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Abstract

Table structure recognition is an essential part for making machines understand

tables. Its main task is to recognize the internal structure of a table. However,

due to the complexity and diversity in their structure and style, it is very dif-

ficult to parse the tabular data into the structured format which machines can

understand, especially for complex tables. In this paper, we introduce Split, Em-

bed and Merge (SEM), an accurate table structure recognizer. SEM is mainly

composed of three parts, splitter, embedder and merger. In the first stage, we

apply the splitter to predict the potential regions of the table row/column sep-

arators, and obtain the fine grid structure of the table. In the second stage,

by taking a full consideration of the textual information in the table, we fuse

the output features for each table grid from both vision and text modalities.

Moreover, we achieve a higher precision in our experiments through providing

additional textual features. Finally, we process the merging of these basic ta-

ble grids in a self-regression manner. The corresponding merging results are

learned through the attention mechanism. In our experiments, SEM achieves

an average F1-Measure of 97.11% on the SciTSR dataset which outperforms

other methods by a large margin. We also won the first place of complex tables

and third place of all tables in Task-B of ICDAR 2021 Competition on Scientific

Literature Parsing. Extensive experiments on other publicly available datasets

further demonstrate the effectiveness of our proposed approach.

Keywords: Table structure recognition, Self-regression, Attention mechanism,

Encoder-decoder
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1. Introduction

In this age of knowledge and information, documents are a very important

source of information for many different cognitive processes such as knowledge

database creation, optical character recognition (OCR), graphic understanding,

document retrieval, etc. Automatically processing the information embedded

in these documents is crucial. Numerous efforts have been made in the past to

automatically extract the relevant information from documents [1, 2, 3]. As a

particular entity, the tabular structure is very commonly encountered in docu-

ments. These tabular structures convey some of the most important information

in a very concise form. Therefore, they are extremely prevalent in domains like

finance, administration, research, and even archival documents. Table structure

recognition (TSR) aims to recognize the table internal structure to the machine

readable data mainly presented in two formats: logical structure and physical

structure [4]. More concretely, logical structure only contains every cell’s row

and column spanning information, while the physical one additionally contains

bounding box coordinates of cells. As a result, table structure recognition as

a precursor to contextual table understanding will be useful in a wide range of

applications [1, 2, 3].

Table structure recognition is a challenging problem due to the complex

structure and high variability in table layouts. A spanning cell is a table cell

that occupies at least two rows or columns. If a table contains spanning cells,

it is called a complex table, as shown in Figure 1. Although significant efforts

have been made in the past to recognize the internal structure of tables through

an automated process [3, 5, 6], most of these methods [3, 7] only focus on simple

tables and are hard to accurately recognize the structure of complex tables. The

spanning cells usually contain more important semantic information than other

simple cells, because they are more likely to be table headers in a table. The

table header is crucial to understand the table. Therefore, more needs to be

done for recognizing the structure of complex tables.

Recently, many works [8, 9, 1] have demonstrated the significant impact of
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Figure 1: An intuitive comparison between simple and complex tables. The example of the

simple table is shown in (a), and (b) is its real structure. The example of the complex table

is shown in (c), and (d) is its real structure. Note that in (d), the cells with the contents of

“System” and “TEDS” occupy multiple rows or multiple columns, so it is a complex table.

using visual and textual representations in a joint framework. However, most

previous methods [3, 6, 10] in table structure recognition only use the spatial

or visual features without considering the textual information of each table cell.

The structures of some tables have a certain ambiguity from the visual appear-

ance, especially for table cells which contain multi-line contents. Therefore, to

recognize the table structure accurately, it is inevitable to take advantage of the

cross-modality nature of visually-rich table images, where visual and textual

information should be jointly modeled. In our work, we design vision module

and text module in our embedder to extract visual features and textual features,

respectively, and achieve a higher recognition accuracy.

Most existing literature [10, 11, 12] on table structure recognition depends

on extraction of meta-information from the pdf document or the OCR models

to extract low-level layout features from the image. Nevertheless, these methods

fail to extend to scanned documents due to the absence of meta-information or

errors made by the OCR, when there is a wide variety in table layouts and text

organization. In our work, we address the problem of table structure recognition

by directly operating over table images with no dependency on meta-information
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or OCR.

In this study, we introduce Split, Embed and Merge (SEM), an accurate table

structure recognizer as shown in Figure 2. Considering that the table is com-

posed of a set of table cells and each table cell is composed of one or more basic

table grids, we deem table grids as the basic processing units in our framework.

Therefore, we design the pipeline of SEM as follows: 1) divide table into basic

table grids 2) merge them to recover the table cells. The final table structure can

be obtained by parsing all table cells. As a consequence, SEM mainly has three

components: splitter, embedder and merger. The splitter, which is actually a

fully convolutional network (FCN) [13], is first applied to predict the fine grid

structure of the table as shown in the upper-right of Figure 2. The embedder as

a feature extractor embeds vision and plain text contained in a table grid into a

feature vector. More specifically, we use the RoIAlign [14] to extract the visual

features from the output of the backbone, and extract textual features using

the off-the-shelf recognizer [15] and the pretrained BERT [16] model. Finally,

the merger which is a Gated Recurrent Unit (GRU) decoder will predict the

gird merged results step by step based on the grid-level features extracted by

the embedder. For each predicted merged result, the attention mechanism built

into the merger scans the entire grid elements and predicts which grids should

be merged at the current step. The proposed method can not only process sim-

ple tables well, but also complex tables. The ambiguity problem of the table

structure recognition based on visual appearance can be alleviated through our

embedder. Moreover, SEM is able to directly operate over table images, which

enhances the applicability of the system (to both PDFs and images).

The main contributions of this paper are as follows:

• We present an accurate table structure recognizer, Split, Embed and

Merge (SEM), to recognize the table structure. The designed merger can

accurately predict table structure based on the fine grid structure of the

table. This proposed new method can not only process simple tables well,

but also complex tables.
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• We demonstrate that jointly modeling the visual and textual information

in the table will further boost model performance. Through visualization

in experiments, the ambiguity problem of the table structure recognition

can be alleviated based on our multimodality features.

• Based on our proposed method, we won the first place of complex ta-

bles and the third place of all tables in Task-B of ICDAR 2021 Compe-

tition on scientific literature parsing. In addition, we also achieved the

results with an average F1-Measure of 97.11% and 95.72% in SciTSR and

SciTSR-COMP datasets, respectively, demonstrating the effectiveness of

our method.

2. Related Work

2.1. Table Structure Recognition

Analyzing tabular data in unstructured documents mainly focuses on three

problems: i) table detection: localizing the bounding boxes of tables in docu-

ments [17, 18], ii) table structure recognition: parsing only the structural (row

and column layout) information of tables [3, 6, 19], and iii) table recognition:

parsing both the structural information and content of table cells [5]. In this

study, we mainly focus on table structure recognition. Most early proposed

methods [20, 21, 22] are based on heuristics. While these methods were primar-

ily dependent on hand-crafted features and heuristics (horizontal and vertical

ruling lines, spacing and geometric analysis).

Due to the rapid development of deep learning and the massive amounts

of tabular data in documents on the Web, many deep learning-based meth-

ods [3, 5, 6, 10, 7], which are robust to the input type (whether being scanned

images or native digital), have also been presented to understand table struc-

tures. These also do not make any assumptions about the layouts, are data-

driven, and are easy to fine-tune across different domains. [3, 7] utilize recently

published insights from semantic segmentation [13] research for identifying rows,

columns, and cell positions within tables to recognize table structures. However,
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[3, 7] do not consider the complex tables containing spanning cells, so that they

cannot handle the structure recognition of complex tables well. GraphTSR [10]

proposes a novel graph neural network for recognizing the table structure in PDF

files and can recognize the structure of complex tables. GraphTSR takes the ta-

ble cells as input which means that it fails to generalize well due to the absence

of meta-information or errors made by the OCR. EDD [5] treats table structure

recognition as a task similar to img2latex [15, 23]. EDD directly generates the

HTML tags that define the structure of the table through an attention-based

structure decoder. [6] presents the TabStructNet for table structure recognition

that combines cell detection and interaction modules to localize the cells and

predict their row and column associations with other detected cells. Compared

with the aforementioned methods, our method SEM not only takes table images

as input, but also can recognize the structure of complex tables well.

2.2. Attention Mechanisms

Given a query element and a set of key elements, an attention function can

adaptively aggregate the key contents according to attention weights, which

measure the compatibility of query-key pairs. The attention mechanisms as an

integral part of models enable neural networks to focus more on relevant ele-

ments of the input than on irrelevant parts. They were first studied in natural

language processing (NLP), where encoder-decoder attention modules were de-

veloped to facilitate neural machine translation [24, 25, 26, 27]. In particular,

self-attention, also called intra-attention, is an attention mechanism relating dif-

ferent positions of a single sequence in order to compute a representation of the

sequence. Self-attention has been used successfully in a variety of tasks includ-

ing reading comprehension, abstractive summarization, and textual entailment.

The landmark work, Transformer [27], presents the transduction model relying

entirely on self-attention to compute representations of its input and output,

and substantially surpasses the performance of past work.

The success of attention modeling in NLP [24, 26, 27] has also led to its

adoption in computer vision such as object detection [28, 29], semantic seg-
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mentation [30, 31], image captioning [32] and text recognition [15, 33], etc.

DETR [28] completes the object detection by adoptting an encoder-decoder ar-

chitecture based on transformers [27] to directly predict a set of object bounding

boxes. In order to capture contextual information, especially in the long range,

[31] proposes the point-wise spatial attention network (PSANet) to aggregate

long-range contextual information in a flexible and adaptive manner. Mask

TextSpotter v2 [33] applies a spatial attentional module for text recognition,

which alleviates the problem of character-level annotations and improves the

performance significantly. In our work, we apply the transformers to capture

the long-range dependencies on grid-level featuers and build attention mecha-

nisms into our merger to predict which gird elements should be merged together

to recover table cells.

2.3. Multimodality

Several joint learning tasks such as image captioning [34, 9], visual ques-

tion answering [35, 36, 8], and document semantic structure extraction [1] have

demonstrated the significant impact of using visual and textual representations

in a joint framework. [9] aligned parts of visual and language modalities through

a common, multimodal embedding, and used the inferred alignments to learn

to generate novel descriptions of image regions. [8] proposed a novel model,

Multimodal Multi-Copy Mesh (M4C), for the TextVQA task based on a mul-

timodal transformer architecture accompanied by a rich representation for text

in images and achieved the state-of-the-art. [1] considered document semantic

structure extraction as a pixel-wise segmentation task, and presented a uni-

fied model, Multimodal Fully Convolutional Network (MFCN). MFCN classi-

fies pixels based not only on their visual appearance, as in the traditional page

segmentation task, but also on the content of underlying text. In our work,

we take a full consideration of the plain text contained in table images, and

design the embedder to extract both visual and textual features at the same

time. The experiments also prove that more accurate results will be obtained

when providing additional textual information on visual clues.
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Figure 2: SEM pipeline The backbone is applied to extract the feature maps from the table

image. The splitter uses the backbone features to predict a set of basic table grids. The

embedder extracts the region features corresponding to each basic table gird. The merger

predicts which grid elements need to be merged to recover the table cells.

3. Method

The overall pipeline of our system is shown in Figure 2. The modified

ResNet-34 [37] with FPN [38] as our backbone is first applied to the input

table image to extract multi-level feature maps. The splitter takes the output

of the backbone as input and predicts the fine grid structure of the table. The

table grid structure is in the form of row and column separators that span the

entire image as shown in the upper-right of Figure 2. The following embedder

extracts the feature representation of each basic table grid. Finally, based on

the grid-level features extracted by the embedder, the merger with the attention

mechanism will predict which grids should be merged step by step. The table

structure can be recovered based on the merged results. In the following subsec-

tions, three main components in our system, namely, the splitter, the embedder

and the merger, will be elaborated.

3.1. Splitter

Different from the method in [5], performing table structure prediction on the

image-level features, we believe that using table grids as the basic processing

units will be more reasonable, so we design the splitter to predict the basic

table grid pattern. Inspired by the segmentation-based methods [39, 40] in
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Figure 3: The illustration of the splitter. The splitter takes a feature map as input and

predicts the potential regions of the table row/column separators, which are the green masks

in the table images. The following post-processing is used to extract the basic table grids

according to the segmentation results from the segmenters.

the field of text detection and the FCN [13] in image segmentation, we refer

to the potential regions of the table row/column separators as the foreground

and design the splitter which contains two separate row/column segmenters to

predict the table row/column separator maps Ŝrow/Ŝcol as shown in Figure 3.

Ŝrow/Ŝcol ∈ RH×W and H ×W is the size of the input image.

Each segmenter is actually the fully convolutional network which contains a

convolutional layer, ReLU and a convolutional layer. As some table row/column

separator regions are quite slender, it is important to ensure segmentation results

have a high resolution. The kernel size and the stride of each convolutional layer

in the segmenter is set to 3×3 and 1, respectively, which keeps the same spatial

resolution of the input and the output. Moreover, we modify the ResNet-34 by

setting the stride of the first convolutional layer with 7× 7 kernel size to 1, and

remove the adjacent pooling layer to guarantee the resolution of the lowest-level

feature map is consistent with the input image. We strongly believe that rich

semantics extracted by deeper layers can help with obtaining more accurate

segmentation results, so we add a top-down path [38] in our backbone to enrich

semantics in feature maps. Finally, the backbone generates a feature pyramid

with four feature maps {P2, P3, P4, P5}, whose final output strides are 1, 2, 4,

8, respectively. The number of channels in the feature maps is D. We take P2

as the input of the splitter.
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The loss function is defined as follows:

Lrow
s =

H∑
j=1

W∑
i=1

L(Ŝ
row

i,j ,S
row
i,j )

H∑
j=1

W∑
i=1

Srow
i,j

(1)

Lcol
s =

H∑
j=1

W∑
i=1

L(Ŝ
col

i,j ,S
col
i,j )

H∑
j=1

W∑
i=1

Scol
i,j

(2)

in which

L(x, y) = −(y log(σ(x)) + (1− y) log(1− σ(x))) (3)

where Srow/Scol denotes the ground-truth of the table row/column separator

map. Srow
i,j /Scol

i,j is 1 if the pixel in ith column and jth row belongs to the table

row/column separator region, otherwise 0. The σ is the sigmoid function.

The goal of our post-processing is to extract table row/column lines from

the table row/column separator map as shown in Figure 3. Specifically, we

first apply the sigmoid function to the predicted segmentation map Ŝrow/Ŝcol

and average them by column/row size to obtain the S̄row/S̄col as illustrated in

Eq. 4 5, where S̄row ∈ RH×1 and S̄col ∈ R1×W . Then we binarize the S̄row/S̄col

into S̃row/S̃col, S̃
row

j /S̃
col

i = 1 indicating this row/column is a potential table

line. For the block that is equal to 1 in S̃row/S̃col, we select the row/column

with the maximum value of the corresponding block in S̄row/S̄col as the final

table row/column line.

S̄
row
j =

1

W

W∑
i

σ
(

Ŝ
row

i,j

)
(4)

S̄
col
i =

1

H

H∑
j

σ
(

Ŝ
col

i,j

)
(5)

We can easily obtain a set of bounding boxes G of table grids from the table

row/column lines. G ∈ R(M×N)×4, where M , N are the number of rows and

columns occupied by the table grid structure, respectively. More specifically,

each bounding box can be precisely defined by (x1, y1, x2, y2), where (x1, y1)

corresponds to the position of the upper left in the bounding box, and (x2, y2)

represents the position of the lower right.
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3.2. Embedder

Figure 4: The illustration of the embedder. It is composed of vision module (VM), text

module (TM) and blender module (BM). The embedder extracts the gird-level visual and

textual features from VM and TM, respectively. Finally, the BM fuses the both features.

The embedder aims to extract the feature representations of each grid. [9, 8]

have demonstrated the effectiveness of taking advantage of the multi-modality.

Different from the previous table structure recognition methods [5, 6, 19] which

mostly recover the table structure based on the visual modality, we fuse the

output features for each basic table grid from both visual and textual modalities.

Therefore, we design the vision module and text module in the embedder to

extract visual features Ev and textual features Et, respectively, and fuse both

features to produce the final grid-level features E through the blender module.

Ev ∈ R(M×N)×D, Et ∈ R(M×N)×D and E ∈ R(M×N)×D, where D represents

the number of feature channels.

As shown in Figure 4, the vision module takes the image-level feature map

P2 from the FPN and the well-divided table grids G obtained from the splitter

as input. It applies the RoIAlign [14] to pool a fixed size R×R feature map Êv
i

for each table grid.

Êv
i = RoIAlignR×R(P2,Gi) ∀i = {1, ...,M ×N} (6)
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where Êv
i ∈ RR×R×D. The final visual features Ev

i are obtained according to:

Ev
i = FFN(Êv

i ) ∀i = {1, ...,M ×N} (7)

in which

FFN(x) = max(0,xW1 + b1)W2 + b2 (8)

where FFN [27] is actually two linear transformations with a ReLU activation

in between. x ∈ Rdin , W1 ∈ Rdin×dff , b1 ∈ Rdff , W2 ∈ Rdff×dout , b2 ∈ Rdout .

The dimensionality of input and output is din and dout, and the inner-layer has

dimensionality dff. Here we set dff = dout in default.

The table image is both visually-rich and textual-rich, so it is necessary to

make full use of the textual information in the table to achieve a more accurate

table structure recognizer. As shown in the text module of Figure 4, we apply

the off-the-shelf recognizer [15] to obtain a sequence of M ×N contents for all

table grids, and embed contents into corresponding feature vectors Êt using a

pretrained BERT model [16]. Êt ∈ R(M×N)×B , where B is the feature vector

dimension of the BERT. It’s worth noting that both the recognizer and the

BERT do not update the parameters during the training phase. The final textual

features Et are obtained by applying FFN again to fine-tune the extracted

textual features Êt to make it more suitable for our network.

Et
i = FFN(Êt

i) ∀i = {1, ...,M ×N} (9)

The blender module in Figure 4 is to fuse the visual features Ev and textual

features Et, and its specific process is as follows:

1) For each basic table grid, we first obtain the intermediate results Êi

according to :

Êi = FFN(

 Ev
i

Et
i

) ∀i ∈ [1, ...,M ×N ] (10)

where [·] is the concatenation operation. The input and output dimensionality

of the FFN is 2D and D, respectively.
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2) So far, the features of each basic table grid are still independent of

each other, especially for textual features. Therefore, we introduce the trans-

former [27] to capture long-range dependencies on table grid elements. We take

the features Ê as query, key and value which are required by the transformer.

The output of the transformer as final grid-level features E have a global recep-

tive field.

Figure 5: The illustration of the merger. The yellow masks in lower part indicate which table

grid elements should be merged in each time step.

3.3. Merger

The merger is an RNN that takes the grid-level features E as input and

produces a sequence of merged maps M as shown in Figure 5. Here we choose

the Gated Recurrent Unit (GRU) [41], an improved version of simple RNN.

M = {m1,m2, ...,mC} (11)

where C is the length of a predicted sequence. Each merged map mt is a

(M ×N)-dimension vector, the same size as the element of E, and the value of

each grid element mti is 1 or 0, indicating whether the ith grid element belongs

to the tth cell or not. The cells that span multiple rows or columns can be

recovered according to M.
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Figure 6: The illustration of the attention mechanism. The prediction of current hidden state

ĥt and the grid-level features E is used as query and key, respectively.

Inspired by the successful applications of attention mechanism in img2latex [15,

42], text recognition [43, 44], machine translation [27], etc., we build the atten-

tion mechanism into our merger and achieve promising results. For the merged

map mt decoding, we compute the prediction of current hidden state ĥt from

previous context vector ct−1 and its hidden state ht−1:

ĥt = GRU(ct−1,ht−1) (12)

Then we employ an attention mechanism with ĥt as the query and grid-level

features E as both key and the value:

mt = fatt(E, ĥt) (13)

ct =
mt

‖mt‖1
E (14)

where || · ||1 is the vector 1-norm. As shown in Figure 6, we design fatt function
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as follows:

F = Q ∗
∑t−1

l=1
ml (15)

m̂ti = νT tanh(Wattĥt + Uattei + UF fi) (16)

mti = Binarize(m̂ti) (17)

in which

Binarize(x) =

1 if σ(x) > 0.5

0 otherwise

(18)

where ∗ denotes a convolution layer,
∑t−1

l=1 ml denotes the sum of past deter-

mined grids, m̂ti denotes the output energy, fi denotes the element of F, which

is used to help append the history information into standard attention mech-

anism. It’s worth noting that the attention mechanism is completed on the

grid-level features. For each cell, it is quite clear which grid elements belong to

it. Therefore, unlike the previous methods [15, 23] using the softmax to obtain

the attention probability, we use the Binarize Eq. 18 to calculate. Moreover, we

find that the model is difficult to converge when using the softmax.

With the context vector ct, we compute the current hidden state:

ht = GRU(ct, ĥt) (19)

The training loss of the merger is defined as follows:

Lm =
∑

t

∑
i

L(m̂ti, yti)

C‖yt‖1
(20)

where function L has been defined in Eq. 3, C is the length of a predicted

sequence and yti denotes the ground-truth of cell’s grid elements. yti is 1 if the

ith grid element belong to the cell of time step t, otherwise 0.

3.4. Post-Processing

Through the merger, we can obtain the spanning of each table cell along the

rows and columns. By combining the spanning information and the prediction
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results of the splitter, which contains the table row/column lines information,

the bounding box coordinates of each table cell can be obtained. We match the

text content with position to the table cells according to the IOU. The output

for every table image finally contains coordinates of predicted cell bounding

boxes along with cell spanning information and its content.

4. Experiment

4.1. Dataset

We use the publicly available table structure datasets — SciTSR [10], SciTSR-

COMP [10] and PubTabNet [5] to evaluate the effectiveness of our model. Statis-

tics of these datasets are listed in Table 1.

Table 1: Statistics of the datasets used for our experiments.

Dataset SciTSR SciTSR-COMP PubTabNet

Train 12k - 500k

Validation - - 9k

Test 3k 716 9k

1) SciTSR [10] is a large-scale table structure recognition dataset, which

contains 15,000 tables in PDF format as well as their corresponding high quality

structure labels obtained from LaTeX source files. SciTSR splits 12, 000 for

training and 3, 000 for testing. Furthermore, to reflect the model’s ability of

recognizing complex tables, [10] extracts all the 716 complex tables from the

test set as a test subset, called SciTSR-COMP. It’s worth noting that SciTSR

provides the text contents with positions for each table image, but not with

being aligned with the table cells. However, in our model, we need the text

position in each table cell to generate the labels of splitter. Therefore, we apply

the data preprocessing 1 to align the text information with the table cells.

1https://github.com/ZZR8066/SciTSR
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2) PubTabNet [5] contains over 500k training samples and 9k validation

samples. PubTabNet [5] annotates each table image with information about

both the structure of table and the text content with position of each non-

empty table cell. Moreover, nearly half of them are complex tables which have

spanning cells in PubTabNet.

4.2. Label Generation

Label of Splitter We use the annotation, namely the text content with

position being aligned to each table cell, to generate the ground-truth of the

table row/column separator map Srow/Scol for the splitter. The Srow/Scol is

designed to maximize the size of the separator regions without intersecting any

non-spanning cell content, as shown in Figure 7. Different from traditional

notion of cell separators, which for many tables are thin lines with only a few

pixels. Predicting small regions is more difficult than predicting large regions.

In the case of unlined tables, the exact location of the cell separator is ill-defined.

Label of Merger Since we obtain the label of the splitter, we could divide

the table into a set of basic table grids as shown in the upper-right of Figure 2.

The original table structure annotation can provide which grids each table cell

occupies in the basic table grid pattern. We arrange the table cells in a top-

to-bottom and left-to-right way and use the grids occupied by each cell as the

prediction target for a certain time step of the merger.

Figure 7: Example of the ground-truth of table row/column separator map for the splitter.

The red mask is the table row/column separator region.
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4.3. Metric

We use both F1-Measure [45] and Tree-Edit-Distance-based Similarity (TEDS)

metric [5], which are commonly adopted in table structure recognition literature

and competitions, to evaluate the performance of our model for recognition of

the table structure.

In order to use the F1-Measure, the adjacency relationships among the table

cells need to be detected. F1-Measure measures the percentage of correctly

detected pairs of adjacent cells, where both cells are segmented correctly and

identified as neighbors.

The TEDS metric was recently proposed in [5]. While using the TEDS

metric, we need to present tables as a tree structure in the HTML format.

Finally, TEDS between two trees is computed as:

TEDS(Ta, Tb) = 1− EditDist(Ta, Tb)

max(|Ta|, |Tb|)
(21)

where Ta and Tb are the tree structure of tables in the HTML formats. EditDist

represents the tree-edit distance [46], and |T | is the number of nodes in T .

4.4. Implementation Details

The modified ResNet-34 [37] as our backbone is pre-trained on ImageNet [47].

The number of FPN channels is set to D = 256. The pool size R×R of RoIAlign

in vision module is set to 3 × 3. The recognizer [15] is pre-trained on 35M ta-

ble cell images, which are cropped from 500k table images in the PubTabNet

dataset [5], and the success rate of word predictions per table cell reaches 94.1%.

The BERT [16] we used is from the transformers package 2. The hidden state

dimension in the merger is set to 256.

The training objective of our model is to minimize the segmentation loss

(Eq. 1, Eq. 2) and the cell merging loss (Eq. 20). The objective function for

optimization is shown as follows:

O = λ1Lrow
s + λ2Lcol

s + λ3Lm (22)

2https://github.com/huggingface/transformers
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In our experiments, we set λ1 = λ2 = λ3 = 1. We employ the ADADELTA

algorithm [48] for optimization, with the following hyper parameters: β1 = 0.9,

β2 = 0.999 and ε = 10−9. We set the learning rate using the cosine annealing

schedule [49] as follows:

ηt = ηmin +
1

2
(ηmax − ηmin)(1 + cos(

Tcur
Tmax

π)) (23)

where ηt is the updated learning rate. ηmin and ηmax are the minimum learning

rate and the initial learning rate, respectively. Tcur and Tmax are the current

number of iterations and the maximum number of iterations, respectively. Here

we set ηmin = 10−6 and ηmax = 10−4.

Our model SEM is trained and evaluated with table images in original size.

We use the NVIDIA TESLA V100 GPU with 32GB RAM memory for our

experiments and the batch-size of 8. The whole framework was implemented

using PyTorch.

4.5. Visualization

In this section, we visualize the segmentation results of the spliter and show

how the merger recovers the table cells from the table grid elements through

attention visualization.

Visualization of Splitter We refer the potential regions of the table row

(column) separators as the foreground as shown in Figure 7, and design the

splitter which is actually a fully convolutional network (FCN) to predict the

foreground in table images. As shown in the first two rows of Figure 8, we

can obtain accurate segmentation results through the splitter. The fine grid

structure of the table can be obtained by post-processing as shown in the third

row of Figure 8. It is worth noting that the example table in Figure 8 (a) is the

simple table, while others are complex tables. We can find that the structure

of the simple table has been recovered correctly through the splitter from the

third row of Figure 8. However, the structure of complex tables is not complete

and still needs to be processed. Therefore, we design the following embedder
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Figure 8: The visualization results from our system on table images of the SciTSR dataset.

First Row: the green masks are the segmentation results of the row segmenter in the splitter.

Second Row: the green masks are the segmentation results of the column segmenter in the

splitter. Third Row: the blue lines indicate the boundaries of the basic table grids which are

extracted through post-processing from both row and column segmentation results. Fourth

Row: the blue lines indicate the boundaries of the table cells which are the merged results

from the merger.

and merger to recover the structure of complex tables based on the outputs of

the splitter.

Visualization of Merger In order to recover the table cells, we build the

attention mechanism into our merger to predict which grid elements should be

merged step by step. The merged result in each step is a binary map, and the

table cell can be recovered by merging the elements that are 1 in the binary

map. Taking the table of Figure 8 (b) as a example, the attention mechanism

is visualized in Figure 9. The cell with the content of “Number of modules”

in Figure 9 occupies the first row of basic table grids. Our merger correctly

predicts the structure of this cell through the attention mechanism as shown in

the first time step of Figure 9.
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Figure 9: The visualization of the attention mechanism in the merger on the table images of

the SciTSR dataset. The blue lines are the prediction of table grid structure from the splitter.

The green mask in the table image denotes which grid elements should be merged for each

time step.

4.6. Ablation Study

In order to investigate the effect of each component, we conduct ablation

experiments through several designed systems as shown in Table 2. The model

is not modified except the component being tested.

Table 2: Comparison among systems from T1 to T4. Attributes for comparison include: 1)

employing the splitter; 2) using the vision module (VM) in the embedder; 3) using the text

module (TM) in the embedder; 4) employing the merger.

System Splitter
Embedder

Merger
VM TM

T1 X - - -

T2 X - X X

T3 X X - X

T4 X X X X

The Number of Transformer Layers We measure the performance of

T1-T4 with different numbers of transformer layers in the embedder. We try

from 0 to 3 as shown in Figure 10. When Num = 0 in Figure 10, it means the

transformer layer is removed. In the T3 configuration, only the vision module
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(VM) in the embedder is used to extract the visiual features to represent each

grid element. Also there is not much gap whether the transformer layer is

added or not. Through a series of convolutional layers, the backbone features

P2 already has a certain receptive field. Therefore, it is not significant to add

the transformer layers while the VM has pooled each grid features from P2. It

is worth noting that when the Num is greater than 0, the performance of the

designed system T2 outperforms the model without the transformer layer. This

is because the transformer layer here can capture the semantical dependencies

among all table grid elements. As our final system, T4 achieves the best result

when Num = 1, so we set Num = 1 in subsequent experiments by default.

Figure 10: Performance by varying number of transformer layers in T2, T3, T4 on the SciTSR

test dataset.

The Effectiveness of the Merger In Table 3, we show the F1-Measure of

systems T1-T4 on SciTSR and SciTSR-COMP datasets. Almost 76.3% of the

tables are simple tables in SciTSR test dataset, and all are complex tables in the

SciTSR-COMP dataset. The performance gap between T1 and other systems

(T2-T4) is remarkable on the SciTSR dataset, but the gain is more significant

on the SciTSR-COMP dataset, e.g., almost 6% in F1-Measure from T1 to T4.

This is because all table cells have only one table grid in the simple table, which

means that the table grid structure is the table structure. However there are
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Table 3: Comparison of F1-Measure among different systems in Table 2 on SciTSR and

SciTSR-COMP datasets.

System
SciTSR SciTSR-COMP

FPS
P R F1 P R F1

T1 96.69 94.15 95.40 93.81 96.06 89.77 16.47

T2 96.63 94.36 95.48 94.15 88.04 90.99 2.00

T3 97.40 95.97 96.68 96.52 93.82 95.15 3.65

T4 97.70 96.52 97.11 96.80 94.67 95.72 1.94

some table cells have more than one table grids in the complex table. Therefore,

the designed system T1 can only process simple tables well by using splitter to

predict the fine grid structure of table, and T2-T4 have the ability to recover

the structure of the complex tables through the merger. The comparison of T1

with T2, T3, T4 on the SciTSR-COMP dataset demonstrates the effectiveness

of the merger.

Vision and Language Modalities In order to evaluate the effect of each

modality, we design the systems T2, T3, T4 as shown in Table 2. Each system

uses vision module (VM), text module (TM) or both in the embedder. The

experiment results on SciTSR and SciTSR-COMP are shown in Table 3. Com-

pared with T4, systems T2 and T3 that only use TM or VM are sub-optimal.

When both TM and VM are used, the system (T4) performance reaches the

best. As shown in Figure 11, although the predictions of table grid structure

from the splitter in both T3 and T4 are the same, the T3 system which only

uses VM is more unstable comparing with T4 which uses both VM and TM in

the embedder.

The Efficiency of Each Component In order to investigate the efficiency

of each component, we compare the frames per second (FPS) of T1-T4 systems

as shown in Table 3. From T1 to T2-T4 systems, the speed of the systems is

much slower. This is because as the number of table cells increases, the decoding

steps of the merger increases. The reason why T2 and T4 are slower than T3
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is that the former uses a recognizer to recognize the content in the basic table

grid and applies the BERT to extract the corresponding textual features.

Figure 11: The comparison results between designed system T3 and T4. The fisrt column

is the results on the SciTSR dataset. The second column is the results on the PubTabNet

dataset. First Row: the predictions of the table grid structure from the splitter. Second

Row: the predictions of the table structure from the T3 which only uses the vision module

in the embedder. Third Row: the predictions of the table structure from the T4 which uses

both the vision module and text module in the embedder. Note that the predictions of table

grid structure in systems T3 and T4 are the same, and the predictions of table structure in the

third row are all totally correct. The red dash boxes denote the different predictions between

T3 and T4.

4.7. Comparison with State-of-the-art Methods

We compare our method with other state-of-the-art methods on both SciTSR

and SciTSR-COMP datasets. The results are shown in Table 4. Our model is
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Table 4: A performance comparison between our method and other state-of-the-art methods

on the SciTSR and SciTSR-COMP datasets.

Method
SciTSR SciTSR-COMP

FPS
P R F1 P R F1

Adobe [3] 82.9 79.6 81.2 79.6 73.7 76.5 -

TabbyPDF [50] 91.4 91.0 91.2 86.9 84.1 85.5 -

DeepDeSRT [3] 89.8 89.7 89.7 81.1 81.3 81.2 20.88

GraphTSR [10] 93.6 93.1 93.4 94.3 92.5 93.4 -

TabStruct-Net [6] 92.7 91.3 92.0 90.9 88.2 89.5 0.77

T1 96.69 94.15 95.40 93.81 96.06 89.77 16.47

SEM 97.70 96.52 97.11 96.80 94.67 95.72 1.94

trained and tested with default configuration. Comparing with other meth-

ods [10, 3, 6], our method achieves state-of-the-art. Similar to DeepDeSRT [3],

T1 is actually a segmentation model. We take full consideration of the extremely

unbalanced number of foreground and background pixels in the segmentation

masks and design a more reasonable segmentation loss to penalize the model dur-

ing training in Eq. 1 2, which makes the performance of T1 significantly better

than DeepDeSRT. It is worth noting that GraphTSR [10] needs the text posi-

tion in table cells during both the training and testing stage, while our method

only takes table images as input during inference. Although the comparison

between GraphTSR and our method is not fair, our method still outperforms

it to a certain extend. The TabStruct-Net [6] applies a detection network [14]

to detect individual cells in a table image, however, it fails to capture empty

cells accurately due to the absence of cell content. Our SEM obtains the bound-

ing boxes of cells based on table lines detection, which makes the prediction of

empty cells less difficult. In addition, the embedder makes full use of the visual

and textual modalities, and the merger enables the model to process complex

tables, which ultimately makes our method achieve state-of-the-art. Some table

structure recognition results of our and other methods are shown in Figure 12.
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Figure 12: Some structure recognition results of our and other methods on table images of

the SciTSR dataset. The blue lines denote the prediction of table structure. First Row:

the results of the DeepDeSRT. Second Row: the intermediate cell detection results of the

TabStruct-Net. Third Row: the results of our method. The predictions of table structure

in the third row are all correct.

4.8. ICDAR 2021 Competition on Scientific Literature Parsing, Task-B

ICDAR 2021 Competition on Scientific Literature Parsing, Task-B 3 is or-

ganized by the IBM company in conjunction with IEEE ICDAR 2021. This

3https://aieval.draco.res.ibm.com/challenge/40/overview
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competition aims to drive the advances in table recognition. Different from the

table structure recognition task, we need to recognize not only the structure of

the table, but also the content within each cell. Through our method, we can

not only predict the structure of the table, but also obtain the position of each

cell. Inspired by [51, 52, 33, 53], we use the RoIAlign to pool the features of

table cells and append an attention-based recognizer [15] to recognize the con-

tent in table cells. Note that the modified models are trained in an end-to-end

manner. The single model results of our methods are shown in Table 5.

Table 5: The performance of table recognition on PubTabNet validation set.

Method
TEDS

FPS
Simple Complex All

T3 + Recognizer 94.7 92.1 93.4 1.81

T4 + Recognizer 94.8 92.5 93.7 1.23

Based on the configuration of T3 with a recognizer, we divide our model

into three sub-networks, splitter, merger and newly added recognizer, adopting

multi-model fusion for each sub-network. Finally, we combine the training set

with the validation set for training. The results of the competition are shown

in Table 6. Our team is named USTC-NELSLIP, and we won the first place of

complex tables and third place of all tables.

4.9. Error Analysis

In this section, we show some incorrect table structure recognition results of

the SEM as shown in Figure 13. Our splitter occasionally misses or overcuts the

basic table grids when the blank space between cells is too large. In the training

phase, the merger predicts the spanning information of cells on the correct basic

table grid pattern. Therefore, in the inference phase, once the splitter predicts

incorrect results, it is difficult for the merger to fix them.
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Table 6: Table recognition competition results on PubTabNet final evaluation data set.

Team Name
TEDS

Simple Complex All

Davar-Lab-OCR 97.88 94.78 96.36

VCGroup 97.90 94.68 96.32

USTC-NELSLIP 97.60 94.89 96.27

YG 97.38 94.79 96.11

DBJ 97.39 93.87 95.66

TAL 97.30 93.93 95.65

PaodingAI 97.35 93.79 95.61

anyone 96.95 93.43 95.23

LTIAYN 97.18 92.40 94.84

EDD 91.20 85.40 88.30

Figure 13: Some incorrect table structure recognition results of our method. First Column:

the row segmentation results of the splitter. Second Column: the column segmentation

results of the splitter. Third Column: the predictions of the table grid structure from the

splitter. Fourth Column: the final prediction results of our method. The red dash boxes

denote the incorrect prediction results.
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5. Conclusion

In this study, we proposed a new method for the table structure recognition,

SEM. The proposed method takes images as input with no dependency on meta-

information or OCR. It mainly contains three components including splitter,

embedder and merger. We first split table images into a set of basic table grids.

Then the embedder is used to extract the feature representations of each grid

element. Finally, we use the merger with the attention mechanism to predict

which grid elements should be merged to recover the table cells. The final table

structure can be obtained by parsing all table cells. The method can not only

process simple tables well, but also the complex tables. We demonstrate through

visualization and experiment results that the attention mechanism built in the

merger performs well in predicting which grid elements belong to each cell. To

our best knowledge, this is the first time to take a full consideration of the textual

information in table images and design the embedder to extract both the visual

and the textual features. The ablation studies prove the effectiveness of our

embedder. Our method achieves state-of-the-art on both SciTSR and SciTSR-

COMP datasets. Based on our method, we won the first place of complex tables

and third place of all tables in Task-B of ICDAR 2021 Competition on Scientific

Literature Parsing.
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