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Abstract

Existing methods can generate a high dynamic range (HDR) image from a
single low dynamic range (LDR) image using convolutional neural networks
(CNNs). However, they are too cumbersome to run on mobile devices with
limited computational resources. In this work, we design a lightweight CNN,
namely LiTMNet which takes a single LDR image as input and recovers the
lost information in its saturated regions to reconstruct an HDR image. To
avoid trading off the reconstruction quality for efficiency, LiTMNet does not
only adapt a lightweight encoder for efficient feature extraction, but also con-
tains newly designed upsampling blocks in the decoder to alleviate artifacts
and further accelerate the reconstruction. The final HDR image is produced
by nonlinearly blending the network prediction and the original LDR image.
Qualitative and quantitative comparisons demonstrate that LiTMNet produces
HDR images of high quality comparable with the current state of the art and
is 38× faster as tested on a mobile device. Please refer to the supplementary
video for additional visual results.

Keywords: HDR image reconstruction, lightweight CNN, inverse tone
mapping

1. Introduction

Standard digital cameras quintessentially fail to store all dynamic ranges of
a scene in challenging lighting conditions such as glare, improper contrast and
poorly distributed light. Consequently, the captured images often contain un-
favorably saturated regions. Thus, the demand for capturing more dynamic
ranges has driven the ongoing development of high dynamic range (HDR)
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imaging techniques. A traditional approach to HDR image reconstruction is
to take a sequence of low dynamic range (LDR) images at different exposure
levels (known as bracketed exposures) and fuse them into a single HDR image
[1], [2] or a single LDR image with improved appearance [3], [4]. An alter-
native [5], [6], [7], commonly referred to as inverse tone-mapping operators
(iTMOs), is to reconstruct an HDR image from a single exposed LDR image by
expanding the dynamic range of the LDR image.

In general, traditional approaches can produce more visually appealing im-
ages than iTMOs when the sequence of LDR images are perfectly aligned.
However, most images are captured at different exposures, and ghosting ar-
tifacts may also arise due to moving contents or camera shake [8]. This is a
serious limitation as cameras are often hand-held and real scenes often contain
moving objects. On the contrary, iTMOs based on a single LDR image do not
have the problems of alignment and ghosting artifacts.

In recent years, a number of CNN-based inverse tone-mapping methods
[9], [5], [6] have produced convincing HDR results from a single LDR image.
However, they incur a heavy computational cost as the CNNs employed in
these methods contain computationally expensive components such as the 3D
convolutional layers in [9], the VGG16 encoder in [5], and the full resolution
branch in [6]. Hence, using such methods is commonly not a serious issue on
high-end devices, but could be arduous when deployed on a mobile device,
which nowadays is the favorite hand-held camera equipment. However, de-
signing a good iTMO that enables HDR reconstruction on mobile devices is
challenging, which should 1) produce results of high quality, as today mobile
phone users become more and more picky about image quality, 2) obtain high
computational efficiency so that the method can be easily deployed on mo-
bile devices and provide a pleasurable user experience when running it, and
3) have good generalization ability to various images, so that it can be widely
used by individuals with diverse backgrounds.

Inspired by the success of lightweight CNNs [10], [11], [12], it is intuitive
to substitute some inefficient component in a state-of-the-art HDR reconstruc-
tion network for a lightweight one with similar functionality for acceleration
purpose. However, such a replacement is not straightforward and often error-
prone. For instance, we found that in the state-of-the-art method HDRCNN
[5], directly replacing the VGG16 encoder with MobileNetV2 [10] which both
extract deep features from the input LDR image caused a significant degrada-
tion of the reconstruction quality of the HDR image. Technically, it is difficult
to avoid trading off performance for efficiency in HDR image reconstruction.

To address such a dilemma, this paper proposes a novel lightweight CNN,
named as LiTMNet, short for Lightweight Inverse Tone Mapping Network.
The LiTMNet is 38x faster than the HDRCNN on a mobile phone while it can
reconstruct HDR images of comparably high quality. Specifically, the LiTMNet
takes a single exposed LDR image as input, and aims to estimate and recover
the lost information in the highlighted regions. Such a strategy is motivated by
two reasons. First, perceptual experiments [13] have shown that the perceived
quality of an image degrades substantially with over-exposure, which means
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that restoring the information of highlight is of vital importance for improving
visual quality. Second, to train a CNN to learn an end-to-end mapping from an
8-bit LDR image to a 32-bit HDR image directly is quite challenging and may
lead to the difficulty of convergence. By contrast, only predicting the data of
over-exposure regions enables the CNN to take shorter time for a certain level
of convergence.

The LiTMNet is composed of three components: encoder, skip-connections
and decoder. It is trained with a hybrid loss, measuring the differences between
images at both pixel and feature levels. The encoder first extracts a multi-level
feature representation of the input image. Then, the decoder makes full use of
these features to reconstruct the details in the saturated regions. We propose
a new upsampling block for the decoder to improve the quality of reconstruc-
tion by mitigating some artifacts. To avoid blurring effects, extracted features
from the contracting path are combined with the upsampled features by skip-
connections.

In summary, the main contributions of this work are:
• A novel lightweight CNN that is 38x faster than the state-of-the-art method

[5] on mobile devices while producing comparable results.
• A new computationally efficient upsampling block that largely fixes the

reconstruction artifacts.
• A publicly available android application based on LiTMNet, offering end-

to-end and efficient HDR image reconstruction.

2. Related Work

Many methods for reconstructing HDR images from one or multiple LDR
images have been presented. We categorize them into two groups based on
their underlying rationales.

2.1. Exposure Bracketing

Exposure bracketing is a widely known technique for reconstructing HDR
images. It takes multiple LDR images with different exposures and then com-
bines them into a single HDR image [1] (typically followed by tone mapping
for display) or an enhanced LDR image by exposure fusion [3]. Assuming that
cameras are mounted on tripods and thus scenes are static, such methods gen-
erally produce high quality results indeed. However, such an assumption is
weak in real-world applications and the ghosting problem would degrade the
final result if it no longer holds.

Over the past few years, researchers have made a great effort in handling
dynamic scenes while reducing ghosting artifacts [14], [15]. However, these
methods usually rely on the robust alignment of LDR images, which remains
an arduous problem. Thus, instead of designing a complicate but possibly brit-
tle de-ghosting algorithm, we use a single LDR image to infer the HDR image
and remove the ghosting artifacts thoroughly. This strategy works owing to
the fact that the ghosting problem is essentially caused by the misalignment
between multiple LDR images.
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2.2. Inverse Tone Mapping

Inverse tone mapping is an ill-posed problem as information is lost due to
the saturation of camera sensor. Since HDR pixels have much wider varia-
tions than LDR pixels, inferring HDR pixels from LDR pixels through inverse
tone mapping is a challenging task. In the early stage, Landis [16] expanded
all pixels in an LDR image based on power functions. Rempel et al. [17] first
processed the input with an inverse gamma curve and noise filtering, then
conducted brightness enhancement of saturated regions to generate the HDR
image. Akyüz et al. [18] boosted the dynamic range of an LDR image linearly
for HDR capable displays. Masia et al. [13] found that a simple iTMO based on
gamma expansion is less likely to introduce artifacts, and proposed a method
to automatically set a gamma value for enhancing visible details. Although
these methods were relatively robust to various LDR images, they cannot re-
trieve the lost information from the LDR images.

Recently, many CNNs were proposed to tackle domain-specific, ill-posed
problems in image processing and have achieved promising results, including
denoising [19], super-resolution [20], colorization [21] and depth estimation
[22], etc. Several iTMOs have been constructed based on CNNs due to their
powerful learning capacity. Unlike the previous iTMOs, these CNN-based
methods are designed to reproduce the missing information. Endo et al. [9]
made an attempt to infer a sequence of exposure-bracketed LDR images from
a single LDR input, and then these synthetic images were fused into an HDR
image. To learn the relative changes of pixel values, they used 3D deconvolu-
tional layers, which are computationally expensive even on a high-end desk-
top computer. By assuming that the solar azimuth is the same in all images,
Zhang and Lalonde [23] proposed an HDR reconstruction method specifically
designed to recover the extremely high dynamic range close to the sunlight
while the resolutions of HDR outputs were limited to 128×64 pixels.

2.3. Difference to Closely Related Work

As the proposed LiTMNet relies only on a single LDR image to reconstruct
an HDR image, it fundamentally differs from the methods that require multiple
LDR images for reconstruction, such as [24], [25] and [26].

Although LiTMNet is closely related to HDRCNN [5] based on a hybrid dy-
namic range auto-encoder as well, both the encoder and the decoder of LiTM-
Net are significantly different from those of HDRCNN: 1) The encoder layers
in HDRCNN based on VGG16 are mostly replaced with MobileNetV2 [10] in
LiTMNet, leading to a considerable improvement of efficiency; 2) However,
since simply replacing the VGG16 encoder with MobileNetV2 leads to a poor
HDR reconstruction, LiTMNet uses a different decoder with a specifically de-
signed skip-connection scheme and a new upsampling block to mitigate the
reconstruction artifacts.

Compared with some latest methods such as FHDR [27] and SingleHDR
[28], the network architecture of LiTMNet is much lighter as the former re-
peatedly uses feedback blocks which are dense and the latter consists of four
sub-networks trained jointly by combining six loss functions.
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Figure 1: Workflow of the proposed method. Log denotes the logarithmic operation. The inverse
camera curve is implemented using f (x) = x2. BF denotes the blending function defined in Eq. (1).
The images annotated as HDR, Prediction and Reconstruction respectively are shown with low
exposure for display purpose.

3. Method

In this section, to make this paper self-contained, we first provide the for-
mulation of the problem, followed by an overview of the proposed pipeline.
Then, we present the core component of our method, the LiTMNet, where the
newly designed upsampling block vital for boosting the reconstruction quality
is elaborated.

3.1. Problem Formulation

Given an LDR image of single exposure, our objective is to reconstruct the
lost information in the saturated regions. To produce HDR images, HDRCNN
[5] combines the reconstructed pixels with linearized LDR inputs via a blend-
ing function with a mask image which highlights the saturated regions and
keeps the unsaturated regions unmodified. It is a triangle weighting scheme in
which the weight αi is defined as

αi =
max(0, maxc(Li,c)− τ)

1 − τ
(1)

where τ is set to 0.95 in [5] and Li,c denotes the LDR input pixel with spatial
index i and channel c.

Following such an objective, an intuitive way to attain a more efficient net-
work is to replace some layers of the HDRCNN with lightweight versions
while technically, such a replacement might not be trivial. We thus propose
a method based on such a blending strategy where the core component is the
efficient LiTMNet for predicting the pixels in the saturated regions.
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3.2. Workflow of the Proposed Method

Fig. 1 illustrates the overview of our method in both training and deploy-
ment modes. In the training mode, Eq. (1) is applied to the LDR input to create
Mask1. Guided by such a mask, the LiTMNet desirably focuses on the recon-
struction of the lost information in the saturated regions. The loss function
compares the output of the LiTMNet to the ground truth HDR image in the
log domain. This is important as it weakens the influence of extremely large
pixel values of the HDR image and thus stabilizes the gradients in the training
process. It is worth mentioning that large luminance values will not signifi-
cantly affect the training of the network. This is because as shown in Fig. 1,
the loss is calculated after the log operation which effectively suppresses large
luminance values. The linearization applied onto the input image makes the
network focus on the reconstruction of the over-exposed image region so that
it does not need to carry out domain transform with extra cost. Both lineariza-
tion and log transformation are simple but widely used schemes to optimize
the distribution of luminance values in HDR image reconstruction [5], [29]. In
the deployment mode, the log transformation is no longer needed as it is only
used for calculating the loss. Since the LiTMNet focuses on over-exposure re-
gions, artifacts may appear in other areas of the image predicted by the LiTM-
Net. Therefore, the final result is the combination of the unsaturated areas in
the LDR image and the saturated areas in the prediction. Apart from Mask1,
we further define two masks for the combination. Mask2 in Fig. 1 is identical
with Mask1, and Mask3 is defined as

Mask3 = 1
w×h − Mask2 (2)

where w and h are the width and the height of the input LDR image respec-
tively. It can be seen that Mask3 extracts the unsaturated pixels from the origi-
nal LDR image that are finally combined with LiTMNet output.

3.3. Proposed LiTMNet

As shown in Fig. 2, the proposed LiTMNet is an encoder-decoder architec-
ture with skip-connections which pass the feature output at each level of the
encoder to the corresponding level of the decoder. Different from HDRCNN,
these skip-connections have no domain transformations which contain heavy
element-wise operators. Also, an inverse camera curve and a log transforma-
tion are applied to the input and the output of LiTMNet at the training stage
respectively. While the inverse camera curve is generally unknown, we im-
plement a gamma function f (x) = x2 as its rough approximation to linearize
the camera curve. We selected this approximate function based on the observa-
tion of the five representative camera response functions generated by k-means
clustering from a diverse dataset of real-world camera response functions [30]
as detailed in [9]. We observed that these representative curves are in the form
of gamma function x−α. Thus, the inverse camera function is xα. To determine
the value of α, we make it a learnable parameter with the initial value of 2.2.
Then, through training the LiTMNet where α is optimized as well, it turns out
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Figure 2: Architecture of LiTMNet. S denotes the skip layer.

that the learned optimal value is around 1.9. We thus simply set it to the integer
2 for efficiency purpose.

3.3.1. Encoder

The encoder is based on MobileNetV2 [10] with modifications for better
performance. By applying a depthwise convolutional layer with a stride of 1 at
the beginning of the encoder, our network produces feature representation at
full resolution. By contrast, MobileNetV2 downsamples the input immediately
as a convolution with a stride of 2 is used at its entrance. Then, we remove the
batch normalization layers in the original bottleneck as it could cause degrada-
tion of the reconstruction quality as observed in the super resolution literature
[20]. Moreover, our task does not need mid-level feature representation as rich
as it is provided in MobileNetV2, and we thus balance the depth of bottleneck
sequence across spatial resolutions.

The linear bottleneck is important for MobileNetV2 as it helps to maintain
the non-linearity of the network while not causing the lost of much informa-
tion. However, the linear bottleneck conflicts with the domain transformation
skip-connection (DTSC), a crucial component of the HDRCNN. This is because
the linear bottleneck produces feature maps consisting of values in the range of
R. Note that the inverse camera curve in the DTSC contains a square operation.
Thus using the linear bottleneck and DTSC simultaneously would inappropri-
ately change the feature maps as the square operation maps them from R to
R≥0.

To tackle this problem, we decompose the domain transform of DTSC into
an inverse camera curve and a logarithmic operation, and only applies them to
the input and the output of LiTMNet respectively during training. We just ap-
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Table 1: The details of the encoder

Input Operator Output

hi × wi × ci 1×1 Conv2d, ReLU hi × wi × (t × ci)

hi × wi × (t × ci) 3×3 DWConv s=s, ReLU hi
s × wi

s × (t × ci)
hi
s × wi

s × (t × ci) Linear 1×1 Conv2d hi
s × wi

s × di

(a) The bottleneck without batch normalization. Instead, it uses ReLU and transforms

from hi × wi × ci to hi
s × wi

s × di, with stride s, and expansion factor t. DWConv is
depthwise convolution.

Input Operator t ci n s

2242 × 3 Linear 1×1 Conv2d - 16 1 1
2242 × 16 3×3 DWConv, ReLU - 16 1 1
2242 × 16 Bottleneck 1 16 1 1
2242 × 16 Bottleneck 2 32 2 2
1122 × 32 Bottleneck 6 32 2 2
562 × 32 Bottleneck 6 48 3 2
282 × 48 Bottleneck 6 96 3 2
142 × 96 Bottleneck 6 160 2 2
72 × 160 - - - - -

(b) Each row except the final one describes a sequence of one or more identical layers,
repeated n times. ci is the number of the output channels of all layers in the same
sequence. In each sequence, only the first layer uses a stride s and all the other layers
have a stride of 1. The expansion factor t is only used in the bottleneck as described in
(a).

plied skip-connections to the bottlenecks in the LiTMNet. And in the deploy-
ment mode, the logarithmic operation is removed as explained in Section 3.2.
Experimental evidence in Section 4.3 suggests that such a tactic improves both
the performance and the efficiency. The details of the encoder are summarized
in Table 1.

3.3.2. Decoder

The decoder mainly consists of a sequence of upsampling blocks and skip
layers. A skip layer makes a linear combination of its inputs. I.e., given two
hi × wi × ci features, the skip layer concatenates them along the channel axis
and applies a 1×1 convolution to produce an hi × wi × ci output.

Unlike HDRCNN [5] using deconvolution in the decoder, we propose a
new upsampling block as illustrated in Fig. 3. Our upsampling block is also
significantly different from the widely used vanilla resize-convolution block
[31]. We replace the standard convolution with a lightweight depthwise sep-
arable convolution (DSC) to save computational cost. A standard convolution
takes as input an hi × wi × ci feature map and applies a convolutional kernel K
∈ R

k×k×ci×di to output an hi × wi × di feature. Such a process has the compu-
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(a) (b) (c)

Figure 3: (a) The deconvolution block used in HDRCNN [5]; (b) The vanilla resize-convolution
block; (c) The proposed upsampling block.

(a) Using convolution (b) Using DSC

Figure 4: Closeups of the reconstructions using the standard convolution (a) and the DSC (b). The
red arrow points to the position of the black boundary effect.

tational cost of hi · wi · ci · di · k2. In comparison, the lightweight DSC used in
the proposed upsampling block has a computational cost of:

hi · wi · ci · (k
2 + 2di) (3)

which is the sum of the depthwise and pointwise convolution. In the imple-
mentation, we use k = 3 and thus the computational cost of our upsampling
block is about 4 times less than that of the vanilla resize-convolution block,
albeit subject to the output channel di.

Model quantization and pruning can also be employed to further acceler-
ate the LiTMNet. This is because they are essentially post-processing methods
for model acceleration and usually take effect after the main training stage al-
though fine-tuning might be required. Thus, they do not conflict with DSC
which achieves the acceleration by changing the network architecture before
the main training stage.

Moreover, we experimentally found that using depthwise separable convo-
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(a) Input (b) Depthwise convolution with
zero-padding

(c) Depthwise convolution with
mirror-padding

(d) Pointwise convolution

Figure 5: Intermediate feature maps. The feature map generated by the depthwise convolution
with zero-padding (b) contains a black boundary, while using mirror-padding (c) avoids it. The
pointwise convolution (d) takes (b) as input and avoids the black boundary as well.

lution can help to alleviate boundary artifacts as shown in Fig. 4. This is prob-
ably because the included pointwise convolution learns to combine its input
features into artifact-free ones. To further investigate the issue, we visualize
intermediate output features of depthwise and pointwise convolution in the
last upsampling block respectively, and select a typical one as shown in Fig. 5.
Note that padding zeros to a feature map actually adds irrelevant informa-
tion to it. It is not surprised that applying a well trained convolutional filter to
these areas will lead to unwanted results, such as the feature maps with a black
boundary as shown Fig. 5(b). By contrast, although the pointwise convolution
takes these features as input as well, it learns combinations to produce some
features without the black boundary as shown in Fig. 5(d). Such features are
similar to those computed by the depthwise convolution with mirror-padding
as shown in Fig. 5(c). This implies that the pointwise convolution effectively
mitigates the black boundary effect by producing well structured features. It
can be consequently seen that due to the pointwise convolutions of preceded
blocks, the black boundary shown in Fig. 5(b) is relatively small and does not
lead to serious artifacts as shown in Fig. 4.

Only replacing the standard convolution with the depthwise separable con-
volution is not sufficient according to Fig. 6(c) which exhibits unnatural recon-
structions. To address this problem, we concatenate the upsampled features
and the features computed by the depthwise convolution along the channel
axis before passed to pointwise convolution as illustrated in Fig. 3 (c). Differ-
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(a) Input (b) Upsampled
input

(c) Without SC (d) With SC

Figure 6: Closeups of the reconstructions without and with the shortcut connection (SC). Upsam-
pled inputs are created by using downsampling followed by upsampling.

ent from a residual connection which typically adds the output of a layer to
its input, we take advantage of the pointwise convolution to learn a proper
combination of these features rather than simply performing addition. More-
over, another benefit of doing so is that the upsampling process is less likely
to cause boundary artifacts as shown in Fig. 6(b). The shortcut connection pro-
vides upsampled features for pointwise convolution, and thus the network is
able to learn how to make use of these features. This strategy improves the
reconstruction quality as shown in Fig. 6(d). The details of the whole decoder
are summarized in Table 2.

3.3.3. Loss Function

To train the network, we define a hybrid loss combining the ℓ1-norm loss
L1 and the perceptual loss Lp. The hybrid loss can be written as

L(ŷ, H) = L1(ŷ, H) + βLp(ŷ, H) (4)

where ŷ and H are the network prediction output by the LiTMNet and the
ground truth HDR image, respectively. β is used to balance the losses and set
to 1 in our work. Specifically, the ℓ1-norm loss can be formulated as

L1(ŷ, H) =
1

N ∑
i,c

∣

∣ŷα
i,c − Hα

i,c

∣

∣ (5)

where ŷα
i,c = αi(log(ŷi,c + ǫ)), Hα

i,c = αi(log(Hi,c + ǫ)) and N is the number
of pixels. Note that the log operation effectively avoids the large luminance
dominance for the computation of L1.

Perceptual loss makes use of a loss network φ to measure high-level per-
ceptual and semantic differences between images [32]. In our implementation,
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Table 2: Details of the decoder

Input Operator Output

hi × wi × ci Upsampling 2hi × 2wi × ci

2hi × 2wi × ci 3×3 DWConv s=1, ReLU 2hi × 2wi × ci

2 × 2hi × 2wi × ci Concatenate 2hi × 2wi × 2ci

2hi × 2wi × 2ci Linear 1×1 Conv2d 2hi × 2wi × di

(a) The upsampling block. DWConv denotes depthwise convolution.

Input Operator Output

2 × hi × wi × ci Concatenate hi × wi × 2ci

hi × wi × 2ci 1×1 Conv2d, ReLU hi × wi × ci

(b) The skip layer.

Input Operator ci

72 × 160 3×3 Conv2d s=1, ReLU 160
72 × 160 Upsampling block 96

2 × 142 × 96 Skip layer 96
142 × 96 Upsampling block 48

2 × 282 × 48 Skip layer 48
282 × 48 Upsampling block 32

2 × 562 × 32 Skip layer 32
562 × 32 Upsampling block 32

2 × 1122 × 32 Skip layer 32
1122 × 32 Upsampling block 16

2 × 2242 × 16 Skip layer 16
2242 × 16 3×3 DWConv s=1, ReLU 16
2242 × 16 Linear 1×1 Conv2d 3

2 × 2242 × 3 Skip layer 3
2242 × 3 - -

(c) ci denotes the number of the output channels. The details of the upsampling block
and the skip layer are described in (a) and (b), respectively.

φ is the VGG19 network [33] pretrained on the ImageNet dataset [34]. The
perceptual loss can be formulated as

Lp(ŷ, H) =
1

Nl
∑

l
∑
i,c

|φl(ŷ
α)i,c − φl(Hα)i,c|

2 (6)

where φl indicates the feature maps produced by the first convolution (after
activation) before the l-th maxpooling layer within the VGG19 network. Nl is
the total number of pixels of φl . We use l = {1, 2, 3, 4, 5} in the experiments. ŷα

represents an image and ŷα
i,c is a pixel with spatial index i and channel c of that

image.
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(a) LDR input image (b) Ground truth

(c) Deconvolution
Total reconstruction time 5.0s

(d) VRC with zero padding
Total reconstruction time 4.0s

(e) VRC with mirror padding
Total reconstruction time 4.7s

(f) Proposed upsampling block
Total reconstruction time 2.7s

Figure 7: Comparisons made on an android device between the deconvolution, the vanilla resize-
convolution block (VRC) and the proposed upsampling block.

3.3.4. Network Efficiency

Without the proposed upsampling block, it is still possible to build a net-
work using deconvolution or vanilla resize-convolution block. After training
such a network, a measurement of inference time was conducted on an android
device equipped with a Snapdragon 835 processor. The resolution of the tested
images is 1024×768. As shown in Fig. 7, the network with deconvolutions is
the slowest. Using vanilla resize-convolution blocks with zero padding takes
about 4 seconds to reconstruct an image, but we experimentally found that
padding zeros to the blocks would lead to not only boundary artifacts but also
color shift. By replacing zero padding with mirror padding, the artifacts and
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color shift disappear while using mirror padding costs more inference time.
One possible explanation is that mirror padding need to read the feature map
first, and then pad the corresponding values back. As a result, the memory
consumption in this process could be higher than zero padding, which just
pads zeros to the feature map directly. With the proposed upsampling block,
not only the issue of the boundary artifacts is addressed, but also the efficiency
is significantly improved.

Overall, the proposed LiTMNet is more efficient than the state-of-the-art
method HDRCNN [5] for two reasons. First, we replace the VGG encoder of
the HDRCNN with a modified MobileNetV2 encoder. According to the Mo-
bileNetV2 paper, it performs particularly efficiently on CPUs (e.g. the mobile
devices) due mainly to the specific design of the depthwise separable convo-
lution (DSC). To generate an hi × wi × dj tensor from an input hi × wi × di

tensor with a kernel K ∈ Rk×k×di×dj , the standard convolution requires the
computational cost of hi × wi × di × dj × k × k. By contrast, the DSC just costs
hi × wi × di × (dj + k × k). However, replacing the original encoder of HDR-
CNN with MobileNetV2 is not straightforward as we discussed in the intro-
duction and our work addresses the issues caused by this replacement. Sec-
ond, we propose a new upsampling block and demonstrate that it is efficient
on an android device.

4. Experimental Results

In this section, we first elaborate the experiment settings, and then present
both qualitative and quantitative comparisons to evaluate the reconstruction
quality as well as the efficiency of the proposed method. Finally, we perform
an ablation study to investigate the effectiveness of LiTMNet and discuss a
failure case. Additional visual examples including implementations through
an android application on a mobile device can be found in the supplementary
video.

4.1. Experimental Settings
4.1.1. HDR Dataset

Since LiTMNet learns a mapping function from some saturated pixels in the
input LDR image to its corresponding pixels in the HDR image, the training
data are HDR–LDR image pairs.

The HDR images are required to cover the dynamic range of various real-
world scenarios and be taken by different imaging devices. We collect a to-
tal of 3500 HDR images in the public domain from the Internet, which cover
representative scenarios including indoors, outdoors, night-time and daytime,
etc. We then use a virtual camera provided in [5] to capture the LDR patches.
The patches are created by cropping an HDR image with random sizes at ran-
dom positions, followed by a camera curve. The patches are then resized to
320×320 pixels and the training dataset is further augmented via random flip-
ping. Finally, we produced a set of 169K augmented LDR patches with their
corresponding HDR references used as the ground truth data for training.
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(a) Input (b) Ground truth

(c) Kuo [35] (d) Huo [36]

(e) Kovaleski [37] (f) Akyüz [18]

(g) Masia [13] (h) LiTMNet

Figure 8: Comparisons with five traditional iTMOs.

4.1.2. Training

We implement the network with TensorLayer [38] and initialize different
components of the network using different strategies. For the skip layers,
we initialize their weights by following the strategy proposed in [5]. For all
the other components of the network, since there is no available pre-trained
model, we perform the truncated normal initialization. After the initialization,
we first train the network on a simulated dataset generated using the simula-
tion method detailed in [5]. In this simulated dataset, the ground truth data
are created by increasing the exposure of an LDR image with no saturated re-
gions. After the training based on the simulated dataset, we further train the
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Figure 9: Comparisons with CNN-based methods including DrTMO [9], ExpandNet [6] and HDR-
CNN [5]. The inputs are created from the testing set of [5].

network using the aforementioned HDR dataset. We use ADAM optimizer
with learning rate 2×10−5 and train the network for 1 million steps on each
dataset, respectively.

4.2. Comparisons with iTMOs

We perform visual and quantitative comparisons between LiTMNet and
ten representative iTMOs, including Akyüz et al. [18], Huo et al. [36], Kuo et
al. [35], Masia et al. [13], Kovaleski and Oliveira [37], DrTMO [9], ExpandNet
[6], HDRCNN [5], FHDR [27] and SingleHDR [28] where the last five are based
on CNNs.

4.2.1. Visual Comparison

Fig. 8 compares the LiTMNet with five traditional iTMOs which do not use
CNNs. These methods can expand the dynamic range of an LDR image to
create an HDR sense when viewed on an HDR display. However, they fail
to recover the lost information. By contrast, the LiTMNet learns a complex
nonlinear function to reconstruct the lost details caused by sensor saturation,

16



Figure 10: Comparisons with the latest CNN-based methods including FHDR [27] and SingleHDR
[28]. The input images are from the FHDR testing set.

based on the information around the saturated regions and the context of the
image.

Fig. 9 shows comparisons between LiTMNet and three CNN-based iTMOs.
The LDR inputs are created from the testing set provided by [5]. It can be seen
that in both scenes, the LiTMNet reconstructed the missing details in the satu-
rated regions (shown in red and green boxes) that looks highly consistent with
the ground truth. The HDRCNN produced generally satisfying results while
the moon in Fig. 9(k) did not look natural. ExpandNet and DrTMO are less
reliable when handling over-exposed pixels. For example, ExpandNet suffers
from color shift and DrTMO produced undesirable artifacts in the regions high-
lighted with red and green boxes. Fig. 10 shows visual comparisons between
the LiTMNet and two latest CNN-based iTMOs, FHDR [27] and SingleHDR
[28]. It can be seen that our LiTMNet produced images globally more consis-
tent with the ground truth while exhibiting good local details.

To further demonstrate the robustness of the LiTMNet, we evaluate it on
the images taken by mobile phone cameras. Fig. 11 shows the reconstructions
from some JPEG photos taken by the XiaoMI 6 and the Motorola Nexus 6 cam-
eras. The photos taken by the Nexus 6 camera are publicly available in the
hdrplus dataset [40]. The LiTMNet and the HDRCNN both generalize well to
such photos. Although their reconstructions sometimes vary (e.g. the street
light in the leftmost column), the results are generally reasonable and in line
with image context. For ExpandNet and DrTMO, the shortcomings still exist in
the images captured by mobile devices and very few details were successfully
reconstructed.

We further compare LiTMNet and HDRCNN in Fig. 12. It can be seen that
LiTMNet produced smooth and natural reconstructions at different exposure
levels while HDRCNN suffers from blocking artifacts. Presumably, this is be-
cause HDRCNN uses deconvolutions in the decoder. The deconvolution has
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Figure 11: Comparisons of the HDR reconstructions produced by different CNN-based methods.
The input images were taken by mobile phone cameras.

overlaps when estimating its output, and thus fails to learn a smooth output.
It is noteworthy that whether the input images are compressed or not could

have an effect on this task. The HDRCNN thus contains two sets of learned
weights respectively. Here we select the set of learned weights corresponding
to the compressed images for comparison as this set is more robust for a variety
of images. And the LiTMNet is also trained on the compressed data.

4.2.2. Quantitative Comparisons

We comparatively evaluate our method using three testing datasets includ-
ing HDRCNN [5], FHDR [27] and HDR-Real [28] in terms of Peak Signal to
Noise Ratio (PSNR), Multi-Scale Structural Similarity (MS-SSIM), HDR-VDP-
2.2 [41], and run time for images with 1024×768 and 512×512 (required by [9])
pixel resolutions on a mobile device and a desktop computer respectively. For
fair comparisons, we always fine-tune a competing network with the particular
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Input
Image

L=-3 L=-4 L=-5 L=-3 L=-4 L=-5

Figure 12: Comparisons between LiTMNet and HDRCNN [5] at three different exposure levels.
The images are cropped for better showing details. From left to right, the first column show the
input images provided in HDRCNN. The second to the fourth columns show the reconstructions
using LiTMNet at different exposure levels. The fifth to the seventh columns show the reconstruc-
tions produced by HDRCNN.

Table 3: Average PSNR, MS-SSIM and HDR-VDP-2.2 scores on HDRCNN [5], FHDR [27] and
SingleHDR [28] datasets where the top three scores are colored in red, green and blue respectively.
∗ and † correspond to the run time on a desktop computer and a mobile phone respectively. A
perceptual uniformity encoding [39] is applied to the prediction and the reference for the PSNR
and MS-SSIM metrics.

HDRCNN Dataset [5] FHDR Dataset [27] HDR-Real Dataset [28]

Method PSNR MS-SSIM
HDR-

PSNR MS-SSIM
HDR-

PSNR MS-SSIM
HDR- Run Run

VDP-2.2 VDP-2.2 VDP-2.2 Time∗(s) Time†(s)

Akyüz [18] 16.3095 0.657 50.1871 17.8851 0.7330 52.7138 15.9309 0.4935 46.3400 - -
Huo [36] 17.1657 0.6081 48.1339 13.4138 0.3452 46.5124 18.0752 0.4993 44.9631 - -
Kovaleski [37] 21.4111 0.7096 51.2502 18.4549 0.6480 49.8993 17.3074 0.4949 46.8521 - -
Kuo [35] 18.5208 0.4961 50.0052 16.2404 0.5400 51.1630 18.2212 0.4730 47.2662 - -
Masia [13] 16.3955 0.6674 50.2791 16.3955 0.6674 50.2791 15.6464 0.5162 46.6087 - -
ExpandNet [6] 21.3691 0.7413 53.5859 19.5439 0.7450 54.9577 15.8136 0.4022 45.7593 8.38 29.84
DrTMO [9] 19.3449 0.6892 51.8473 17.8003 0.5502 47.2141 16.2973 0.5272 47.5734 20.45 -
HDRCNN [5] 23.1966 0.8006 54.9102 23.6058 0.8430 57.1519 19.4555 0.5559 48.3908 4.64 104.36
FHDR [27] 19.2606 0.7119 52.3717 23.0218 0.8293 56.7724 16.5605 0.4988 47.2921 38.32 -
SingleHDR[28] 23.3986 0.7541 54.8830 23.4792 0.8343 57.7513 18.3068 0.5511 48.1131 11.32 -
LiTMNet 22.9296 0.7867 54.4645 23.1422 0.8252 56.9444 19.5510 0.5598 48.2623 0.43 2.72

training dataset when available.
For the testing dataset of HDRCNN [5], the input data are single exposed

LDR images generated from the 96 HDR images contained in the HDRCNN
testing set. For a fair comparison, instead of creating LDR images using the
virtual camera provided in HDRCNN, we use five representative camera re-
sponse functions, selected using k-means clustering, from a diverse database
of real-world camera response functions [30] as detailed in [9]. In order to use
PSNR and MS-SSIM for comparing the reconstructed HDR images, a percep-
tual uniformity encoding [39] is applied to the prediction and the reference.
Experiments are carried out on both a desktop computer with a quad-core In-
tel i7-4700MQ CPU and an android phone equipped with a Snapdragon 835
CPU. We thus recorded the run time of varying methods on different devices.
In order to run the trained network on a mobile phone, we convert it to Ten-
sorFlow Lite format (TF-Lite) so that the well-developed TF-Lite can be used.
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Table 4: Configurations of different networks. DT skip-connection denotes that the connection
includes a domain transformation.

A B C D LiTMNet
Original MobileNetV2 X X X

Modified encoder X X

Vanilla upsampling X X

Proposed upsampling X X X

Zero padding X X X X

Mirror padding X

DT skip-connection X X X X

Skip-connection X

Since the reconstruction is of HDR content, it needs tone mapping before dis-
played on mobile phones. In our implementation, we employ the Reinhard
tone mapping algorithm provided by OpenCV.

The results are summarized in Table 3. The run time of DrTMO, FHDR
and SingleHDR on the mobile phone is unavailable since they are too heavy to
run on such a device. Also, we only recorded the run time for the CNN-based
methods as the traditional methods were implemented in MATLAB instead
of Python. Although according to the scores, the performance of the LiTM-
Net is comparable with SingleHDR and slightly lower than the HDRCNN, it
is about 38× faster than HDRCNN with the best performance when running
on a mobile phone. This is because the LiTMNet has a computational cost of
19.4 GFLOPs (giga floating-point operations). In comparison, ExpandNet [6]
and HDRCNN [5] have the computational costs of 322.5 and 1290.7 GFLOPs,
respectively. And the LiTMNet surpasses the other three CNN-based meth-
ods, i.e. FHDR, ExpandNet and DrTMO, in respect of both reconstruction
quality and speed. It is noteworthy that HDRCNN [5] performs well on the
HDRCNN dataset as its hyperparameters are well adapted to the HDRCNN
dataset. The FHDR dataset [27] contains a number of sample images from the
HDRCNN dataset and thus the data distributions of the two datasets are rela-
tively similar. Therefore, HDRCNN also performs well on the FHDR datasets.
The HDR-Real dataset [28] is significantly different from the HDRCNN and
the FHDR datasets and thus we observed the performance variations over the
three datasets.

4.3. Ablation Study

In this section, we show how the components described in Section 3 affect
the performance of our network via ablation study. First, we conduct a quan-
titative analysis for the variant of LiTMNet where the shortcut connection in
the proposed upsampling block illustrated in Fig. 3 (c) is removed. Second,
we produce another variant where the perceptual loss Lp defined in Eq. (6) is
removed during the training. We also construct variant networks of the LiM-
Net as summarized in Table 4, which actually contains four ablation studies:
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Table 5: Quantitative results of the variants of LiTMNet on the HDRCNN dataset [5] in terms of
PSNR, MS-SSIM, HDR-VDP-2.2 and the run time on a mobile phone.

LiTMNet Variants PSNR MS-SSIM HDR-VDP-2.2 Run Time (s)
w/o SC 21.8755 0.7715 53.8905 2.63
w/o Lp 22.4726 0.7841 54.3353 2.72

Variant A 21.0147 0.7546 52.8891 4.13
Variant B 20.7112 0.7602 53.6376 4.81
Variant C 21.4289 0.7705 53.6857 2.83
Variant D 21.0851 0.7580 52.6475 4.22
LiTMNet 22.9296 0.7867 54.4645 2.72

1) Rows 1 and 2 deliver the ablation study between Variants C and D, which
attempts to demonstrate that our modified encoder performs better than Mo-
bileNetV2; 2) Rows 3 and 4 deliver the ablation study between Variants A and
C, which attempts to demonstrate the superiority of the proposed upsampling
block over the vanilla upsampling block; 3) Rows 5 and 6 deliver the ablation
study between Variants A and B, which attempts to demonstrate the benefit
of using zero padding instead of mirror padding; 4) Rows 7 and 8 deliver the
ablation study between Variants D and the full version of LiTMNet, which at-
tempts to demonstrate that skip-connection outperforms DT skip-connection
in our work. We provide both quantitative and qualitative results of the vari-
ants for comparisons.

The quantitative results of the ablation study are reported in Table 5 where
“w/o SC” denotes the variant without the shortcut connection in the upsam-
pling block illustrated in Fig. 3 (c) and “w/o Lp” represents the variant without
the perceptual loss Lp defined in Eq. (6). It can be seen the LiTMNet outper-
forms all variants on the HDRCNN dataset [5] in terms of PSNR, MS-SSIM and
HDR-VDP-2.2, which demonstrates the superiority of the proposed LiTMNet
and experimentally justifies the design choices of its architecture when alterna-
tive network components are available. The qualitative results are consistent
with the quantitative ones. As shown in Fig. 13, compared to Variants A-D, the
LiTMNet does not only produce the better results, but also is more efficient. By
comparing Fig. 13 (c) with (d), we can see that the proposed upsampling block
produces results of high quality and is very efficient as well. We also found
that a significant improvement is achieved by replacing the MobileNetV2 with
our redesigned encoder in Variant C. The highlighted regions (shown in the
red boxes) and the lost details (shown in the green boxes) are better recovered
in Variant D, although it is less efficient than Variant C. Therefore, Variant D
can be regarded as a trade-off between performance and efficiency.

Unlike Variant D using a DTSC at each level of feature representation, LiTM-
Net applies an inverse camera curve to the input image. Such an alteration im-
proves not only the efficiency, but also the reconstruction quality. It is proba-
bly because our redesigned encoder utilizes linear bottlenecks to extract multi-
level features while the square operation included in the DTSC maps the learned
features inappropriately from R to R≥0, leading to the loss of information con-
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Figure 13: Comparisons of different configurations with regard to PSNR and run time.

veyed by the features.

4.4. Failure Case

Guided by the HDR image, the LiTMNet learns to infer the missing infor-
mation from an LDR input. If few details are available in a saturated region,
the LiTMNet may fail to recover the structures properly. Fig. 14 shows a failure
case where a large fraction of the pixels are saturated. Although the LiTMNet
makes use of little information in the neighborhood to synthesize the missing
details, the shape of the letters and the color of the pillars are not estimated cor-
rectly. This is a common limitation even shared by the state-of-the-art iTMOs,
such as HDRCNN and SingleHDR.

22



(a) Input (b) Mask

(c) Ground truth (d) LiTMNet

Figure 14: Failure case. The mask is created using Eq. (1), which indicates over-exposure pixels.
Images are cropped for showing better details.

5. Conclusions

Reconstructing an HDR image from a single exposed LDR image is a chal-
lenging task particularly when sufficient computing power is inaccessible. This
paper presents a method for recovering saturated image regions to reconstruct
HDR images via lightweight CNNs. The optimized encoder and the proposed
upsampling block provide a dedicated solution for this task as they are compu-
tationally efficient. Moreover, extensive visual and quantitative comparisons
show that the LiTMNet is both effective and efficient. To the best of our knowl-
edge, the LiTMNet is the first deep iTMOs that can be applied to mobile devices
for efficient end-to-end HDR reconstruction.

Although the LiTMNet is much faster than existing deep iTMOs, it is still
not fast enough for 12 megapixel inputs. Thus future work will be to make the
network even lighter by using a combination of guided upsamplings. How-
ever, such a scheme might cause the risk of degraded reconstructions and some
schemes for mitigating this issue have to be investigated.
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[18] A. O. Akyüz, R. Fleming, B. E. Riecke, E. Reinhard, H. H. Bülthoff, Do
hdr displays support ldr content?: a psychophysical evaluation, in: ACM
Transactions on Graphics (TOG), volume 26, ACM, 2007, p. 38.

[19] Y. Quan, Y. Chen, Y. Shao, H. Teng, Y. Xu, H. Ji, Image denoising using
complex-valued deep cnn, Pattern Recognition 111 (2021).

[20] P. V. Arun, I. Herrmann, K. M. Budhiraju, A. Karnieli, Convolutional
network architectures for super-resolution/sub-pixel mapping of drone-
derived images, Pattern recognition 88 (2019) 431–446.

[21] M. He, D. Chen, J. Liao, P. V. Sander, L. Yuan, Deep exemplar-based col-
orization, ACM Transactions on Graphics (TOG) 37 (2018) 1–16.
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