Xp GPU. The fastest
method is CUT on GPU. Because the number of parameters
of CUT is only about a quarter of our method. However, as
can be seen from Table 1 and Fig. 4, our method outper-
forms CUT with a large margin. When running on CPU, our
proposed method is faster than SPADE, GMCNN, Cycle-
GAN and CUT and achieves the comparable performance
against DFNet.

Inference
Time SPADE GMCNN CycleGAN CUT DFNet Ours

GPU 0.023 0.023 0.025 0.006 0.019 0.017
CPU 1.505 1.474 4.132 1.075 0.188 0.248

Table 7. The inference time (seconds) on GPU and CPU.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8. Images produced by the multi-scale decoder. (a) is the inputs with a ’KN95’ mask. (b) is the final inpainting results. (c), (d), (e)
and (f) are outputs at multi-scale. (g) and (h) are the estimated U and V maps, respectively.
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Figure 9. Model performance affected by the weight of the UV loss on the FFHQ dataset.

(a) (b) (c)

(d) (e) (f)

(h)(g) (i)

Figure 10. Images produced by the variants of our proposed
method. (a) is the input with the ’cloth #33333’ mask. (i) is the
result generated by the full model. (b)-(h) are results generated by
the variant models according to Table 6.

4.9. Ablation Study

We investigate the effectiveness of different components
of the proposed method on the testing set of CelebA. We
train several variants of the proposed method: remove the
self-supervised Siamese inference network (denote as con-

trastive learning), the DAF module, and/or the dense cor-
respondence estimation (denoted as UV map). As shown
in Table 6, it clearly demonstrates that the self-supervised
Siamese inference network, the DAF module, and the dense
correspondence field estimation play important roles in de-
termining the performance. As shown in Fig. 10, the un-
completed models usually generate images with obvious ar-
tifacts, especially in boundaries while our full model can
suppress color discrepancy and artifacts in boundaries and
produce realistic inpainting results.

The multi-scale decoder can progressively refine the in-
painting results at each scale. We also conduct experiments
on the testing set of FFHQ. Then we visualize the images
predicted by the decoder at several scales. As shown in Fig.
8, it demonstrates that this multi-scale architecture is ben-
eficial for decoding learned representations into generated
images layer by layer.

We conduct sufficient experiments on the FFHQ dataset
to explore the performance variation of our model affected
by the weight of the UV loss function. We plot some fig-
ures according to the experimental results (Fig. 10). The
horizontal axis represents the weight of the UV loss func-
tion. We use eight different weights to design the experi-
ment, i.e, 0, 0.001, 0.01 0.05, 0.1, 0.5, 1 and 10. From Fig.
9, we can see that PSNR gradually increases with the in-
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crease of weight, reaches the maximum value when weight
is equal to 0.1, and then drops sharply. The variation of
SSIM is roughly the same as that of PSNR. The value of
FID decreases dramatically from about 4 at the weight of 0
to around 2.5 at the weight of 0.001 and reaches the bottom
(about 1.7) at the weight of 0.1. From these experiments, we
can see that the UV loss (or Dense Correspondence Field
Estimation) plays an important role in determining the per-
formance since it can keep the geometric information of the
human face intact during the face completion process.

5. Conclusion

In this paper, we propose a novel two-stage paradigm
image inpainting method to generate smoother results with
reasonable semantics and richer textures. Specifically, the
proposed method boosts the ability of the representation
learning of the inference network by using contrastive learn-
ing. For keeping the geometric information of the input face
image intact, we introduce a dense correspondence field that
binds the 2D and 3D surface spaces into our network. We
further design a novel dual attention fusion module, which
can be embedded into decoder layers in a plug-and-play
way. Extensive experiments show the superiority of our
proposed method in generating smoother, more coherent,
and fine-detailed results, and demonstrate our method can
greatly improve the performance of face verification.
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