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Abstract

Crowd counting is a computer vision task on which considerable progress has

recently been made thanks to convolutional neural networks. However, it re-

mains a challenging task even in scene-specific settings, in real-world application

scenarios where no representative images of the target scene are available, not

even unlabelled, for training or fine-tuning a crowd counting model. Inspired

by previous work in other computer vision tasks, we propose a simple but effec-

tive solution for the above application scenario, which consists of automatically

building a scene-specific training set of synthetic images. Our solution does

not require from end-users any manual annotation effort nor the collection of

representative images of the target scene. Extensive experiments on several

benchmark data sets show that the proposed solution can improve the effective-

ness of existing crowd counting methods.
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1. Introduction1

Crowd counting is a potentially very useful computer vision functionality in2

applications involving monitoring and analysis of crowds [1, 2], in particular,3

security-related applications based on video surveillance systems. Despite the4

considerable effort spent so far by the research community and the performance5

improvements achieved by recent methods based on Convolutional Neural Net-6

works (CNNs) on benchmark data sets [3, 4, 5], it remains a challenging task in7
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unconstrained settings characterised by illumination changes, perspective and8

scale variations or distortions due to camera views, static and dynamic occlu-9

sions, complex backgrounds, and dense crowds. Early methods followed two10

different approaches: pedestrian or body part detection, which were effective11

only on sparse crowds with very limited or no overlapping, and regression of12

the people count from local or global low-level image features [1]. State-of-the-13

art methods are based on CNNs [2]. Most of them are regression-based, but14

CNNs are enabling effective detection-based methods also for dense crowds [6].15

All regression-based methods, as well as recent detection-based ones, require a16

training set of manually annotated crowd images, with annotations consisting17

either in the number of people, for early methods, or in the position of each18

pedestrian, for CNN-based ones.19

Existing work aim at developing crowd counting models capable of general-20

ising to unseen scenes, e.g., to different perspectives and background. This is a21

very challenging task since it requires training data representative of a large va-22

riety of possible crowd scenes. In this work we focus instead on a scene-specific23

setting where accurate estimation of crowd size on a given target scene is re-24

quired, but collecting, and even more manually annotating a suitable amount25

of representative crowd images for training or fine-tuning a regression model, is26

too demanding, or even infeasible, for end-users. This is a real-world, challeng-27

ing application scenario which was inspired by our work in a recent project,128

involving the development of real-time video analytics tools to support Law29

Enforcement Agencies (LEAs) in guaranteeing the security of mass gatherings.30

For instance, the above scenario can occur when a new, temporary installation31

of surveillance cameras is required in a public area, and should be operational32

in a short time.33

In the above scenario, a regression model can only be trained on already34

available annotated images from other scenes, e.g., using benchmark data sets,35

1LETSCROWD, Law Enforcement agencies human factor methods and Toolkit for the

Security and protection of CROWDs in mass gatherings, EU H2020, https://letscrowd.eu/

2

https://letscrowd.eu/


which can differ from the target scene in one or more of the above-mentioned fac-36

tors, e.g., perspective, scale and background. However, in such a cross-scene set-37

ting, the performance of data-driven regression-based methods can be severely38

affected [7, 8]. A fine-tuning to the target scene is, therefore, required [7].39

However, existing solutions to address cross-scene issues require a collection of40

representative images of the target scene, which in some cases should also be41

manually annotated [9, 10, 11, 7]: this does not fit the considered application42

scenario.43

To address the above issue, we propose an approach based on the use of44

synthetic training images. Our approach is inspired by the use of synthetic45

images to overcome the scarcity of manually annotated training data in other46

computer vision tasks related to crowd analysis and pedestrian detection [12].47

Our approach aims to build a scene-specific training set for a given target camera48

view, made up only of synthetic images, which can be automatically annotated.49

It only requires the user (e.g., a LEA operator) a background image of the target50

scene, the binary map (BMAP) of the corresponding region of interest (ROI) and51

its perspective map (PMAP). Synthetic training images are then automatically52

generated by superimposing images of pedestrians to the background image of53

the target scene, on locations allowed by the ROI, re-scaled according to the54

PMAP. Such images are then automatically annotated, and finally, they are55

used to train or fine-tune a given regression-based crowd counting model.56

In this paper, which extends our preliminary work [13], we evaluate the effec-57

tiveness of a simple implementation of the above solution through extensive ex-58

periments on several benchmark data sets and state-of-the-art regression-based59

methods, as well as early ones not based on CNNs. We compare our solution60

against the usual cross-scene one, i.e., using real training data from other scenes.61

Our results show that even in the simple implementation considered in this pa-62

per, using synthetic images of the target scene can improve the performance63

of existing crowd counting methods and is therefore useful toward satisfying64

challenging real-world application requirements.65
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2. Related work66

Crowd counting approaches can be categorised into counting by detection, by67

clustering, and by regression [1, 2]. The first two approaches rely on detecting68

pedestrians or body parts (e.g., head and shoulders) [1] from still images, or on69

clustering pedestrian trajectories from videos [1]. Although these approaches70

can provide the exact number of people in a scene, they are severely affected71

by the presence of occlusions and are therefore effective only for sparse crowds72

with little or no overlapping among people [1].73

Regression-based methods estimate people count from low-level image fea-74

tures, instead, and can be more effective for dense crowd scenes. Early ap-75

proaches used classical regression models [1] to map from holistic scene descrip-76

tors (e.g., segment, edge and texture descriptors) to crowd size. This requires77

a training set of crowd images manually annotated with the number of peo-78

ple. More recent CNN-based methods estimate the density map of the input79

image, instead, from which the number of people can be easily derived [2]. In80

this case, the training set is made up of the ground truth crowd density map,81

which is obtained from the manually annotated head positions of all pedestrians:82

this requires a higher effort than just counting them. The density map is then83

computed by superimposing 2D Gaussian kernels centred on pedestrians head84

positions, each one normalised to sum to one. Therefore, the pixel-wise sum of85

the density map equals the number of people in the corresponding image [14];86

this simple computation is also carried out during inference to obtain the crowd87

size from the estimated density map. More refined definitions of the density88

map based on the use of adaptive kernels have also been proposed to improve89

robustness to scale and perspective variations [15, 5].90

Existing CNN architectures are either modifications of “generic” ones, such91

as VGG [16, 11, 17, 5, 18, 15, 19, 20], or are specifically devised for crowd92

density estimation [21, 4, 3, 14]. Many architectures share the same backbone93

and differ in details, such as the number of branches or columns. The simplest94

ones use a single-column architecture [5], whereas others use multiple columns95
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to address specific issues such as scale variations [17, 5, 15, 14, 19]. Some96

approaches fuse low- and high-level features [21], local and global information [4],97

and information from the ROI [16].98

Some solutions have been proposed so far to address cross-scene issues specif-99

ically. A simple one is to use multi-scene training sets [17, 19, 15, 5]. Transfer100

learning and domain adaptation approaches have been proposed both for early101

regression-based [9] and for CNN-based methods [11]; however, they require102

manually annotated images of the target scene. A weakly supervised learn-103

ing method has been proposed in [7], which also requires manually annotated104

images of the target scene, although only in terms of a categorical annotation105

into six classes (from “zero” to “very high” density) to reduce user’s effort.106

An unsupervised solution has been proposed in [10], which, however, requires107

representative, although unlabelled, images of the target scene; furthermore, it108

carries out fine-tuning by retrieving similar images from the available train-109

ing set; therefore, its effectiveness relies on the availability of training images110

representative of the target scene.111

Our solution is inspired by the use of synthetic images in several computer112

vision tasks related to crowd analysis, such as anomalous crowd behaviour de-113

tection, pedestrian detection or tracking and crowd analysis based on optical114

flow [12], as well as in person re-identification [22], to mitigate the lack of repre-115

sentative, manually annotated training data. To our knowledge, using synthetic116

images has already been proposed for regression-based crowd counting by only117

one work [11], where a large data set of synthetic images was built using the118

Grand Theft Auto V (GTA5) video game to pre-train a CNN model. However,119

to create more realistic synthetic images this method also trains or fine-tunes120

a generative adversarial network (GAN) using real images of the target scene,121

which is not feasible in the application scenario considered in this work.122
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3. A method for constructing scene-specific synthetic training data123

for crowd counting124

In this section we describe the proposed method for building scene-specific125

regression-based crowd counting models. Its goal is to reduce the gap between126

the cross-scene performance of existing methods and challenging requirements127

of real-world applications, such as real-time crowd monitoring tasks carried out128

by LEAs during mass gatherings. For instance, this is the case of ad hoc in-129

stallations of video surveillance systems for short-lived mass gathering events.130

In such a scenario, a crowd counting model previously trained on annotated131

images from different scenes, e.g., benchmark data sets, has to be provided to132

end-users.133

To mitigate the resulting cross-scene issues, we propose to train or fine-tune134

a crowd counting model using only synthetic images of the target scene. This135

can be made during system operation with minimal support from LEA opera-136

tors, particularly without requiring them to collect, and even more to manually137

annotate, a suitable amount of representative crowd images of the target scene.138

One of the advantages of synthetic images is indeed the automatic definition of139

the ground truth [12], which in crowd counting tasks amounts to automatically140

annotate the position of each pedestrian and their exact number. Moreover,141

in such tasks, synthetic images allow to reproduce the same perspective, back-142

ground and lighting conditions of the target scene, and to choose the spatial143

configuration of people.144

This work extends two previous conference papers where we evaluated the145

cross-scene performance of several regression-based methods [8], and preliminar-146

ily investigated the effectiveness of synthetic images for early regression-based147

methods [13]. In this work, we better formalise the generation procedure of syn-148

thetic images and evaluate them also for CNN-based methods, including three149

additional ones with respect to [8], using two additional data sets. Finally,150

we evaluate how several factors (including the synthetic training set size, the151

number of pedestrians in synthetic images and their scale) affect crowd count-152
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ing accuracy. In the following, we describe the requirements of the proposed153

method and its steps.154

3.1. Requirements155

To create accurate, scene-specific crowd counting models, it is crucial to re-156

produce the perspective and the background of the target scene, and to define157

the ROI, i.e., the region of the image where people can appear [1, 11, 13], as158

a binary map. Accordingly, our method requires a background image of the159

target scene and the corresponding BMAP and PMAP. Since we focus on real160

application scenarios where a crowd counting functionality can be deployed as161

a component of dedicated software suites for video surveillance system manage-162

ment, the above data can be easily provided by end-users during camera set-up163

through a suitable graphical user interface (GUI). Another useful information164

that end users can easily provide is the expected value of the largest crowd165

size: this allows to generate synthetic images with a different number of people166

in the corresponding range, which may help to better fit the underlying crowd167

counting model to the target scene. In case of uncertainty, an overestimate of168

the largest crowd size should be provided to guarantee examples of the actual169

largest crowd size in the training data. The above elements are described in the170

following and are exemplified in Fig. 1.171

Among the existing techniques for background extraction and perspective172

map definition, in this work we consider two techniques that require very limited173

operator supervision. First, the background (BG) image can be automatically174

extracted during camera set-up. A still image is sufficient if no pedestrians175

or other non-static objects (e.g., cars) are present. Otherwise, a background176

extraction algorithm (e.g., by image subtraction) can be applied to a short177

video that can be easily acquired.178

The binary map of the ROI is then necessary to define the region of179

the target scene where synthetic pedestrian images can be placed. It can be180

easily defined (e.g., as a polygon) on the background image acquired in the181

previous step through a suitable GUI. If possible, static objects (if any) should182
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be excluded from the ROI to avoid inconsistencies with synthetic pedestrians.183

Finally, the perspective map should be computed to re-scale synthetic184

pedestrians at each location of the BMAP. It consists of an image of the same185

size as the target ones, where the value of each pixel is the height, in pixels, of186

a standard adult individual at the corresponding location [10]. The PMAP can187

be obtained during camera set-up as well, for instance, by manually computing188

it on-site or by approximating it through linear interpolation of the height of a189

few pedestrians in one or more images of the target scene, assuming they have a190

standard height [10]. In practice, this requires end-users only to manually select191

the corresponding bounding boxes (BB).192

3.2. Synthetic image generation193

Complex approaches have been proposed so far to create data sets of synthetic194

images for various computer vision tasks, based on graphics engines [11] or195

GANs [22]. We propose a more straightforward method that can be easily196

implemented in video surveillance software suites. Based on the above require-197

ments, our method consists of superimposing pedestrians’ images to the BG198

image, randomly positioned on the ROI and re-scaled using the PMAP. To this199

aim, a set of suitable pedestrian images, that we call gallery, should previously200

be collected by the system designer, e.g., real images from the Web or synthetic201

ones generated by computer graphics tools. To guarantee a sufficient appearance202

variability, the gallery should include a sufficiently large number of pedestrians203

in different poses. Furthermore, gallery images should contain no background204

(e.g., they should contain a transparency layer or a foreground binary mask) and205

should be tightly cropped to the height of pedestrians to allow exact re-scaling206

through the PMAP. The above requirements are easy to satisfy during design,207

especially if computer graphics tools are used to generate pedestrian images.208

Synthetic crowd images of the target scene can then be generated by super-209

imposing to the BG image the desired number of pedestrians randomly selected210

from the gallery, located in randomly chosen and mutually exclusive positions211

inside the ROI, and re-scaled according to the PMAP. It is also easy to repro-212
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duce realistic overlapping between people by adding pedestrians one at a time213

from the farthest to the closest location to the camera. A smoothing operation214

can also be performed to blend pedestrian outlines with the BG image (different215

techniques can be used to this aim). The number N of synthetic images to be216

generated depends on the underlying crowd counting model. The number n of217

pedestrians in such images can be determined based on the maximum number218

of pedestrians nmax specified by the user. This allows to select a set of (ap-219

proximately) evenly spaced values of n in the range [1, nmax], and to generate220

a fixed number of synthetic images for each value in this set. More precisely, if221

nmax = qN , for some q ∈ R+, then one image containing n pedestrians can be222

generated, for each n = 1, d1 + q, d1 + 2q, . . . , nmax.223

Finally, each synthetic image can be automatically annotated with the ground224

truth, i.e., the number of pedestrians and (if required by a CNN-based model)225

their location. Basic notions of human anatomy allow this task to be automated226

as well: assuming that gallery images are tightly cropped and contain adult in-227

dividuals with standard height and body part proportions, the head height is228

1/8 of the total body height [23], and the head points are directly located at229

1/16 height and 1/2 width of the image.230

In Fig. 1 we show an example of the above procedure for generating a syn-231

thetic image. Although such images may look unrealistic, e.g., due to unnatural232

pedestrians’ pose and to the absence of perspective distortions typical of surveil-233

lance cameras, they reproduce the perspective and the background of the target234

view, which are the most relevant features to obtain accurate crowd counting235

models. Moreover, the proposed image generation procedure is very simple to236

implement and has a low processing cost.237

4. Experimental setting238

The goal of our experiments is to evaluate the effectiveness of the proposed239

method for training or fine-tuning existing crowd counting models using only240

scene-specific synthetic images of the target camera view, and to compare it241
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Figure 1: Example of the proposed procedure for generating synthetic images of a target scene

(best viewed in colour). Top row, left to right: BG image (taken from the UCSD data set, see

Sect. 4.3), pedestrian BBs selected by the user on a real image to compute the PMAP, and

the resulting PMAP. Bottom row, left to right: ROI provided by the user, some pedestrian

images from the gallery used in our experiments (see Sect. 4.4), and a synthetic image with

80 pedestrians and their annotated head positions shown as white dots.

with the alternative cross-scene solution based on using real images from differ-242

ent scenes. To this aim, we carried out extensive experiments on a representative243

selection of four early regression-based crowd counting methods (Sect. 4.1) and244

nine state-of-the-art CNN-based ones (Sect. 4.2), using five single-scene and245

one multi-scene benchmark data sets of real crowd images (Sect. 4.3). Each246

single-scene data set is used in turn as the target scene (testing set), and a syn-247

thetic, scene-specific training set is built using the proposed method (Sect. 4.4).248

Its performance is then compared with the one achieved by using each one of249

the other single-scene data sets for training, to simulate a cross-scene setting250

through cross-data set experiments. A comparison is also made with the per-251

formance attained using the multi-scene data set for training, since this is one252

of the existing solutions for improving cross-scene accuracy. For completeness,253

a comparison is also made against the same-scene performance of each target254

data set, which is evaluated using training images of the same data set, to assess255

cross-scene performance degradation.256
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4.1. Early regression-based methods257

Despite the substantial progress achieved through CNN-based methods, early258

regression-based ones are still used [2, 24], since they exhibit a lower complexity,259

require a lower manual annotation effort, and can nevertheless provide accurate260

and fast results, especially in the presence of severe occlusions. Various ap-261

proaches have been proposed to extend these methods through new feature262

representations or more sophisticated regression models [1, 24], but they still263

share a similar processing pipeline. In the following, we describe their main264

components, namely feature representations and regression models, focusing on265

the ones chosen for our experiments.266

4.1.1. Feature extraction267

Several kinds of features have been proposed so far, and often different comple-268

mentary features are combined. For our experiments, we considered segment269

and edge features, which are among the most common foreground ones, as well270

as the Grey-Level Co-occurrence Matrix (GLCM) and Local Binary Patterns271

(LBP) textural features. Foreground features can be obtained through back-272

ground subtraction: segment features aims at capturing global properties of273

image regions, such as area and perimeter, whereas edge features focus on com-274

plementary information about local image characteristics, such as the number of275

edge pixels and edge orientation. Textural features encode spatial relationships276

among image pixels [1], instead. GLCM is defined as the number of occurrences277

of pairs of pixels with certain values in a given spatial relationship; several278

global statistical features can then be extracted from it [1]. The well-known279

LBP descriptor characterises local image textures [1]; it is rotation invariant280

and robust to grey-scale variation. A drawback of most of the above features is281

that they are strongly affected by image background [25]. In our experiments,282

we concatenated all the above features.283
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4.1.2. Regression models284

Early regression-based methods can be subdivided into global and local [1].285

They estimate the people count on the whole image, or as the sum of estimates286

on different image patches, respectively. Although local methods can handle287

scenes characterised by non-uniform crowd density more effectively, their pro-288

cessing cost is too high for real-time applications. We focused therefore on global289

methods and selected four representative regression models [1]: two linear mod-290

els, namely simple Linear Regression (LR) and Partial Least Squares (PLS) re-291

gression; and two non-linear models, Random Forests (RF) and Support Vector292

Regression (SVR) with a radial basis function (RBF) kernel. Gaussian Pro-293

cess Regression has also been proposed as a global crowd counting method [25];294

however it exhibits several drawbacks in crowd counting tasks with respect to295

other non-linear models such as RF: it is not scalable, its processing cost at the296

prediction phase is too high for real-time applications, and it is more sensitive297

to parameter selection.298

4.2. CNN-based methods299

Among the large number of CNN-based crowd counting methods recently pro-300

posed, we selected nine representative methods whose source code was available.301

They are described below and summarised in Table 1, and can be categorised302

according to the following criteria: network architecture (backbone, number of303

parallel columns and loss function), type of input used for training, including304

the augmentation process (“images”) and the type of kernel (“head points”,305

either fixed or adaptive), and inference time (“speed”) evaluated in ms on a306

reference input size of 640× 480.307

The Multi-Column CNN (MCNN) architecture [14] aims at achieving robust-308

ness to scale variations. It is made up of three parallel and identical columns309

(except for filter dimensions), whose feature maps are merged by a final block.310

The Cascaded Multi-task Learning (CMTL) architecture [3] uses two columns311

that share the first layers to address two related sub-tasks: crowd count categori-312

sation into ten qualitative levels and density map estimation. The Deformation313
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Aggregation Network (DAN) [20] consists of two parts: a VGG backbone, made314

up of eight blocks, and a multi-layer aggregation that learns adjustable weights315

to estimate the density map by an adaptive fusion of feature maps of differ-316

ent layers. The Spatial Fully Connected Network (SFCN) [11] uses a ResNet-317

101 backbone to improve density map estimation on congested crowd scenes.318

The Congested Scene Recognition Network (CSRN) [17] consists of a dilation319

module on top of a VGG-16 backbone that aggregates multi-scale information320

without increasing the number of parameters to keep processing time low. The321

Context-Aware Network (CAN) [19] encodes multi-scale contextual information322

exploiting a VGG-16 backbone, concatenates the output with weighted feature323

maps and obtains the density map using dilated convolutions. The Spatial-324

/Channel-wise Attention Regression (SCAR) network [18] uses spatial-wise and325

channel-wise attention modules to encode large-range contextual information,326

to improve the accuracy of head location and alleviate estimation errors. The327

Deep Structure Scale Integration (DSSI) network [15] aims at handling large328

scale variations through three parallel sub-networks that process the same input329

image with different scales; their outputs are merged to increase the resolution330

of the density map. Finally, the Bayesian Loss for crowd counting estimation331

architecture (BL+) [5] exploits a loss function designed to directly use the head332

point supervision to handle large scale variations.333

4.3. Real data sets334

As explained in previous sections, we focus on crowd counting systems that335

have to be deployed on a specific target scene (camera view). To reproduce this336

setting in our experiments, data sets containing a sufficient number of manually337

annotated training and testing images from a single camera view should be338

used. Unfortunately, existing benchmark data sets do not fulfil all the above339

requirements together. To our knowledge, only three of them contain dense340

crowd scenes, namely ShanghaiTech, UCF-QNRF and World Expo Shanghai341

2010 [14, 21, 2]. However, the first two are made up of single images taken from342

different scenes. The latter contains five one-hour test videos, each one from a343
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Table 1: Main features of the CNN-based methods used in our experiments. Network archi-

tecture: pre-trained backbone network (– denotes training from scratch), number of columns,

loss function (MSE: Mean Squared Error; BCE: Binary Cross Entropy; Bayesian loss). Input:

type of input images (whole or cropped image, and augmentation technique: flip, noisy, scale),

and kernel used for computing the density map. Speed: inference time (in ms) on a reference

input image of size 640 × 480.

Method
Network architecture Input Speed

backbone columns loss images kernel
MCNN [14] – 3 MSE Crop Fixed 130
CMTL [3] – 2 MSE&BCE Crop&Flip&Noisy Fixed 350
DAN [20] VGG16 5 MSE Crop Fixed 210
SFCN [11] ResNet – MSE Whole Fixed 900
CSRN [17] VGG16 – MSE Crop&Flip Fixed 480
CAN [19] VGG16 4 MSE Crop&Flip Fixed 450
SCAR [18] VGG16 2 MSE Whole Fixed 412
DSSI [15] VGG16 3 MSE 3 scales Adaptive 510
BL+ [5] VGG19 – Bayesian Crop&Flip Adaptive 260

single camera, but only one frame every 30 seconds is manually annotated, that344

is only 120 frames in total, which is not suitable to our experiments.345

The only data sets containing a sufficient number of frames from a single346

camera view (from 1,299 to 2,000 frames, see below) manually annotated with347

the head position, are Mall [26], UCSD [27] and PETS [28]. Although they348

do not contain dense crowd scenes (at most 53 people per image are present),349

they are challenging data sets as they exhibit lighting variations, perspective350

distortions and severe occlusions. We therefore used them as target data sets,351

as well as training data sets for cross-data set experiments.352

Mall is made up of 2,000 frames with a size of 640×480 pixels, collected from353

a single scene by a surveillance camera in a shopping mall. It contains a total of354

62,325 pedestrians, with 13 to 53 people per frame (on average, 31). Mall is a355

challenging data set with severe perspective distortions and frequent occlusions356

caused by static objects or by other people. According to recent work [1, 2] we357

used the first 600 frames for training, the next 200 ones for validation, and the358

remaining 1,200 frames for testing. UCSD contains 70 videos acquired from a359

low-resolution camera (238×158 pixels) installed in a pedestrian walkway at a360

university campus. It contains a total of 49,885 pedestrians, with an average of361
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25 people per frame. We used a subset of 2,000 frames: frames from 600 to 1,399362

for training (600 frames) and validation (200 frames), and the remaining 1,200363

frames for testing [1, 2]. PETS2009 was released at the 11th IEEE Int. Work-364

shop on Performance Evaluation of Tracking and Surveillance [28], for different365

visual surveillance tasks. Part “S1” is devoted to crowd counting and is subdi-366

vided into three difficulty levels (different crowd density and people behaviour),367

and each level contains two sequences (frame size of 576 × 768) acquired with368

different cameras, at different times under different illumination and shading.369

We grouped the images from the first three cameras (for different difficulty levels370

and acquisition time) to create three single-scene data sets named PETSview1,371

PETSview2 and PETSview3. These new data sets contain in total 1,229 frames372

that we split into training, validation and testing sets of size 361, 128 and 740,373

respectively. Since the original PETS2009 does not include the head position374

for each frame, we used the ground truth provided in [29].375

We also used the above mentioned ShanghaiTech data set to evaluate376

the cross-scene performance achieved using multi-scene training data. Shang-377

haiTech is widely used in the literature, especially for training CNN models,378

since it contains images acquired from different cameras, with different illumi-379

nation, perspective and crowd density. It contains 1,198 images, for a total of380

330,165 pedestrians, and is usually divided into parts two parts, Part A and381

Part B, containing 482 and 716 images, respectively. Each part is further sub-382

divided into 300 images for training and the remaining ones for testing [14, 2].383

Fig. 2 shows some examples of frames from each of the above data sets.384

4.4. Synthetic data sets385

We first collected a gallery of pedestrian images from the Web, according to386

the requirements described in Sect. 3.2. Taking into account the crowd size in387

the considered target data sets, for our experiments, we set the gallery size to388

100 and chose images of pedestrians of standard height and in an upright pose;389

we also avoided to purposely select pedestrian images whose appearance was390

similar to the ones of target data sets. In principle, in applications where much391
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Figure 2: Example of images from the data sets used in our experiments. Top row, left to right:

Mall, UCSD, PETSview1. Bottom row, left to right: PETSview2, PETSview3, ShanghaiTech.

larger crowd sizes can occur in (unknown) target scenes, a larger gallery may392

be necessary. In sect. 5.4 we shall evaluate the influence of the gallery size on393

crowd counting accuracy.394

For each of the five target scenes (Mall, UCSD, PETSview1, PETSview2 and395

PETSview3) we extracted one BG image through a simple image subtraction396

algorithm applied to all training images. More effective techniques may be397

necessary for more complex scenes to avoid a noisy background image, which398

may affect the accuracy of crowd counting models.399

We then manually defined the ROI as a polygon, without removing static400

objects (if any) inside it as mentioned in Sect. 3.1. Although this may re-401

sult in inconsistencies between foreground and background objects when syn-402

thetic pedestrians are added to the background image, such inconsistencies are403

not likely to significantly affect the accuracy of crowd counting models, since404

early regression-based ones mainly focus on fine textures and foreground objects405

(pedestrians), and CNN-based ones mainly localise pedestrians heads.406

We then computed the PMAP from a single training image by manually407

selecting the BBs of three pedestrians at different locations. This simple proce-408

dure was sufficient to provide an accurate PMAP for the considered target data409

sets. Other more accurate techniques can be used to take into account more410
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Figure 3: Examples of synthetic images from each of the considered target data sets. Top row,

left to right: Mall, UCSD, PETSview1. Bottom row, left to right: PETSview2, PETSview3.

complex scenes (see Sect. 3.1).411

We finally set the number of synthetic training images to N = 1, 000, and412

the maximum number of pedestrians in each target scene to nmax = 100, taking413

into account the characteristics of the target scenes and the size of the respective414

ROIs (see Fig. 2). Note that the chosen value of nmax overestimates the actual415

maximum crowd size of the real data sets by about twice. According to Sect. 3.2,416

for each target scene we generated nmax/N = 10 synthetic images containing n417

pedestrians, for each n = 1, 2, . . . , nmax, for a total of 50,500 pedestrians. We418

finally subdivided this data set into a training and a validation set of 800 and419

200 images, respectively. In Section 5 we shall evaluate how the values of N420

and nmax affect the performance of the considered crowd counting models.421

Fig. 3 shows some examples of synthetic images for each target scene.2 Ta-422

ble 2 reports the main characteristics of real and synthetic data sets.423

4.5. Performance measures424

We evaluated crowd counting accuracy using two common metrics that are425

defined over a single image: the absolute error (AE) and the root squared426

error (RSE). We report their average values across all testing images of a427

2All our synthetic data sets are available at here.
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Table 2: Statistics of real and synthetic data sets used in our experiments.

Type Data set Image size
Number of images Pedestrian count

total training validation test total min avg max
R
ea
l

Mall 480× 640 2,000 600 200 1,200 62,235 13 31 53
UCSD 158× 238 2,000 600 200 1,200 49,885 11 25 46

PETSview1 576× 768 1,229 361 128 740 32,719 1 27 40
PETSview2 576× 768 1,229 361 128 740 36,458 2 30 40
PETSview3 576× 768 1,229 361 128 740 41,873 11 34 40

S
y
n
th
et
ic Mall 480× 640 1,000 800 200 – 50,500 1 50 100

UCSD 158× 238 1,000 800 200 – 50,500 1 50 100
PETSview1 576× 768 1,000 800 200 – 50,500 1 50 100
PETSview2 576× 768 1,000 800 200 – 50,500 1 50 100
PETSview3 576× 768 1,000 800 200 – 50,500 1 50 100

given target scene, i.e., the mean absolute error (MAE) and the root mean428

squared error (RMSE), which are defined as MAE = 1
Nt

∑Nt

i=1 |ηi − η̂i| and429

RMSE =
(

1
Nt

∑Nt

i=1(ηi − η̂i)2
) 1

2

, where Nt is the number of testing images, ηi430

is the ground truth (pedestrian count) and η̂i is the estimated pedestrian count431

for the i-th image. As a result of the squaring operation, the RMSE penalises432

larger errors more heavily than MAE.433

5. Experimental results434

We first present the cross-scene results attained using single-scene (Sect. 5.1)435

and multi-scene (Sect. 5.2) real training images, then the ones attained using436

scene-specific, synthetic training data, and finally we compare them (Sect. 5.3).437

5.1. Cross-scene results for real single-scene training data438

Tables 3 and 4 report the results of cross- and same-data set (scene) experiments439

for early regression-based and CNN-based methods, respectively. For ease of440

comparison, same-scene results are highlighted in grey.441

Early regression-based methods (Table 3) achieved a high same-scene442

performance, especially on Mall and UCSD. The best models turned out to be443

LR and PLS. However, the performance of LR and PLS considerably worsened444

in cross-scene settings, whereas the one of RF and SVR degraded only slightly;445

in particular, for training and target scenes characterised by similar perspective446

and scale, which is the case of Mall and the three views of PETS (see Fig. 2), in447
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Table 3: Cross-scene MAE and RMSE of early regression-based methods (LR, RF, SVR and

PLS) using single-scene training sets. Same-scene results (training and testing on the same

data set) are also reported for comparison, highlighted in grey. The best cross-scene result for

each target data set is reported in bold.

Training set
Testing set (target scene)

Mall UCSD PETSview1 PETSview2 PETSview3
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

L
R

Mall 2.74 3.49 9.59 11.63 289.2 294.4 348.7 349.0 268.1 270.9
UCSD 67.3 78.75 2.9 3.54 334.6 347.9 369.2 374.0 128.2 146.6

PETSview1 276.9 277.0 577.1 577.2 6.25 7.91 33.43 38.04 9.35 11.17
PETSview2 210.2 210.3 308.4 308.4 97.86 127.0 4.85 5.98 159.4 160.2
PETSview3 12.15 14.01 29.09 29.93 110.3 110.7 125.1 126.6 6.84 8.42

R
F

Mall 3.82 4.85 5.12 7.42 9.27 12.43 12.15 13.96 4.44 6.59
UCSD 5.83 6.98 3.82 4.66 9.12 11.45 8.06 10.46 5.22 5.94

PETSview1 3.89 5.07 6.92 8.12 9.47 11.03 13.59 14.98 8.36 9.31
PETSview2 6.88 8.57 5.38 7.31 8.01 8.94 9.56 11.05 6.27 8.14
PETSview3 5.52 7.07 6.34 7.73 10.11 11.54 11.59 12.54 11.41 12.49

S
V
R

Mall 4.8 6.29 8.15 9.18 9.56 10.45 9.8 10.68 8.74 9.55
UCSD 7.68 9.32 5.38 7.31 10.74 12.08 12.09 13.15 12.86 13.88

PETSview1 12.26 13.57 6.21 8.52 12.82 15.25 14.85 16.79 17.67 18.56
PETSview2 8.54 10.12 5.13 7.3 11.06 12.62 12.6 13.81 13.78 14.8
PETSview3 5.11 6.71 7.52 8.61 9.76 10.61 10.2 11.04 9.5 10.37

P
L
S

Mall 3.16 4.1 110.7 110.9 51.97 65.77 16.97 20.94 53.4 61.05
UCSD 266.3 268.0 2.6 3.23 99.38 109.1 428.7 429.9 460.9 467.7

PETSview1 49.0 49.37 13.0 14.21 8.46 10.13 20.39 24.53 21.07 26.56
PETSview2 23.01 23.42 103.9 104.1 57.72 68.15 7.65 9.06 103.1 103.8
PETSview3 18.05 18.67 5.1 7.27 14.55 16.86 25.12 26.75 9.03 10.06

some cases the cross-scene performance by RF and SVR was even better than448

the corresponding same-scene one. CNN-based methods (Table 4) exhibited449

a similar behaviour: they achieved a high same-scene performance (with the450

exceptions of DAN on PETSview2 and of DSSI on UCSD and PETS) and a451

lower cross-scene performance, with some exceptions as well. Also, for CNN-452

based methods, the cross-scene performance was in some cases close or even453

better than the same-scene one on Mall and PETS, whose perspective and454

scale is similar. Instead, the most noticeable gap between same- and cross-455

scene performance can be observed when UCSD is used as either the training456

or the target scene since its scale and perspective are very different from those457

of the other data sets (see Fig. 2). A comparison between early regression-458

based and CNN-based methods shows that the latter generally achieved a459

better or slightly better same-scene performance, as one may expect, with the460

largest improvement occurring mainly on the three views of PETS. On the461
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Table 4: Cross-scene MAE and RMSE of CNN-based methods using single-scene training sets.

Same-scene results are also reported for comparison, highlighted in grey. The best cross-scene

result for each target data set is reported in bold.

Training set
Testing set (target scene)

Mall UCSD PETSview1 PETSview2 PETSview3
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

M
C
N
N

Mall 5.33 6.17 24.64 25.75 5.94 7.83 9.67 10.95 9.9 11.22
UCSD 86.39 88.04 2.3 2.84 144.9 149.6 49.4 56.85 180.6 181.2

PETSview1 19.54 20.16 24.18 25.28 6.2 7.86 22.05 23.59 9.77 11.75
PETSview2 3.39 4.27 19.62 20.92 20.93 22.19 4.23 5.08 24.29 27.72
PETSview3 4.31 5.35 21.28 22.47 19.54 21.63 10.37 11.66 4.18 5.13

C
M
T
L

Mall 5.53 6.39 23.42 24.58 5.77 7.42 17.65 19.28 11.41 12.79
UCSD 189.1 191.1 2.04 2.50 213.7 217.9 111.9 113.7 298.5 300.8

PETSview1 9.93 10.73 24.18 25.13 5.11 6.29 15.56 17.20 4.46 5.95
PETSview2 4.68 5.95 24.63 25.76 36.85 38.49 4.80 6.06 47.34 50.96
PETSview3 4.61 5.79 21.94 23.12 21.90 24.54 11.50 13.97 4.23 5.06

D
A
N

Mall 5.43 6.42 25.42 26.54 7.51 9.43 11.7 13.14 8.84 10.27
UCSD 164.1 166.1 5.18 6.39 185.9 192.1 61.76 66.53 227.3 228.5

PETSview1 7.97 9.06 26.1 27.09 4.92 6.15 16.41 19.12 6.34 7.74
PETSview2 28.95 29.54 27.86 29.0 26.43 28.38 28.68 30.37 32.89 33.38
PETSview3 7.9 9.48 18.8 20.12 18.02 20.45 13.2 15.15 4.63 5.92

S
F
C
N

Mall 4.05 5.02 28.15 29.27 19.37 20.85 27.66 28.72 71.38 71.87
UCSD 880.2 882.1 2.91 3.64 853.5 859.6 634.3 635.5 988.4 990.6

PETSview1 8.33 9.64 27.13 28.1 6.32 7.57 12.83 14.5 10.74 12.05
PETSview2 36.55 38.35 25.93 26.85 85.29 87.81 8.1 9.81 106.9 108.6
PETSview3 14.78 15.98 28.23 29.36 11.49 13.64 10.03 12.74 4.35 5.68

C
S
R
N

Mall 6.57 7.73 24.51 25.8 21.55 23.89 19.08 21.61 15.37 16.38
UCSD 70.78 71.46 6.2 7.01 57.52 61.86 28.29 31.21 69.06 69.36

PETSview1 14.51 14.96 27.33 28.43 5.54 6.83 15.62 17.46 20.57 21.11
PETSview2 12.15 12.66 27.06 28.16 10.14 11.82 7.09 7.9 8.42 9.53
PETSview3 9.21 9.89 27.49 28.62 5.84 6.8 9.66 10.56 2.9 3.76

C
A
N

Mall 2.59 3.21 28.09 29.23 8.28 10.36 17.49 20.02 29.54 30.11
UCSD 281.6 283.1 4.73 6.16 173.5 176.9 133.4 135.2 252.0 252.4

PETSview1 10.5 11.17 27.5 28.56 6.33 7.5 8.43 9.25 3.94 4.84
PETSview2 27.59 28.51 27.1 28.15 24.62 26.03 6.07 7.67 5.09 6.77
PETSview3 6.73 7.7 27.55 28.7 7.5 9.07 11.54 12.78 6.82 7.84

S
C
A
R

Mall 3.99 4.75 372.28 372.8 42.3 45.41 55.78 56.46 93.3 93.51
UCSD 19.43 20.98 4.19 5.24 19.45 21.11 6.67 8.19 15.3 17.83

PETSview1 265.37 265.53 503.0 504.1 3.38 4.07 122.04 128.9 134.72 135.23
PETSview2 314.63 315.81 574.18 577.12 13.47 17.53 5.09 6.32 123.88 124.16
PETSview3 36.1 37.14 575.91 578.83 11.88 13.53 38.03 44.03 8.39 10.32

D
S
S
I

Mall 5.44 7.09 37.35 37.81 22.81 23.56 18.1 19.03 13.78 14.98
UCSD 25.6 26.84 21.75 23.2 27.36 28.53 26.92 28.11 26.52 27.72

PETSview1 9.87 14.1 69.02 69.8 18.0 20.44 12.63 15.0 10.31 11.36
PETSview2 8.02 12.5 66.81 67.57 20.25 22.26 14.64 16.51 11.31 12.21
PETSview3 4.14 6.47 62.54 62.8 24.09 24.75 17.32 18.22 11.46 12.46

B
L
+

Mall 2.18 2.74 152.76 153.63 6.9 7.86 15.12 16.08 8.22 9.98
UCSD 23.96 25.05 2.5 3.57 22.65 23.8 21.17 22.0 23.66 24.77

PETSview1 10.09 11.81 127.26 129.71 3.75 5.12 12.41 14.34 10.49 12.86
PETSview2 15.73 17.91 77.63 80.9 15.35 17.78 5.8 6.57 10.22 11.68
PETSview3 26.01 26.69 132.99 133.57 18.69 19.53 7.44 9.0 4.72 5.61

other hand, the best early regression-based methods (RF and SVR) turned out462

to be generally more robust than CNN-based ones in cross-scene settings. For463

instance, the cross-scene MAE and RMSE values of RF and SVR (Table 3)464
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never exceed 20, whereas for all CNN-based methods many cross-scene MAE465

and RMSE values are above 20, and, except for DSSI and CSRN, several such466

values are even one order of magnitude higher.467

5.2. Cross-scene results for real multi-scene training data468

As mentioned in Sect. 2, multi-scene training sets are commonly used to improve469

the cross-scene performance of CNN-based models [17, 19, 15, 5]. Accordingly,470

for all the considered CNN-based models, we also carried out experiments using471

the multi-scene data set ShanghaiTech, either part A or part B, for training,472

with a similar setting as in Sect. 5.1. The results are reported in Table 5. To473

speed up these experiments, whenever possible, we used CNN models already474

trained on ShanghaiTech and made available by the respective authors. To475

ease the comparison with cross-scene results achieved using single-scene training476

data, we also report for each model the best and worst cross-scene results from477

Table 4. We did not carry out this experiment on early regression-based methods478

since holistic features require a BG image of each training image, which is not479

available for ShanghaiTech, and cannot be computed since each image of this480

data set is taken from a different scene.481

As one may expect, the performance achieved using multi-scene training482

data is almost always better than the worst performance achieved over all the483

considered single-scene training sets. More significantly, in several cases (see484

the entries in boldface), it is even better than the best single-scene performance,485

up to be comparable to the “ideal” same-scene one (see Table 4). However,486

these latter results were achieved mainly by BL+, DSSI and CAN, and only in487

a minority of cases by other models; moreover, even for BL+, DSSI and CAN,488

there are several exceptions, especially on PETSview3.3 Moreover, it turns out489

that the performance on a given target scene strongly depends on the multi-scene490

training set used. Indeed, some models achieved a higher performance using491

3The behaviour of SCAR emerges as a clear outlier, as its performance with multi-scene

training data was very poor for all target scenes. We could not find the cause of this behaviour.
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Table 5: Cross-scene MAE and RMSE of CNN-based methods attained using for training

either part A (ShTechA) or part B (ShTechB) of the multi-scene ShanghaiTech data set. For

comparison, best and worst cross-scene results achieved on single-scene training data (S-best

and S-worst) are reported from Table 4. For each method and target data set, multi-scene

results that are better than the best single-scene ones are highlighted in boldface.

Training
Testing set (target scene)

Mall UCSD PETSview1 PETSview2 PETSview3
set MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

M
C
N
N ShTechA 16.16 16.77 18.88 19.64 9.3 10.04 10.26 11.98 33.9 38.67

ShTechB 21.03 21.58 22.01 22.86 7.51 8.58 23.2 24.86 6.55 8.12
S-best 3.39 4.27 19.62 20.92 5.94 7.83 9.67 10.95 9.77 11.75
S-worst 86.39 88.04 24.64 25.75 144.9 149.6 49.4 56.85 180.6 181.2

C
M
T
L ShTechA 17.71 18.33 21.0 21.84 8.51 9.39 10.36 11.92 33.46 40.68

ShTechB 13.92 14.6 22.26 23.02 10.32 11.38 17.95 19.89 9.61 12.39
S-best 4.61 5.79 21.94 23.12 5.77 7.42 11.5 13.97 4.46 5.95
S-worst 189.1 191.1 24.63 25.76 213.7 217.9 111.9 113.7 298.5 300.8

D
A
N

ShTechA 16.76 17.32 23.96 24.67 8.88 10.21 14.49 16.56 15.68 16.68
ShTechB 18.02 18.64 22.82 24.01 8.93 10.71 19.19 22.03 20.13 21.11
S-best 7.9 9.48 18.8 20.12 7.52 9.43 11.7 13.14 6.34 7.74
S-worst 163.1 166.1 27.86 29.0 185.9 192.1 61.76 66.53 227.3 228.5

S
F
C
N

ShTechA 773.2 777.4 5.42 7.55 30.59 31.5 802.1 802.3 683.6 687.4
ShTechB 31.21 32.4 322.7 323.7 10.88 12.46 238.5 238.5 33.8 34.3
S-best 8.33 9.64 25.93 26.85 11.49 13.64 10.03 12.74 10.74 12.05
S-worst 880.2 882.1 28.23 29.36 853.5 859.6 634.3 635.5 988.4 990.6

C
S
R
N

ShTechA 14.64 15.1 26.58 27.63 8.58 10.08 8.92 10.17 15.45 16.55
ShTechB 10.61 11.1 28.06 29.2 10.97 12.11 12.28 13.83 15.44 16.62
S-best 9.21 9.89 24.51 25.8 5.84 6.8 9.66 10.56 8.42 9.53
S-worst 70.78 71.46 27.49 28.62 57.52 61.86 28.29 31.21 69.06 69.36

C
A
N

ShTechA 9.72 10.28 27.04 28.16 5.04 5.87 6.2 7.46 10.3 11.67
ShTechB 3.6 4.56 28.05 29.18 6.53 8.25 10.31 11.49 15.57 16.55
S-best 6.73 7.7 28.09 29.23 7.5 9.07 8.43 9.25 3.94 4.84
S-worst 281.6 283.1 28.09 29.23 173.5 176.9 133.4 135.2 252.0 252.4

S
C
A
R

ShTechA 738.4 739.2 520.4 521.1 997.9 999.5 918.9 919.9 911.7 913.5
ShTechB 512.9 513.5 326.2 327.2 813.5 815.5 829.9 811.7 825.6 826.1
S-best 19.43 20.98 372.3 372.8 11.88 13.53 6.67 8.19 15.3 17.83
S-worst 314.6 315.8 575.9 578.8 42.3 45.4 122.5 128.9 134.7 135.2

D
S
S
I ShTechA 8.44 9.16 20.41 21.06 7.91 9.46 8.91 9.9 11.73 13.55

ShTechB 12.93 13.47 26.24 27.2 13.47 15.52 9.88 11.68 25.65 26.1
S-best 4.14 6.47 37.35 37.81 20.25 22.46 12.63 15.0 10.31 11.36
S-worst 25.6 26.84 69.02 69.8 27.83 28.53 26.92 28.11 26.52 27.72

B
L
+

ShTechA 6.07 7.05 16.63 17.08 5.28 6.28 7.77 9.48 16.51 17.36
ShTechB 6.78 7.57 18.52 19.2 4.21 5.34 7.05 8.9 10.07 11.85
S-best 10.09 11.81 77.63 80.9 6.9 7.86 7.44 9.0 8.22 9.98
S-worst 26.01 26.69 152 153.63 22.65 23.8 21.17 22.0 23.66 24.77

part A of ShanghaiTech rather than part B, whereas the opposite happened492

for other models; moreover, the performance gap between different multi-scene493

training sets can be large (see, e.g., MCNN and CMTL on PETSview2 and494

PETSview3). Similar behaviour can be observed for each model with respect495

to the different target scenes. To sum up, the results in Table 5 do not show496
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a clear pattern of improvement due to the use of multi-scene over single-scene497

training data, but a mixed behaviour depending on the specific crowd counting498

method, target scene and training data set. This means that, in the considered499

application scenario where a crowd counting model has to be trained before500

deployment without any information on target scenes, using multi-scene training501

data is not guaranteed to be an effective solution.502

5.3. Results for scene-specific synthetic data sets503

In this section, we present the main results of this work. Table 6 shows the504

results attained on each target data set using scene-specific synthetic training505

images, together with a comparison with the best cross-scene results attained506

using real training data. In particular, the best cross-scene results over all single-507

scene training sets is reported for early regression-based methods, from Table 3,508

and over multi-scene training sets for CNN-based methods, from Table 5. The509

“ideal” same-scene results are also reported from Tables 3 and 4.510

For early regression-based methods, in many cases, synthetic images pro-511

vided a better (see the entries in boldface) or close performance to the best512

cross-scene one. In particular, the performance of RF and SVR was even better513

than the “ideal” same-scene one. Only in a few cases, mainly on PETS target514

scenes, synthetic images achieved a significantly lower performance than the515

corresponding best cross-scene one.516

For CNN-based models, synthetic images attained a better or similar perfor-517

mance to the best cross-scene one on almost half of the cases. This is especially518

evident for SCAR, which performed poorly for multi-scene training data. On519

the other hand, the largest gap between the performance of synthetic data and520

the best cross-scene one (in favour of the latter) was observed for MCNN, CSRN,521

CAN, DSSI and BL+, although not for all target data sets; for CAN, DSSI and522

BL+ this result is coherent with the one of section 5.2, where these methods523

turned out to be the ones that most benefited from multi-scene training data.524

Nevertheless, a significant result that emerges from Table 6 is that using syn-525

thetic images allowed all the considered models (including early regression-based526
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Table 6: MAE and RMSE attained by all the considered crowd counting models, using as a

training set: target scene-specific synthetic images (“Synthetic”), real images from the same

scene (“Real-same”), and real images from different scenes (“Real-cross”: best results over all

single-scene training sets for early regression-based methods, and over the two ShanghaiTech

training sets for CNN-based methods). For each data set and model the cases in which using

synthetic training sets outperformed the best cross-data set results are highlighted in bold.

Testing set (target scene)
Method Training Mall UCSD PETSview1 PETSview2 PETSview3

set MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LR
Real-same 2.74 3.49 2.9 3.54 6.25 7.91 4.85 5.98 6.84 8.42
Real-cross 12.15 14.01 9.59 11.63 97.86 127.0 33.43 38.0 9.35 11.17
Synthetic 14.94 16.34 4.74 7.09 23.25 27.08 19.14 30.16 26.6 33.19

RF
Real-same 3.82 4.85 3.82 4.66 9.47 11.03 9.56 11.05 11.41 12.49
Real-cross 3.89 5.07 5.12 7.42 8.01 8.94 8.06 10.46 4.44 6.59
Synthetic 6.76 8.1 3.12 3.59 7.51 9.13 18.35 23.41 7.82 9.61

SVR
Real-same 4.8 6.29 5.38 7.31 12.82 15.25 12.6 13.81 9.5 10.37
Real-cross 5.11 6.71 5.13 7.3 9.56 10.45 9.8 10.68 8.74 9.55
Synthetic 7.98 9.57 2.85 4.13 6.96 8.66 8.83 10.63 4.6 6.54

PLS
Real-same 3.16 4.1 2.6 3.23 8.46 10.13 7.65 9.06 9.03 10.06
Real-cross 18.05 18.67 5.1 7.27 14.55 16.86 16.97 20.94 21.07 26.56
Synthetic 13.39 16.29 5.16 6.46 17.06 21.32 29.1 30.59 11.22 14.05

MCNN
Real-same 5.33 6.17 2.3 2.84 6.2 7.86 4.23 5.08 4.18 5.13
Real-cross 16.16 16.77 18.88 19.64 7.51 8.58 10.26 11.98 6.55 8.12
Synthetic 20.73 21.68 2.94 3.65 12.22 13.43 17.86 18.67 11.39 13.69

CMTL
Real-same 5.53 6.39 2.04 2.50 5.11 6.29 4.80 6.06 4.23 5.06
Real-cross 13.92 14.6 21.0 21.84 8.51 9.39 10.36 11.92 9.61 12.39
Synthetic 22.96 23.47 8.4 9.65 9.43 11.09 9.39 10.57 8.74 11.19

DAN
Real-same 5.43 6.42 5.18 6.39 4.92 6.15 28.68 30.37 4.63 5.92
Real-cross 16.76 17.32 22.82 24.01 8.88 10.21 14.49 16.56 15.68 16.68
Synthetic 17.51 18.49 10.31 12.21 4.05 5.37 19.37 22.32 10.55 12.56

SFCN
Real-same 4.05 5.02 2.91 3.64 6.32 7.57 8.1 9.81 4.35 5.68
Real-cross 31.21 32.4 5.42 7.55 10.88 12.4 238.5 238.5 33.8 34.3
Synthetic 17.76 18.57 6.34 7.34 15.56 16.85 23.22 24.82 10.19 12.46

CSRN
Real-same 6.57 7.73 6.2 7.01 5.54 6.83 7.09 7.9 2.9 3.76
Real-cross 10.61 11.1 26.58 27.63 8.58 10.08 8.92 10.17 15.45 16.55
Synthetic 19.9 20.18 3.45 4.8 13.35 15.42 21.33 23.78 20.01 20.55

CAN
Real-same 2.59 3.21 4.73 6.16 6.33 7.5 6.07 7.67 6.82 7.84
Real-cross 3.6 4.56 27.04 28.16 5.04 5.87 6.2 7.46 10.3 11.67
Synthetic 16.77 17.26 7.35 8.0 12.78 14.4 16.99 19.19 30.95 31.36

SCAR
Real-same 3.99 4.75 4.19 5.24 3.38 4.07 5.09 6.32 8.39 10.32
Real-cross512.93513.47326.24 327.2 813.47815.52829.88811.68825.65 826.1
Synthetic 23.54 24.0 7.83 8.88 8.35 9.59 7.77 10.53 15.18 16.61

DSSI
Real-same 5.44 7.09 21.75 23.2 18.0 20.44 14.64 16.51 11.46 12.46
Real-cross 8.44 9.16 20.41 21.06 7.91 9.46 8.91 9.9 11.73 13.55
Synthetic 28.91 29.5 14.86 16.91 19.18 21.81 21.29 23.58 29.48 30.02

BL+
Real-same 2.18 2.74 2.5 3.57 3.75 5.12 5.8 6.57 4.72 5.61
Real-cross 6.07 7.05 16.63 17.08 4.21 5.34 7.05 8.9 10.07 11.85
Synthetic 15.5 15.87 7.85 8.59 8.01 10.1 12.23 13.71 18.74 19.42

ones) to exceed the best cross-scene performance on the UCSD target scene,527

which differs in scale and perspective from the other single-scene data sets, as528

well as from many images of the multi-scene ShanghaiTech; the only exceptions529
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are the cross-scene MAE values of PLS and SFCN, which are nevertheless very530

close to the corresponding values achieved using synthetic images. Therefore,531

despite some models may benefit from multi-scene training data, most of the532

considered ones exhibited a performance degradation if few or no training im-533

ages exhibited a similar perspective to the one of the target scene. This result534

confirms the conclusion drawn at the end of Sect. 5.2 about the limited benefit535

of multi-scene training data in the considered application scenario.536

Since the considered CNN-based models compute the crowd count from the537

estimated density map, we also examined and compared the quality of the den-538

sity maps obtained using scene-specific synthetic training images with the ones539

attained using real training images from other scenes. We considered, in par-540

ticular, the accuracy of the density map in locating the regions of the target541

(testing) images containing pedestrians: the rationale is that high accuracy in542

crowd count may be achieved even if localisation accuracy is low. To this aim,543

we focused on MCNN, which is one of the models that achieved the lowest544

benefit in crowd counting accuracy from synthetic training data (see Table 6).545

A first qualitative evaluation on some testing images, carried out through a546

visual comparison, showed an interesting result, i.e., density maps produced547

by synthetic training data turned out to locate pedestrian regions more accu-548

rately. Fig. 4 shows an example on two testing images from PETSview1 and549

PETSview2 data sets: despite using synthetic images provided (on average)550

worse crowd count results on these data sets (Table 6, row ‘MCNN’), it can551

be seen that the corresponding density maps are more accurate with respect to552

the ones obtained using real training images from PETSview3 (the most similar553

scene to PETSview1 and PETSview2) and from the multi-scene ShanghaiTech554

partB.555

To quantitatively analyse MCNN localisation accuracy on each target data556

set, we used the Grid Average Mean absolute Error (GAME) metric [6]. GAME557

subdivides the density map into a grid of 4L cells, computes the MAE values558

within each cell and averages them over the whole grid. The higher the value of559

L, the more precise the corresponding evaluation of localisation accuracy (note560
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Figure 4: Density maps produced on two frames of PETSview1 (top) and PETSview2 (bot-

tom) by MCNN trained on synthetic images (left), single-scene PETSview3 (middle), multi-

scene ShanghaiTech PartB (right). Ground truth (red) and estimated (green) density maps

are superimposed to the original frames. Yellow regions are the ones where the two maps co-

incide, corresponding to perfect localisation of pedestrians. The highest localisation accuracy

is achieved when synthetic training images are used (left). Best viewed in colour.

that, for L = 0, GAME = MAE). Table 7 shows the GAME values for L = 3, 5561

attained on each target data set, using as training data scene-specific synthetic562

images and real multi-scene images (from ShanghaiTech). It can be seen that563

using synthetic training images produced more accurate density maps for some564

target data sets, for L = 3, and for all of them for L = 5. Moreover, the increase565

in GAME from L = 3 to L = 5 is lower for synthetic images. To sum up, the566

above results provide evidence that scene-specific synthetic images can be an567

effective solution also for obtaining more accurate crowd density maps.568

5.4. Ablation study569

As explained in Sect. 4.4, synthetic data sets built for our experiments for each570

target scene were made up of N = 1, 000 images (800 for training and 200 for571

validation) containing from 1 to nmax = 100 pedestrians re-scaled according to572

the PMAP. In this section, we evaluate how the accuracy of the resulting models573
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Table 7: Cross-scene GAME values of MCNN for L = 3, 5, using as training data scene-

specific synthetic images, and real multi-scene images from ShanghaiTech part A (ShTechA)

or part B (ShTechB).

Test set Syntetic ShTechA ShTechB
L = 3 L = 5 L = 3 L = 5 L = 3 L = 5

Mall 27.56 33.8 26.13 35.12 27.04 35.13
UCSD 17.41 24.04 23.59 26.62 24.65 26.97

PETSview1 16.03 23.0 15.99 26.54 14.57 26.81
PETSview2 21.87 25.25 22.18 31.13 25.92 29.79
PETSview3 24.35 32.94 58.55 74.12 22.13 37.32

is affected by the parameters N and nmax, and by pedestrian scale variations574

in training images. To avoid re-training all the considered models, we selected575

a subset of models with the aim of including at least one early regression-based576

model, one CNN-based model trained from scratch, one trained using image577

patches, one trained using whole images, one using fixed kernels and one using578

an adaptive kernel. Accordingly, we selected four methods that fulfil all the579

above requirements: RF, MCNN, DAN and BL+. Effect of training set580

size. To analyse the effect of N we carried out experiments using randomly581

selected subsets of the original 800 synthetic training images for each target582

data set. Fig. 5 shows the MAE values of RF, MCNN, DAN and BL+ for583

N ranging from 200 to 800 with a step of 200. The behaviour of the RMSE584

metric was similar and is not reported due to lack of space. Apart from small585

fluctuations, which are likely caused by the randomness of image selection from586

the original training sets, the MAE values do not show a decreasing trend as N587

increases. We point out that the same behaviour was observed both for models588

obtained by transfer learning (DAN and BL+) and for MCNN, which is trained589

from scratch. This means that even a relatively small synthetic data set can be590

adequate to train a scene-specific regression model, which in turn can speed up591

the training procedure.592

Effect of the maximum number of pedestrians. To analyse this aspect,593

we carried out experiments for nmax ranging from 20 to 100 with a step of 20,594

both in training and in validation images. Considering the size of the original595
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Figure 5: MAE values achieved by RF, MCNN, DAN and BL+ on the five target scenes using

synthetic training data, as a function of training set size. Best viewed in colour.

data sets (N = 1000 images), to guarantee an equal number of images for596

each nmax value, these experiments were carried out using 200 training and 200597

validation images. The results, reported in Fig. 6, show that in this case the598

behaviour of the early regression-based model RF turned out to be different599

from the one of CNN-based models. The MAE values of MCNN and BL+600

showed a slightly decreasing trend as nmax increased, whereas no definite trend601

emerged for DAN. Instead, the MAE value of RF attained a minimum when602

nmax was closest to the maximum number of pedestrians actually present in the603

corresponding target scene. This suggests that early regression-based models604

are more sensitive than CNN-based ones to nmax. Accordingly, the guideline605

we provided in Sect. 3.2 on how to set nmax, i.e., overestimating it in case of606

uncertainty, seems more suited to CNN-based models.607

Effect of pedestrian scale variations. If the PMAP is not accurate608

or the height of the pedestrians in the gallery is not precisely estimated, the609

scale of pedestrians in synthetic training images can be different than in real610

images. To analyse the effect of scale variations, we created four alternative611

synthetic data sets for each target scene, where pedestrian images are re-scaled612
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Figure 6: MAE values achieved by RF, MCNN, DAN and BL+ on the five target scenes using

synthetic training data, as a function of the maximum number of pedestrians in training

images. Best viewed in colour.

by a factor of 0.5 to 2 with respect to the corresponding original PMAP (note613

that a re-scaling factor of 1 corresponds to the original PMAP). The results614

are reported in Fig. 7. Generally, scale variations resulted in a sensible increase615

of MAE. Exceptions can be observed for RF, BL+ and DAN: RF attained a616

lower MAE on PETSview2 when pedestrians were undersized by a factor of 0.75;617

similarly, BL+ attained a lower MAE on Mall and PETSview3 for undersized618

pedestrian images; the performance of DAN on the PETSview1 target scene was619

only slightly affected even by large scale variations. The behaviour of BL+ may620

be due to the fact that the corresponding ground truth density map of training621

images is computed using adaptive kernels whose size is related to the distances622

between pedestrians.623

Effect of gallery size. To analyse the effect of gallery size, we created624

four alternative synthetic data sets for each target scene, where the gallery size625

was set to 1, 5, 20 and 50 (note that the gallery size of 100 corresponds to the626

original synthetic data set). The results, reported in Fig. 8, show that apart627

from few exceptions, the MAE values show a decreasing trend as the gallery size628
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Figure 7: MAE values achieved by RF, MCNN, DAN and BL+ on the five target scenes using

synthetic training data for different rescaling factors of pedestrians with respect to the original

PMAP (from 0.5 to 2). Best viewed in colour.

increases. However, in most cases, in particular involving BL+ for all the target629

scenes, the MAE values decrease only slightly for gallery sizes larger than 20.630

This means that even a relatively small gallery can be adequate. This is likely to631

hold also for larger and dense crowds, characterised by severe overlapping among632

pedestrians, whose heads are often almost the only visible part, and whose size633

(in pixel) is relatively small. Moreover, since the ground truth for CNN-based634

models consists in pedestrians’ head positions, they tend to locate heads in635

testing images (see Fig. 4 as an example) which makes them less sensitive to636

pedestrian appearance, including pose and height.637

6. Conclusions638

We proposed a simple method for building scene-specific crowd counting models,639

focusing on challenging application scenarios where a suitable set of representa-640

tive crowd images from the target camera is not available, not even unlabelled,641

for model training or fine-tuning. In such scenarios, the usual cross-scene so-642

lution based on training images from other scenes (i.e., benchmark data sets)643
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Figure 8: MAE values achieved by RF, MCNN, DAN and BL+ on the five target scenes using

synthetic training data, as a function of the number of pedestrian images in the gallery. Best

viewed in colour.

can significantly reduce the performance of existing models, including state-of-644

the-art CNN-based ones, up to the one of early regression-based methods. Our645

method generates synthetic training images of the target scene characterised by646

the same background, scale and perspective. To this aim, a background image647

of the target scene is required, together with its perspective map and region648

of interest; these three components can be obtained in practice during camera649

set-up, using different techniques, at the cost of a minimal effort from end-users650

(e.g., LEA operators). In particular, no collection nor manual annotation of651

images of the target scene is required. Additionally, the proposed method can652

be applied to any regression-based crowd counting model.653

Experiments carried out on several benchmark data sets provided evidence654

that our solution can improve the effectiveness of existing crowd counting meth-655

ods, especially on target scenes whose background, scale and perspective sig-656

nificantly differ from the ones of training images. This is a relevant result for657

real-world applications such as the one mentioned above, where an “out of the658

box” crowd counting functionality embedded into a video surveillance software659
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suite has to be deployed at several, different target cameras. We showed that660

synthetic training images can also improve the quality of crowd density maps,661

which are estimated by most CNN-based models as an intermediate step, in662

terms of pedestrian localisation; in particular, this can occur even if the corre-663

sponding crowd count accuracy does not improve.664

Possible limitations to the effectiveness of the proposed method can arise665

from an inaccurate estimation of the perspective map, as pointed out in our666

experiments. Robust techniques are therefore recommended to estimate it. A667

further and well-known issue could arise from variations in weather conditions668

and daytime lighting, affecting image illumination and colours. Nevertheless,669

synthetic images can be an effective solution to mitigate this issue: for instance,670

synthetic images simulating lighting and colour variations and specific weather671

conditions can be generated, and different models can be trained for specific672

conditions, which can then be easily selected by end-users depending on the673

particular environmental conditions [30]. Another interesting issue for future674

investigations is to improve the realism of synthetic images using computer675

graphics tools or GANs [11], to transfer the style of the target cameras to676

pedestrian images in the gallery.677
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