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ABSTRACT
Autonomous driving is regarded as one of the most promising remedies to shield human beings
from severe crashes. To this end, 3D object detection serves as the core basis of perception stack
especially for the sake of path planning, motion prediction, and collision avoidance etc. Taking a
quick glance at the progress we have made, we attribute challenges to visual appearance recovery
in the absence of depth information from images, representation learning from partially occluded
unstructured point clouds, and semantic alignments over heterogeneous features from crossmodalities.
Despite existing efforts, 3D object detection for autonomous driving is still in its infancy. Recently,
a large body of literature have been investigated to address this 3D vision task. Nevertheless, few
investigations have looked into collecting and structuring this growing knowledge. We therefore aim
to fill this gap in a comprehensive survey, encompassing all the main concerns including sensors,
datasets, performance metrics and the recent state-of-the-art detection methods, together with their
pros and cons. Furthermore, we provide quantitative comparisons with the state of the art. A case
study on fifteen selected representative methods is presented, involved with runtime analysis, error
analysis, and robustness analysis. Finally, we provide concluding remarks after an in-depth analysis
of the surveyed works and identify promising directions for future work.

© 2022 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION
Dream sheds light on reality. It is a dream that au-

tonomous vehicles hit the roads legally, functioning wisely
as good as human drivers or even better, responding timely
to various unconstrained driving scenarios, and being fully
free of the control of human drivers, a.k.a. Level 5 wit
“driver off” in Fig. 1. Let the dream be realized, thousands
of new employment opportunities shall be created for those
physically impaired (Mobility), millions of lives shall be
rescued from motor vehicle-related crashes (Safety), and
billions of dollars shall be saved from disentangling traffic
accidents and treating the wounded (Economics). It is a
reality that there is still no universal consensus on where we
are now and howwe shall go next. As illustrated in Fig. 1,We
are largely above level 2 but under or infinitely close to level
3 by taking into account the following three social concerns:
(1) Safety and Security. Rules and regulations are still blank,
which shall be developed by governments to guarantee the
safety for an entire trip. (2) Law and Liability. How to define
the major responsibility and whowill take that responsibility
shall be identified both ethically and clearly. (3) Acceptance.
Long-term efforts shall be made to establish the confidence
and trust for the whole society, before autonomous driv-
ing can be finally accepted. This survey paper will take a
structured glance at 3D object detection, one of the core
techniques for autonomous driving.

Perception in 3D space is a prerequisite in autonomous
driving. A fully understanding of what is happening right
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Figure 1: Levels of autonomous driving proposed by SAE
(Society of Automotive Engineers) International [1]. Where
are we now?

now in front of the vehicle will facilitate downstream com-
ponents to react accordingly, which is exactly what 3D
object detection aims for. 3D object detection perceives and
describes what surrounds us via assigning a label, how its
shape looks like via drawing a bounding box, and how far
away it is from an ego vehicle via giving a coordinate.
Besides, 3D detection even provides a heading angle that
indicates orientation. It is these upstream information from
perception stack that enables downstream planning model to
make decisions.

1

ar
X

iv
:2

10
6.

10
82

3v
3 

 [
cs

.C
V

] 
 2

5 
M

ay
 2

02
2

https://doi.org/10.1016/j.patcog.2022.108796


R. Qian, X. Lai and X. Li Pattern Recognition 130 (2022) 108796

 

Figure 2: An overview of 3D object detection task from images and point clouds. Typical challenges: (a) Point Miss. When
LiDAR signals fail to return back from the surface of objects. (b) External Occlusion. When LiDAR signals are blocked by occluders
in the vicinity. (c) Self Occlusion. When one near side of the object blocks the other, which makes point clouds 2.5D in practice.
Note that bounding box prediction in (d) is much easier than that in (e) due to the sparsity of point clouds at long ranges.

1.1. Tasks and Challenges
Fig. 2 presents an overview of 3D object detection task

from images and point clouds. The whole goal of 3D object
detection is to recognize the objects of interest by drawing
an oriented 3D bounding box and assigning a label. Consider
two commonly used 3D object detection modalities, i.e. im-
ages and point clouds, the key challenges of this vision task
are strongly tied to the way we use, the way we represent,
and the way we combine. With only images on hand, the
core challenge arises from the absence of depth information.
Although much progress has been made to recover depth
from images [2, 3], it is still an ill-posed inverse problem.
The same object in different 3D poses can result in dif-
ferent visual appearance in the image plane, which is not
conducive to the learning of representation [4]. Besides,
given that camera is passive sensor (see Sec. 2.2.1), images
are naturally vulnerable to illumination (e.g., nighttime) or
rainy weather conditions. With only point clouds on hand,

the key difficulty stems from the representation learning.
Point clouds are sparse by nature, e.g. in works [5, 6], non-
empty voxels normally account for approximately 1%, 3%
in a typical range setup on Waymo Open [7] dataset and
KITTI [8] dataset respectively. Point clouds are irregular and
unordered by nature. Directly applying convolution operator
to point clouds will incur “desertion of shape information
and variance to point ordering” [9]. Besides, point clouds
are 2.5D in practice as they are point miss in (a), external-
occlusion in (b), self-occlusion in (c) [10], as indicated
in Fig. 2. Without the umbrella of convolutional neural
networks, one way is to present point clouds as voxels. The
dilemma is that scaling up voxel size will loss resolution and
consequently degrade localization accuracy while scaling
down its size will cubically increase the complexity and
memory footprints as the input resolution grows. Another
way is to present point clouds as point sets. Nevertheless,
around 80% of runtime is occupied by point retrieval, say,
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Figure 3: A summary showing how this survey differs from existing ones on 3D object detection. Vertically, targeted scope
concisely determines where the boundary is located among their investigations. Horizontally, hierarchical branches of this paper
reveal a good continuity of existing efforts [13, 14] while adapt new branches (indicated in bold font) for dynamics, which
importantly contributes to the maturity of the taxonomy on 3D object detection.

ball query operation, in light of the poor memory locality
[11]. With both images and point clouds on hand, the tricky
obstacle often derives from semantic alignments. Images
and point clouds are two heterogeneous media, presented in
camera view and real 3D view, finding point-wise correspon-
dences between LiDAR points and image pixels results in
“feature blurring” [12].
1.2. Targeted Scope, Aims, and Organization

We review literature that are closely related to 3D object
detection in the context of autonomous driving. Depending
on what modality we use, existing efforts are divided into the
following three subdivisions: (1) image based [15, 16, 17,
18, 19, 20, 21, 22], which is relatively inaccurate but several
orders of magnitude cheaper, and more interpretable under
the guidance of domain expertise and knowledge priors. (2)
point cloud based [23, 24, 25, 10, 6, 26, 27, 28, 29, 5], which
has a relatively higher accuracy and lower latency but more
prohibitive deployment cost compared with its image based
counterparts. (3) multimodal fusion based [12, 30, 31, 32,
33, 34], which currently lags behind its point cloud based
counterparts but importantly provides a redundancy to fall-
back onto in case of a malfunction or outage.

Fig. 3 presents a summary showing how this survey
differs from existing ones on 3D object detection. 3D object
detection itself is an algorithmic problem, whereas involved

with autonomous driving makes it an application issue.
As of this main text in June 2021, we notice that rather
few investigations [13, 35, 14, 36] have looked into this
application issue. Survey [13] focuses on 3D object detec-
tion, also taking into account indoor detection. Survey [36]
involves with autonomous driving but it concentrates on
multi-modal object detection. Survey [35] covers a series
of related subtopics of 3D point clouds (e.g., 3D shape
classification, 3D object detection and tracking, and 3D point
cloud segmentation etc.). Note that survey [35] establishes
it taxonomy based on network architecture, which fails to
summarize the homogeneous properties amongmethods and
therefore results in overlapping in the subdivisions, e.g.
multi-view based and BEV based are the same in essence in
terms of learning strategies. As far as we know, only survey
[14] is closely relevant to this paper, but it fails to track the
latest datasets (e.g., nuScenes [37], and Waymo Open [7]),
algorithms (e.g., the best algorithm it reports on KITII [8]
3D detection benchmark is AVOD [31][IROS′18: 71.88] vs.
BtcDet [10][AAAI′22: 82.86] in this paper), and challenges,
which is not surprising asmuch progress has beenmade after
2018.

The aims of this paper are threefold. First, notice that
no recent literature exists to collect the growing knowledge
concerning 3D object detection, we aim to fill this gap by
starting with several basic concepts, providing a glimpse
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of evolution of 3D object detection, together with compre-
hensive comparisons on publicly available datasets being
manifested, with pros and cons being judiciously presented.
Witnessing the absence of a universal consensus on taxon-
omy with respect to 3D object detection, our second goal
is to contribute to the maturity of the taxonomy. To this
end, we are cautiously favorable to the taxonomy based
on input modality, approved by existing literature [13, 14].
The idea of grouping literature based on their network ar-
chitecture derives from 2D object detection, which fails to
summarize the homogeneous properties amongmethods and
therefore results in overlapping in the subdivisions, e.g.,
multi-view based and BEV based are the same representa-
tion in essence. Another drawback is that several plug-and-
play module components can be integrated into either region
proposal based (two-stage) or single shot based (one-stage).
For instance, VoTr [5] proposes voxel transformer which can
be easily incorporated into voxel based one stage or two stage
detectors. Notice that diverse fusion variants consistently
emerge among 3D object detection, existing taxonomy in
works [13, 14] needs to be extended. For instance, works [38,
38] are sequential fusion methods (see Sec. 3.3.1), which are
not well suited to existing taxonomy.We therefore define two
new paradigms, i.e. sequential fusion and parallel fusion,
to adapt to underlying changes and further discuss which
category each method belongs to explicitly, while works
[13, 14] not. Also, we analyze in deep to provide a more
fine-grained taxonomy above and beyond the existing efforts
[13, 14] on image based methods, say, result-lifting based
and feature-lifting based depending on intermediate rep-
resentation existence. Finally, we open point-voxel branch
to classify newly proposed variants, e.g. PV-RCNN [39].
By constrast, survey [35] directly groups PV-RCNN into
“Other Methods”, leaving the problem unsolved. Our third
goal aims to present a case study on fifteen selected models
among surveyed works, with regard to runtime analysis,
error analysis, and robustness analysis closely. We argue that
what mainly restricts the performance of detection is 3D
location error based on our findings. Taken together, this
survey is expected to foster more follow-up literature in 3D
vision community.

The rest of this paper is organized as follows. Section 2
introduces background associated with foundations, sensors,
datasets, and performance metrics. Section 3 reviews 3D
object detection methods with their corresponding pros and
cons in the context of autonomous driving. Comprehen-
sive comparisons of the state-of-the-arts are summarized
in Section 4. We conclude this paper and identify future
research directions Section 5. We also set up a regularly
updated project page on: https://github.com/rui-qian/SoTA-
3D-Object-Detection.

2. BACKGROUND
2.1. Foundations

Let  denote input data, say, LiDAR signals or monoc-
ular images,  denote a detector parameterized by Θ. Con-
sider an (F+1)-dimensional result subset with n predictions,

denoted by {y1, ..., yn
}

⊆ ℝF+1, we have

ΘMLE = argmax
Θ


(

{

y1, ..., yn
}

|

|

|

 , Θ
)

, (1)

where yi =
(

i, si
) denotes a certain prediction of detector

 ( ; Θ) with bounding box i ∈ ℝF and its probabilistic
score si ∈ [0, 1]. In the context of autonomous driving,i isusually parameterized as portrayed in Fig. 4, which indicates
the volume of the object of interest and its position relative to
a reference coordinate system that can be one of the sensors
equipped on a ego-vehicle.We notice that attributes encoded
by (d) in Fig. 4 are orthogonal and therefore result in a more
lower information redundancy compared with (a), (b), (c). In
this paper, we adopt the form of (d) as most previous works
[25, 24, 6, 40, 41] do.

 

Figure 4: Comparisons of the 3D bounding box parameteriza-
tion, between 8 corners proposed in [30], 4 corners with heights
proposed in [31], the axis aligned box encoding proposed in
[42], and the 7 parameters for an oriented 3D bounding box
adopted in [25, 24, 6, 40, 41].

2.2. Sensors
We human beings leverage visual and auditory systems

to perceive the real world when driving, so how about
autonomous vehicles? If they were to drive like a human,
then to identify what they see on the road constantly is the
way to go. To this end, sensors matter. It is sensors that
empower vehicles a series of abilities: obstacles perception,
automatic emergency braking, and collision avoidance etc.
In general, the most commonly used sensors can be divided
into two categories: passive sensors and active sensors [43].
The on going debate among industry experts is whether or
not to just equip vehicles with camera systems (no LiDAR),
or deploy LiDAR together with on-board camera systems.
Given that camera is considered to be one of the typical
representatives of passive sensors, and LiDAR is regarded as
a representative of active ones, we first introduce the basic
concepts of passive sensors and active sensors, then take
camera and LiDAR as examples to discuss how they serve
the autonomous driving system, together with pros and cons
being manifested in Table 1.

2.2.1. Passive Sensors
Passive sensors are anticipated to receive natural emis-

sions emanating from both the Earth’s surface and its at-
mosphere. These natural emissions could be natural light or
infrared rays. Typically, a camera directly grabs a bunch of
color points from the optics in the lens and arranges them
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Table 1
Advantages and disadvantages of different sensors.

Sensors Advantages Disadvantages Publications

Passive

Monocular Camera •cheap and available for multiple situations
•informative color and texture attributes

•no depth or range detecting feature
•susceptible to weather and light conditions

[44], [15], [16],
[45], [17], [41]

Stereo Camera
•depth information provided
•informative color and texture attributes
•high frame rate

•computationally expensive
•sensitive to weather and light conditions
•limited Field-of-View

[18], [46], [47]

Active

LiDAR
•accurate depth or range detecting feature
•less affected by external illumination
•360◦ Field-of-View

•high sparseness and irregularity by nature
•no color and texture attributes
•expensive and critical deployment

[48], [49], [39],
[40], [50], [51],
[52], [53], [25],
[54], [6], [55], [24],
[38], [56], [57]

Solid State
LiDAR

•more reliable compared with surround view
sensors
•cost decrease

•error increase when different points of view
are merged in real time
•still under development and limited Field-of-
View

n.a.

Table 2
A summary of publicly available datasets for 3D object detection in the context of autonomous driving. *: Numbers in brackets
indicate classes evaluated in their official benchmarks.

Dataset Year
Size Diversity Modality

Benchmark Cites
♯Train ♯Val ♯Test ♯Boxes ♯Frames ♯Scenes ♯Classes* Night Rain Stereo Temporal LiDAR

KITTI [8, 58] 2012 7,418×1 - 7,518 × 1 200K 15K 50 8 (3) No No Yes Yes Yes Yes 5011
Argoverse [37] 2019 39,384×7 15,062×7 12,507 × 7 993K 44K 113 15 Yes Yes Yes Yes Yes Yes 88

Lyft L5 [59] 2019 22,690×6 - 27,460 ×6 1.3M 46K 366 9 No No No Yes Yes No -
H3D [60] 2019 8,873×3 5,170×3 13,678 ×3 1.1M 27K 160 8 No No No Yes Yes No 31

Appllo [61, 62] 2019 - - - - 140K 103 27 Yes Yes Yes Yes Yes Yes 78
nuScenes [37] 2019 28,130×6 6,019×6 6,008 ×6 1.4M 40K 1,000 23 (10) Yes Yes No Yes Yes Yes 225

Waymo [7] 2020 122,200×5 30,407×5 40,077 ×5 112M 200K 1,150 4 (3) Yes Yes No Yes Yes Yes 31

into an image array that is often referred to as a digital signal
for scene understanding. Primarily, a monocular camera
lends itself well to informative color and texture attributes,
better visual recognition of text from road signs, and high
frame rate at a negligible cost etc. Whereas, it is lack of depth
information, which is crucial for accurate location estimation
in the real 3D world. To overcome this issue, stereo cameras
use matching algorithms to align correspondences in both
left and right images for depth recovery [2]. While cameras
have shown potentials as a reliable vision system, it is hardly
sufficient as a standalone one given that a camera is prone
to degrade its accuracy in cases where luminosity is low at
night-time or rainy weather conditions occur. Consequently
equipping autonomous vehicles with an auxiliary sensor,
say active counterparts, to fall-back onto is necessary, in
case that camera system should malfunction or disconnect
in hazardous weather conditions.
2.2.2. Active Sensors

Active sensors are expected to measure reflected signals
that are transmitted by the sensor, which are bounced by the
Earth’s surface or its atmosphere. Typically, Light Detection
And Ranging (LiDAR) is a point-and-shoot device with
three basic components of lens, lasers and detectors, which
spits out light pulses that will bounce off the surroundings
in the form of 3D points, referred to as “point clouds”. High
sparseness and irregularity by nature and the absence of
texture attributes are the primary characteristics of a point
cloud, which is well distinguished from image array. Since

we have already known how fast light travels, the distance
of obstacles could be determined without effort. LiDAR
system emits thousands of pulses that spin around in a circle
per second, with a 360 degree view of surroundings for
the vehicles being provided. For example, Velodyne HDL-
64L produces 120 thousand points per frame with a 10 Hz
frame rate. Obviously, LiDAR is less affected by external
illumination conditions (e.g., at night-time), given that it
emits light pulses by itself. Although LiDAR system has
been hailed for high accuracy and reliability compared with
camera system, it does not always hold true. Specifically,
wavelength stability of LiDAR is susceptible to variations
in temperature, while adverse weather (e.g., snow or fog) is
prone to result in poor signal-to-noise ratio in the LiDAR’s
detector. Another issue with LiDAR is the high cost of
deployment. A conservative estimate according toVelodyne,
so far, is about $75,0001 [14]. In the foreseeable future of
LiDAR, how to decrease cost and how to increase resolution
and range are where the whole community is to march
ahead. As for the former, the advent of solid state LiDAR is
expected to address this problem of cost decrease, with the
help of several stationary lasers that emit light pulses along
a fixed field of view. As for the latter, the newly announced
Velodyne VLS-128 featuring 128 laser pulses and 300m
radius range has been on sale, which is going to significantly
facilitate better recognition and tracking in terms of public
safety.

1http://www.woodsidecap.com
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Table 3
Instance distribution on nuScenes train split. Here, “TC” and “Cons.Veh.” denote traffic cone and construction vehicle respectively.

♯Classes Car Pedestrian Barrier TC Truck Trailer Bus Cons.Veh. Motocycle Bicycle

Number 413,318 185,847 125,095 82,362 72,815 20,701 13,163 11,993 10,109 9,478

Table 4
Instance distribution on KITII train split. Car category accounts for 82.99% of the three (i.e., Car, Pedestrian, and Cyclist).

♯Classes Car Ped. Van Cyclist Truck Misc Tram Person.sit.

Number 14,357 2,207 1,297 734 448 337 224 56

2.2.3. Discussion
Fatalities occurred with autonomous vehicles have al-

ready increased the society’s grave concern about safety. If
autonomous vehicles were to hit the road legally, they at
least need to satisfy three basic requirements: high accuracy,
high certainty, and high reliability. To this end, sensor fusion
incorporating the merits of two worlds (camera vs. LiDAR)
is going to be necessary. From a sensor standpoint, LiDAR
provide depth information close to linearity error with a high
level of accuracy, but it is susceptible to adverse weather
(e.g., snow or fog). Camera is intuitively much better at
visual recognition in cases where color or texture attributes
are available, but they are not sufficient as a standalone
system as aforementioned. Note that certainty is still an
important yet largely unexplored problem. A combination
of LiDAR and camera is anticipated to ensure detection
accuracy and improve prediction certainty. With regard to
reliability, two facets should be considered: sensor calibra-
tion and system redundancy. Sensor calibration undoubtedly
increases the difficulty of deployment and directly affects
the reliability of the whole system. Studies [63, 64] have
looked into calibrating sensors to avoid drift over time.
System redundancy is to have a secondary sensor to fall-
back onto in case of a malfunction or outage in extreme
scenarios. Although balancing affordability and safety has
been a long-term ethical dilemma, the community should be
keenly aware of the safety risk of over-reliance on a single
sensor.
2.3. Dataset

The availability of large-scale datasets has been contin-
uously fostering the community with the advent of data-
driven era. As regards 3D object detection, we summarize
publicly available datasets [8, 58, 37, 59, 60, 61, 62, 65, 7]
in the context of autonomous driving in Table 2, out of which
the KITTI [8], nuScenes [37], and Waymo Open [7] are the
typical representatives. In a sequel, we selectively introduce
these three datasets with regard to their size, diversity, pros
and cons accordingly.

Dataset size. The KITTI manually annotates 200K
boxes among 15K frames, with 7,481, 7,518 samples for
training and testing respectively. Rather, the training set is
subdivided into 3,712 and 3,769 samples for train, val split
as a common practice initially introduced by 3DOP [66]. The
nuScenes manually labels 1.4M boxes among 40K frames,
with 28,130, 6,019 and 6,008 frames for training, validation,

and testing accordingly. Waymo Open, encouragingly anno-
tates 112Mboxes among 200K frames, with 122,200, 30,407
and 40,077 for training, validation, and testing. Note that
only the labels for training/validation are available, whereas
none of them provide annotations for testing. Competitors
are required to submit predictions to the online leaderboard
for fairly assessing on test set.

Diversity. The KITTI provides 50 scenes over 8 classes
in Karlsruhe, Germany, out of which only Car, Pedestrian,
and Cyclist are considered for online evaluation. Three diffi-
culty levels (i.e., Easy, Moderate, and Hard) for its protocol
are introduced depending on the height of 2D bounding
boxes, the level of occlusion and truncation. The nuScenes
collects 1,000 sequences over 23 classes in Boston and
Singapore, out of which only 10 classes are considered for
3D object detection. The Waymo Open consists of 1,150
sequences over 4 classes in Phoenix and San Francisco, out
of which only three classes are assessed similar to KITTI. It
is worth mentioning that both nuScenes and Waymo Open
acquire their data under multiple weather (e.g., rainy, foggy,
and snowy etc.) and lighting (e.g., daytime and nighttime)
conditions throughout a day, whereas KITTI only captures
its dataset on sunny days.

Pros and cons. These three datasets manifested above
indeed catalytically foster the academics. KITTI, as a pi-
oneer, has profoundly influences the whole community in
terms of data acquisition, protocol and benchmark. Nev-
ertheless, as we mentioned above, KITTI is recorded in
daytime on sunny days, without taking lighting and weather
conditions into account, resulting a relative lower diversity
compared with nuScenes and Waymo Open. Real dataset
tends to suffer from class imbalance as it is true to life. Ac-
cording to our statistics in Table 3, 50% categories account
for only 6.9% of total annotations, which clearly reflects a
long-tail distribution on nuScenes. This phenomenon also
holds true for KITTI as indicated in Table 4.
2.4. Performance Metrics

3D object detection adopts the Average Precision (AP )
as its primary performance metrics, all of which stem from
the same ideology as its 2D counterparts [67].We first revisit
the vanilla form of AP metric, and then recognize subtle
connections and differences of dataset-specific AP adopted
among commonly used benchmarks.

Revisiting. Consider a prediction subset {y1, ..., yn
} in

descending order by confidence score si, a prediction yi6
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and then learn feature representation in an explicit way in (c), or leverage PointNet-like block, GNNs to learn permutation-invariant
representations in an implicit fashion in (d). Multimodal fusion based, which is likely to fuse cross-modalities at early phase in
(e), middle phase in (f), and late phase in (g) during the forward propagation.

is considered as true positive if the ratio of overlapping
area between i and its assigned ground-truth, namely, the
Intersection over Union (IoU), exceeds a certain threshold,
otherwise false positive. The zigzag-like precision-recall
curve can easily be plotted and AP is just the area under
the curve. Notice that accurately calculating the related area
is difficult, PASCAL VOC [67] established an alternative
instead.

Interpolated AP |RN Metric is formulated as the mean
precision calculated at a recall subset R of which N evenly
spaced recall levels are composed, that is

AP |RN =
1
N

∑

r∈R
Pinterpolate (r), (2)

where R =
[

r0, r0 +
r1−r0
N−1 , r0 +

2(r1−r0)
N−1 , ..., r1

]

. For each
recall level r, its corresponding precision is interpolated by
taking into account the maximum precision of which recall
value is greater than or equal to r, denoted by

Pinterpolate (r) = maxr̃∶r̃≥r
P (r̃) . (3)

KITTI Benchmark. KITTI adopts standard Interpo-
lated AP |R11 Metric as its official metric for assessing de-
tector  ( ; Θ). Usually two leaderboard is considered, i.e.

3D detection and Bird’s Eye View (BEV) detection. 3D de-
tection evaluates AP 3D|R11 with a rotated IoU3D threshold
of 0.7, 0.5, 0.5 for Car, Pedestrian and Cyclist accordingly.
The principles of 3D detection largely holds true for BEV
detection, except for the calculation of IoUBEV , which is
calculated by projecting the bounding box3D from 3Dpace
into the ground plane. Note that from 08.10.2019, KITTI
turns to 40 recall levels [1∕40, 2∕40, 3∕40, ..., 1] instead of
11 recall levels [0, 1∕10, 2∕10, ..., 1] as suggested in [68],
with recall level 0 being reasonably removed.

nuScenes Benchmark. nuScenes uses NuScenes Detec-
tion Score (NDS) as its official metric for evaluating detector
 ( ; Θ). Consider a mean average error subset  of which
translation, size, orientation, attribute and velocity are com-
posed, denoted by  = {mATE, mASE, mAOE, mAAE
, mAV E}, we have

NDS = 1
10

[

5mAP +
∑

err∈
(1 − min (1, err))

]

, (4)

where mAP indicates mean Average Precision. NDS jointly
justifies a weighted average ofmAP andmean average errors
of set  among 10 classes. It is worth noting that mAP is
calculated by a bird-eye-view center distance of thresholds
{0.5m, 1m, 2m, 4m} rather than standard box-overlap.
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Waymo Benchmark. Waymo Open leverages Interpo-
lated AP |R21 Metric and Average Precision weighted by
Heading (APH) as its primary metric for evaluating de-
tector  ( ; Θ). To compute AP , Waymo evaluates on 21
equally spaced recall levels [0, 1∕20, 2∕20, ..., 1] in Equation
2 with an IoU threshold of 0.7, 0.5 for vehicles, pedestrians
respectively. To compute APH, the heading accuracy is
incorporated into true positives, each of which is weighted
by min (|� − �∗| , 2� − |� − �∗|) ∕�, where � and �∗ are
subject to [−�, �], indicating the predicted azimuth and its
assigned ground truth accordingly. Waymo breaks down its
difficulty into two levels: LEVEL_1 lends itself to boxes
with at least five LiDAR signals, while LEVEL_2 is suited
for all non-empty ones.

3. TAXONOMY AND REVIEW
Fig. 5 presents a pipeline of 3D object detection in gen-

eral. Having only images on hand, the core challenge arises
from the absence of depth information. Usually two lines
exist: one is to break down this 3D vision task into 2D object
detection [82, 83, 84, 85, 86, 87, 88] and depth estimation
[2, 3], which lifts these estimated results into 3D space via
geometric properties and constraints. The other line is to
directly lift 2D image features into 3D space via computing
a point cloud [47, 45, 41, 71, 73, 75], termed as Pseudo
LiDAR or learning a latent depth distribution [4, 72, 74, 70].
Having only point clouds on hand, the key difficulty stems
from the representation learning over sparse, irregular, and
unordered point clouds. Also two ways exist mainly: one is
to first voxelize an irregular point cloud into regular voxel
grids and then learn feature representations in an explicit
way. Nevertheless, the other is to leverage PointNet-like
block [89] or Graph Neural Networks (GNNs) [90] to learn
permutation-invariant representations in an implicit fashion.
Nowadays, combining the merits of these two lines reveals a
new fashion trend.What if having both of them on hand? The
tricky obstacle often derives from semantic representation
(what to fuse), alignment (how to fuse), and consistency
(when to fuse) for multimodal fusion based on what we have
already learnt from these two preceding modalities.

Depending on what we feed to  ( ; Θ) internally dur-
ing inference, we frame our taxonomy along three dimen-
sions: (1) image based, (2) point cloud based, and (3) multi-
modal fusion based, ordered chronologically in which each
method emerges. Table 5 selectively manifests several core
literature structured along each dimension, which is ex-
pected to leave the readers a clear picture in his or her mind.
In what follows, we present image based in Section 3.1, and
point cloud based in Section 3.2. Multimodal fusion based
is addressed in Section 3.3.

3.1. Image based Methods
Depth estimation from images is still an ill-posed prob-

lem that are not fully understood yet [2, 3]. Errors from
depth recovery inherently contribute to the major factor of
the performance gap between image based and point cloud

based [19]. Focusing on the inverse issue, it is the way of
recovering depth and the way of use that collected knowl-
edge that determines how the intermediate representation is
lifted. Depending on intermediate representation existence,
we divide this group into the following two subdivisions:
(1) result-lifting based, (2) feature-lifting based. Table 5
selectively lists several significant contributions concerning
the subject.

3.1.1. Result-lifting based Methods
Works in this group break down  ( ; Θ) into two

vision tasks: 2D object detection and depth estimation [15,
16, 17, 18, 19, 20, 21, 22]. The underlying principle is
that the spatial location of the associated objects can be
empirically inferred with regard to the visual appearance. To
that end, Mono3D [44] scores proposals with location prior,
object shape, size, and semantics with the hypothesis that
objects are close to the ground plane via minimizing energy
function. Deep3DBox [16] leverages the geometric prop-
erties that the perspective projection of 3D corners should
tightly touch at least one side of the 2D bounding box. GS3D
[17] relies on the observation that the top center of a 3D
bounding box should be close to the top midpoint of the 2D
bounding box when projected onto the image plane. Stereo
R-CNN [18] exploits geometric alignment with keypoints,
yaw angle, and object shape using left and right proposal
pairs. Literature [69, 21, 19] fully exploits semantic prop-
erties as well as dense geometric constraints in monocular
imagery. We notice that these methods are over-reliance on
feature engineering and hinder them from further extending
to general scenarios. For instance, works [44, 15, 20] require
external data for training. Keypoint constraints in works
[18, 19, 69] are more likely to be vulnerable to slim and tall
objects, say, Pedestrians. To what extent works in this group
rely on domain expertise determines to what extent efforts
in this group can be generalized largely.

3.1.2. Feature-lifting based Methods
Works in this group develop  ( ; Θ) via lifting 2D

image features into 3D space via computing a point cloud
intermediately [47, 45, 41, 71, 73, 75] or learning a cat-
egorical depth distribution directly [4, 74]. To this end,
works [71, 45, 41] first uses a stand-alone depth estimation
network to obtain disparity map, then back-projects 2D
coordinates associated with each pixel in image plane into
3D space, and finally lends itself to independent point cloud
based detectors. Notice that the depth estimation error grows
quadratically at long ranges, Pseudo-LiDAR++ [73] uses
sparse but accurate real LiDAR signals as “landmarks” to
correct and de-bias depth errors. Observe that preceding
networks are trained separately, Pseudo-LiDAR E2E [75]
goes one step further by making the entire pipeline trainable
end to end. We note that Pseudo-LiDAR signals in works
[71, 73, 41] are internally accompanied by noises that stem
from errors in depth estimation, which reflect in two aspects:
(1) Pseudo-LiDAR signals are slightly off relative to the real
LiDAR ones with a local misalignment. (2) depth artifacts
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Table 5
A taxonomy of 3D object detection for autonomous driving.

Input
modality

Subdivision
Network architecture

Two-stage One-stage

Image
(Sec.3.1)

Depending on intermediate representation existence:

result-lifting
(Sec.3.1.1)

with extra data: with extra data:
+ Mono3D [44], CVPR′16 + DD3D [20], ICCV′21
without extra data: without extra data:
+ Deep MANTA [15], CVPR′17 + Monodle [21], CVPR′21
+ Deep3DBox [16], CVPR′17 + MonoFlex [69], CVPR′21
+ GS3D [17], CVPR′19 + YOLOStereo3D [22], ICRA′21
+ Stereo R-CNN [18], CVPR′19
+ MonoRCNN [19], ICCV′21

feature-lifting
(Sec.3.1.2)

with extra data: with extra data:
+ MF3D [45], CVPR′18 + OFT-Net [70], BMVC′19
+ Mono3D-PLiDAR [41],ICCVW′19 + DSGN [4], CVPR′20
+ Pseudo-LiDAR [71], CVPR′19 + LIGA-Stereo [72], ICCV′21
+ Pseudo-LiDAR++ [73], ICLR′20 + CaDDN [74], CVPR′21
+ Pseudo-LiDAR E2E [75],CVPR′20
without extra data:
+ 3DOP [47], NeurlPS′15

Point cloud
(Sec.3.2)

Depending on representation learning strategies:

voxel based
(Sec.3.2.1)

single-scale voxelization: single-scale voxelization:
+ TANet [76], AAAI′20 + VeloFCN [48], RSS′16
+ SPG [77], ICCV′21 + PIXOR [49], CVPR′18
+ CenterPoint [23], CVPR′21 + VoxelNet [24], CVPR′18
+ BtcDet [10], AAAI′22 + SECOND [25], Sensors′18

+ PointPillars [6], CVPR′19
+ CIA-SSD [26], AAAI′21
+ SE-SSD [27], CVPR′21
+ Voxel R-CNN [28], AAAI′21
+ CT3D [29], ICCV′21
+ VoTr [5], ICCV′21

multi-scale voxelization: multi-scale voxelization:
+ Part-A2 [56], T-PAMI′21 + HVNet [57], CVPR′20

+ Voxel-FPN [55], Sensors′20

point based
(Sec.3.2.2)

+ PointRCNN [40], CVPR′19
+ 3DSSD [51], CVPR′20
+ Point-GNN [52], CVPR′20a

point-voxel based
(Sec.3.2.3)

+ Fast PointRCNN [78], ICCV′19
+ STD [50], ICCV′19
+ PV-RCNN [39], CVPR′20
+ BADet [79], PR′22

+ SA-SSD [53], CVPR′20aaa

Multimodal
(Sec.3.3)

Depending on to what extent these two modalities are coupled:

sequential fusion
(Sec.3.3.1)

+ Frustum-PointNets [80], CVPR′18
+ Frustum-ConvNet [38], IROS′19

parallel fusion
(Sec.3.3.2)

early fusion:
+ PointPainting [12], CVPR′20
deep fusion: deep fusion:
+ MV3D [30], CVPR′17 + ContFuse [32], ECCV′18
+ AVOD [31], IROS′18
+ MMF [81], CVPR′19
+ 3D-CVF [33], ECCV′20
late fusion:
+ CLOCs [34], IROS′20
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Figure 6: Evolution of monocular or stereo image-based methods.

commonly exist in the vicinity of an object along with a long
tail [41]. Works [4, 74] also point out that the independent
networks, say depth estimation, make this 3D representation
sub-optimal concerning the non-differentiable transforma-
tion from 2D coordinates into 3D space. Consequently,
instead of computing an intermediate point cloud, the other
scheme wants to incorporate 3D geometry into image based
networks and learn a latent depth distribution [4, 72, 74]
explicitly or implicitly [70] in an end-to-end manner. DSGN
[4] and CaDNN [74] encode visual appearance into 3D
feature volumes, jointly optimizing depth and semantic cues
for 3D detection. LIGA-Stereo [72] turns to real LiDAR
signals for the high-level geometry-aware supervisions and
beyond under the guidance of a teacher network.
3.1.3. Summary

Fig. 6 illustrates the evolution of image based. Works in
this group are divided into result-lifting based and feature-
lifting based accordingly. Result-lifting based depends on
domain expertise to design 3D representation and resorts
to prior knowledge for template matching [44] or geometric
constraints for recovery [16, 17, 69]. Feature-lifting based
wants to compute an intermediate representation, say Pseudo
LiDAR[71, 45, 41] or 3D feature volumes [4, 72, 74]. As the
absence of depth information, we note that works [15, 74,
20, 4, 41, 71, 73, 75, 44] rely on additional data for training.
For an autonomous system, redundancy is indispensable to

guarantee safety apart from economic concerns, so image
based methods are poised to make a continuing impact over
the next few years.
3.2. Point Cloud based Methods

Convolutional Neural Networks (CNNs) has always been
applied in computer vision for its capability of exploiting
spatially-local correlations in dense regular grids [91] (e.g.,
images). Whereas, point clouds are sparse in distribution,
irregular in structure, and unordered in geometry by nature.
Consequently, convolving against a point cloud directly will
lead to a gross distortion of representation [9]. To address
issues above, works [24, 25, 6] voxelize their inputs to
lend themselves to convolution operator adaptively, while
works [51, 51, 40] turns to the recent advances of learning
over point sets [89, 92, 93, 90] for help instead. Depending
on representation learning strategies, we therefore divide
existing works into the following three groups: (1) voxel
based, (2) point based, and (3) voxel-point based.
3.2.1. Voxel based Methods

Works in this group voxelize irregular point clouds to
2D/3D compact grids and then collapse it to a bird’s-eye-
view 2D representation on which CNNs effectively convolve
against [76, 48, 49, 77, 23, 24, 25, 10, 6, 26, 27, 28, 29,
5, 56, 57, 55]. Typically, VoxelNet [24] rasterizes point
clouds into volumetric dense grids, followed by 3D CNNs
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Figure 7: Evolution of point cloud-based methods.

that convolve along each dimension. Notice that the com-
putation overheads and memory footprints grow cubically
in VoxelNet, SECOND [25] leverages sparse convolution
operation to get rid of unnecessary computation squandered
by unavailing zero-padding voxels. To thoroughly remove
3DCNNs layers, PointPillars [6] elongates voxels into pillars
that are arrayed in a BEV perspective. Note that PointPillars
decreases the resolution in vertical axis in essence which
is detrimental to the learning of representation. As a trade-
off, noticeable efforts stretch back to voxels. Voxel R-CNN
[28] aggregates voxel-wise features from 3D convolutional
volumes for proposal refinement. SE-SSD [27] jointly su-
pervises a student network under the guidance of the dis-
tilled knowledge injected by its teacher. Works [56, 57, 55]
incorporate multi-scale voxelization strategies into feature
aggregation. Works [29, 5, 76] exploit long-range contex-
tual dependencies among voxels inspired by recent success
of Transformers [94] in computer vision. Works [10, 77]
integrate shape learning strategy to the deteriorating point
cloud quality that caused by adverse weather, occlusions,
and truncations etc. It is worth mentioning that voxel based
approaches benefit from bird-view representation, which
possess less scale ambiguity and minimal occlusions [48,
49].
3.2.2. Point based Methods

Works in this group utilize permutation invariant oper-
ators to implicitly capture local structures and fine-grained
patterns without any quantization in order to retain the
original geometry of a raw point cloud [51, 52, 40]. To this
end, PointRCNN [40] leverages PointNet-like block [92] to

learn semantic cues associated with foreground points over
which 3D proposals are generated in a bottom-up fashion.
Notice that PointNet series are exhausted with the process
of upsampling and broadcasting semantic cues back into the
relevant points, 3DSSD [51] closely revisits the sampling
strategy with feature distance, compounded by Euclidean
distance, to safely remove it. Encouraged by the promising
performance on classification and semantic segmentation
from point clouds [90, 95, 96], Point-GNN [52] reasons on
local neighborhood graphs constructed from point clouds,
on which each node iteratively summarizes semantic cues
from intermediate reaches of its neighbors. Point based
approaches are internally time-consuming with a ball query
complexity of  (k ⋅ ||). Note that works [51, 40] leverage
multi-scale and multi-resolution grouping to achieve an ex-
panding receptive field, which make latency even severe as
points in  grow.
3.2.3. Point-voxel based Methods

Works in this group reveal a new fashion trend to inte-
grate the merits of both worlds together: voxel based [24, 25,
6] approaches are computationally effective but the desertion
of fine-grained patterns degrades further refinement, while
point based methods [52, 51, 40] have relatively higher
latency but wholly preserve the irregularity and locality
of a point cloud [78, 50, 39, 79, 53]. STD [50] applies
PointNet++ to summarize semantic cues for sparse points,
each of which is then voxelized to form a dense represen-
tation for refinement. PV-RCNN [39] deeply integrates the
effectiveness of 3D sparse convolution [25] and the flexible
receptive fields of PointNet-like set abstraction [92] to learn
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Figure 8: Evolution of multimodal fusion-based methods.

more discriminative semantics. SA-SSD [53] interpolates
3D sparse convolution features for raw point clouds onwhich
an auxiliary network is applied to endow voxel features with
structure-aware capability. BADet [79] exploits long-range
interactions iteratively among detection candidates, wherein
local neighborhood graphs are constructed to facilitate a
boundary-aware receptive field in a coarse-to-fine manner.

3.2.4. Summary
Fig. 7 illustrates the evolution of point cloud based.

Works in this group are divided into voxel based, point
based, and point-voxel based respectively, among which
voxel based appears to be dominant, as evidenced by Fig.
7. Voxel based is easily amenable to efficient hardware
implementations with distinguished accuracy and relatively
lower latency. Point based easily retains the spatially-local
structure of a point cloud at the cost of taking longer feedfor-
ward time than those based on voxels. Comparing the three
subdivisions, voxel based is still the most promising direc-
tion currently existing concerning real-time applications, say
autonomous driving.
3.3. Multimodal Fusion based Methods

Intuitively, single modality itself has its own defects,
a joint treatment appears to be a potential opportunity to
failure cases. Nevertheless, multimodal fusion based has still
trailed its point cloud based counterparts thus far.What, how,

and when to fuse have not been full understood yet [36].
Depending on to what extent these two modalities are cou-
pled, we divide existing efforts into sequential fusion based
and parallel fusion based. As the names suggest, if data flow
has more than one independent path through the networks,
then it is considered as parallel, otherwise sequential. The
former emphasizes that the data flow of different modalities
can pass through networks concurrently, while the latter
emphasizes that the data flow of different modalities only
has one single path to flow through networks successively.
In what follows, we analyze these two paradigms as regards
fusion evolutions, connections, and concerns to meet the
requirements.
3.3.1. Sequential Fusion based Methods

Works in this group are characterized by 2D driven
3D pipelines in a sequential manner, wherein the input
of downstream depends heavily on the output of upstream
[80, 38]. Frustum PointNets [80] first leverages a mature
2D CNN object detector to predict 2D proposals, each of
which are then transformed to 3D space in order to crop
corresponding frustum candidates, followed by point cloud
based detectors for segmentation and detection. Frustum-
ConvNet [38] generates a sequence of frustums that slide
along the optical axis perpendicular to 2D image plane,
which are summarized as frustum-wise features by PointNet
blocks and arrayed as a BEV feature map for fully convolu-
tional network.Works in this group resort to off-the-shelf 2D
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detectors for prior knowledge, with 3D search space being
dramatically reduced.Whereas, they also indicate a fatal risk
that the failure of 2D detectors is bound to deteriorate all
subsequent pipelines, which violates the original intention of
providing redundancy during difficult conditions rather than
just complementary and we therefore argue that sequential
fusion based may not be well-suited for autonomous driving
for the sake of safety.
3.3.2. Parallel Fusion based methods

Works in this group are decoupled from the single
modality. Suppose that one of the branches is cut off, the
network will still work if adjusted appropriately, say hyper-
parameters. Depending on at what point these semantic
representations from single modality are fused, a further
subdivision for parallel fusion based can be identified: (1)
early fusion, (2) deep fusion, and (3) late fusion.

Early fusion fuses different modalities at the data pre-
processing point, which is not commonly used in light of
the big noise of feature alignment at low level semantics.
PointPainting [12] takes as inputs raw point clouds, com-
pounded by segmentation scores that are predicted from the
associated images, with the help of an independent segmen-
tation network. Deep fusion fuses different modalities at the
intermediate point.MV3D [30] takes as inputs the bird-view,
front view, and images, fusing intermediate convolution
features at stage two. AVOD [31] further extends fusion
strategy to stage one to enrich more informative semantics
for proposal generation. Observe that works [30, 31] fuse
futures in a roi-wise manner, ContFuse [32] further fuses
multi-scale convolutional features via continuous convolu-
tion in a pixel-wise fashion. Notice that pixel-wise fusion
is vulnerable to faraway objects due to the difficulty of
finding corresponding pixels for the sparse LiDAR signals
at long ranges, MMF [81] exploits multiple related subtasks
(e.g., ground estimation, depth completion, and 2D object
detection etc.) to enhance the learning of cross-modality
fusion. Note that existing efforts treat semantics from dif-
ferent modalities equally, 3D-CVF [33] employs attention
mechanism to adaptively fuse semantics from point clouds
and the associated images. Late fusion fuses the outputs of
different modalities at the decision point. CLOCs [34] fuses
the outputs of 2D and 3D detections in decision level via
exploiting the consistency of geometries and semantics.

3.3.3. Summary
Fig. 8 illustrates the evolution of multimodal fusion

based. What to use. Consider the most commonly used
sensors for autonomous driving: camera and LiDAR. Pre-
ceding works [80, 38, 12, 30, 31, 81, 33, 34, 32] all take
images and point clouds as inputs. How to fuse. Efforts have
been made to align semantics of different levels at different
scales. Works [30, 31, 80, 38, 34] exploit roi-wise fusion.
Works [12, 81, 33, 32] leverage point-wise fusion. When to
use. Cross-modality fusion can happen at any time during
the forward propagation: say early fusion [12], deep fusion
[30, 32, 31, 81, 33], and late fusion [34]. In retrospect of

the evolution of this group, we notice that multimodal fusion
based still lags far behind its point cloud based counterparts.
We attribute the performance gap to the difficulty of se-
mantic alignments. First, semantics from images and point
clouds are heterogeneous as they are presented in different
views [33] (i.e., camera view vs. real 3D view). Conse-
quently, finding point-wise correspondences is difficult as
the transformation from LiDAR points to image pixels is a
many-to-one mapping and vice versa. Such an ambiguity is
referred as “feature blurring” in PointPainting [12]. Second,
images are arrayed in dense grids, while point clouds are
distributed in sparse points. To what extent semantics are
aligned by forcing these twomodalities to have the same size
for aggregation remains untouched. Finally, operations that
we use to crop and resize features may not be as accurate as
expected [34].

4. EVALUATION
This section holds an apples-to-apples comparison of

the state-of-the-arts on the widely used KITTI dataset, more
recent nuScenes andWaymo dateset (Sec. 4.1). A case study
based on fifteen selected models is given in Sec. 4.2, with
respect to runtime analysis (Sec. 4.2.2), error analysis (Sec.
4.2.3), and robustness analysis (Sec. 4.2.4).
4.1. Comprehensive Comparison of the

State-of-the-Arts
Table 6 summarizes the 3D detection performance on

the KITTI Dataset. Image based methods have currently
trailed the performance of point clouds counterparts thus
far, which should be ascribed to depth ambiguity. Point
clouds based methods still predominate KITTI benchmark
due to low latency and high accuracy by resorting to 3D
sparse convolution. Multimodal fusion based methods are
closing the gap with point clouds counterparts somewhat.
As mentioned above, fusing these two modalities together
is non-trivial due to view misalignment. Noticeably, on the
one hand, monocular or stereo cameras indeed bring extra
source information as a supplementary, which circumvent
the risk of over-reliance on a single sensor. On the other
hand, multiple sensors hinder the runtime andmake it hard to
deploy given the requirement of continuous synchronization.
Table 7 and Table 8 present the 3D detection performance
on the more recent nuScenes dataset and Waymo dataset,
respectively. Although works that report performances on
nuScenes or Waymo are not as common as KITII currently,
assessing the effectiveness of detectors on these two large-
scale datasets shall be necessary in the foreseeable future,
regardless of dataset size or diversity as evidenced in Table
2.
4.2. Case Study
4.2.1. Experimental Setup

Fifteen models are selected from the surveyed works
depending on whether the official source code and the corre-
sponding pretrained parameters are available. Notice that all
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Table 6
Comparisons of the state-of-the-art 3D detection AP 3D|R40 on KITTI test split, by submitting to official test server. All these
methods follow the official KITTI evaluation protocol, i.e. the rotated IoU 3D of 0.7, 0.5, and 0.5 is for the categories of Car,
Cyclist, and Pedestrian, respectively. ‘-’ means the results are unavailable.

Input Methods Speed
(fps)

Cars Pedestrians Cyclists
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Images

Result-
lifting

Deep MANTA [15] - - - - - - - - - -
Deep3DBox [16] - - - - - - - - - -

Mono3D [44] - 2.53 2.31 2.31 - - - - - -
GS3D [17] - 4.47 2.90 2.47 - - - - - -

Mono3D-PLiDAR [41] - 1.76 7.50 6.10 - - - - - -
Monodle [21] 25 17.23 12.26 10.29 9.64 6.55 5.44 4.59 2.66 2.45

MonoRCNN [19] - 18.36 12.65 10.03 - - - - - -
MonoFlex [69] - 19.94 13.89 12.07 9.43 6.31 5.26 4.17 2.35 2.04

DD3D [20] - 23.19 16.87 14.36 16.64 11.04 9.38 7.52 4.79 4.22
Stereo R-CNN [18] - 47.58 30.23 23.72 - - - - - -

YOLOStereo3D [22] 10 65.68 41.25 30.42 28.49 19.75 16.48 - - -

Feature-
lifting

3DOP [47, 66] - - - - - - - - - -
MF3D [45] - - - - - - - - - -

OFT-Net[70] - 2.50 3.28 2.27 - - - - - -
Mono3D-PLiDAR [41] - 10.76 7.50 6.10 - - - - - -

CaDDN [74] - 19.17 13.41 11.46 12.87 8.14 6.76 7.00 3.41 3.30
Pseudo-LiDAR [71] - 54.53 34.05 28.25 - - - - - -

Pseudo-LiDAR++ [73] - 61.11 42.43 36.99 - - - - - -
Pseudo-LiDAR E2E [75] - 64.75 43.92 38.14 - - - - - -

DSGN [4] - 73.50 52.18 45.14 20.53 15.55 14.15 27.76 18.17 16.21
LIGA-Stereo [72] - 81.39 64.66 57.22 40.46 30.00 27.07 54.44 36.86 32.06

Point clouds

Voxel
based

VeloFCN [48] 1.0 - - - - - - - - -
PIXOR [49] 28.6 - - - - - - - - -
HVNet [57] 31 - - - - - - - - -

VoxelNet[24] 2.0 77.82 64.17 57.51 - - - - - -
CenterPoint [23] - 81.17 73.96 69.48 47.25 39.28 36.78 73.04 56.67 50.60
PointPillars [6] 62.0 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92

TANet [76] - 84.39 75.94 68.82 53.72 44.34 40.49 75.70 59.44 52.53
SECOND [25] 26.3 84.65 75.96 68.71 - - - - - -

Voxel-FPN [55] 50 85.48 76.70 69.44 - - - - - -
Part-A2 [56] 12.5 87.81 78.49 73.51 53.10 43.35 40.06 79.17 63.52 56.93

CIA-SSD [26] 32 89.59 80.28 72.87 - - - - - -
Voxel R-CNN [28] 25.2 90.90 81.62 77.06 - - - - - -

CT3D [29] - 87.83 81.77 77.16 - - - - - -
VoTr [5] - 89.90 82.09 79.14 - - - - - -
SPG [77] - 90.50 82.13 78.90 - - - - - -

SE-SSD [27] 32 91.49 82.54 77.15 - - - - - -
BtcDet [10] - 90.64 82.86 78.09 - - - 82.81 68.68 61.81

Point
based

PointRCNN [40] 10 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53
Point-GNN [52] 1.7 88.33 79.47 72.29 51.92 43.77 40.14 78.60 63.48 57.08

3DSSD [51] 25.0 88.36 79.57 74.55 54.64 44.27 40.23 82.48 64.10 56.90

Point-voxel
based

Fast PointRCNN [78] 16.7 85.29 77.40 70.24 - - - - - -
STD [50] 12.5 87.95 79.71 75.09 53.29 42.47 38.35 78.69 61.59 55.30

SA-SSD [53] 25.0 88.75 79.79 74.16 - - - - - -
PV-RCNN [39] 12.5 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65

BADet [79] 7.1 89.28 81.61 76.58 - - - - - -

Multimodal

Sequential
fusion

Frustum-PointNets [80] 5.9 82.19 69.79 60.59 50.53 42.15 38.08 72.27 56.12 49.01
Frustum-Convnet [38] 2.1 87.36 76.39 66.69 52.16 43.38 38.80 81.98 65.07 56.54

Parallel
fusion

MV3D [30] 2.8 74.97 63.63 54.00 - - - - - -
AVOD [31] 12.5 76.39 66.47 60.23 36.10 27.86 25.76 57.19 42.08 38.29

ContFuse [32] 16.7 83.68 68.78 61.67 - - - - - -
PointPainting [12] 2.5 82.11 71.70 67.08 50.32 40.97 37.87 77.63 63.78 55.89

MMF [81] 12.5 88.40 77.43 70.22 - - - - - -
3D-CVF [33] - 89.20 80.05 73.11 - - - - - -
CLOCs [34] - 88.94 80.67 77.15 - - - - - -

Table 7
Comparisons of the state-of-the-art 3D detection on nuScenes test set. “TC” and “Cons.Veh.” denote traffic cone and
construction vehicle respectively.

Methods mAP NDS Car Truck Bus Trailer CV Pedestrian Motorcycle Bicycle TC Barrier

PointPillars [6] 30.5 45.3 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9
PointPainting [12] 46.4 58.1 77.9 35.8 36.2 37.3 15.8 73.3 41.5 24.1 62.4 60.2
CenterPoint [23] 58.0 65.5 84.6 51.0 60.2 53.2 17.5 83.4 53.7 28.7 76.7 70.9
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Table 8
Comparisons of the state-of-the-art 3D detection on Waymo val set.

Methods
LEVEL_1

3D mAP/mAPH
LEVEL_2

3D mAP/mAPH
LEVEL_1 3D mAP/mAPH by Distance

0-30m 30-50m 50m-Inf

PointPillars [6] 63.30/62.70 55.20/54.70 84.90/84.40 59.20/58.60 35.80/35.20
Voxel R-CNN [28] 75.59/- 66.59/- 92.49/- 74.09/- 53.15/-

SECOND [25] 67.94/67.28 59.46/58.88 88.10/87.46 65.31/64.61 40.36/39.57
PV-RCNN [39] 71.69/71.16 64.21/63.70 91.83/91.37 69.99/69.37 46.26/45.41

VoTr [5] 74.95/74.25 65.91/65.29 92.28/91.73 73.36/72.56 51.09/50.01
BtcDet [10] 78.58/78.06 70.10/69.61 96.11/- 77.64/- 54.45/-

Table 9
Runtime Analysis. Numbers in 1st row indicate 3D detection on moderate difficulty for Car category sorted in ascending order by
AP3D|R11 .

Methods CaDDN[74] PointPillars[6] TANet[76] Point-GNN[52] SECOND[25] PointRCNN[78] 3DSSD[51] Part-A2[56] SA-SSD[53] CIA-SSD[26] PV-RCNN[39] Voxel R-CNN[28] CT3D[29] BADet[79] SE-SSD[27]

AP 19.19 77.28 77.54 78.34 78.62 77.38 79.23 79.38 79.80 79.74 83.56 84.54 85.47 86.21 86.25

FLOPS 27.33G 3.72G 13.54G 4.45M 3.49G 1.53G 31.44G 2.95G 155.48G 24.48G 2.97G 0.87G 3.17G 158.74G 24.45G

Params 67.55M 4.83M 6.5M 1.49M 5.33M 4.04M 7.56M 63.81M 5.34M 3.81M 13.12M 7.59M 7.83M 5.79M 3.81M

FPSdefault 3.17 23.85 14.36 1.89 15.00 6.25 10.03 9.51 20.50 33.40 7.19 16.97 7.13 7.10 32.40

FPSunif ied 3.17 23.98 14.36 - 15.10 6.27 10.09 9.47 20.40 23.90 7.20 17.28 8.21 7.20 23.70

our experiments are conducted on KITTI dataset by directly
reloading official pretrained parameters with default settings.
We follow KITII protocol to evaluate on the val split for the
most important Car category of moderate difficulty based
on AP3D|R11 metric with an IoU threshold 0.7. For the
ease of reproducibility, all materials are available online:
https://github.com/rui-qian/SoTA-3D-Object-Detection.

4.2.2. Runtime Analysis
To assess the real latency of detectors, we report run-

time analysis in Table 9. Instead of just citing the numbers
claimed in the papers, we conduct new experiments by
ourselves. We argue that it is necessary as these numbers
are obtained under different hardware resources in various
settings. Some of them may use Tesla P40 GPU (e.g., Fast
PointRCNN [78]) whereas others may use TITAN Xp GPU
(e.g., CIA-SSD [26]). Some of them may ignore the time
of data processing while others may use multiple process.
Hence, directly comparing against these numbers inevitably
leads to controversy. By contrast, we report two versions of
runtime on a single GTX 1080Ti GPU, termed as FPSdefaultand FPSunif ied . FPSdefault means the numbers are obtained
with official settings, which are almost consistent with the
ones claimed in the papers. FPSdefault reveals that our
environment can reproduce the claimed results. FPSunif iedjustifies all models in a unified criteria with 1 batch size and 4
multiple processes, fully eliminating other irrelevant factors.
Table 9 indicates CIA-SSD [26] and SE-SSD [27] drop a lot
under our paradigm. Considering that FLOPS is hardware
independent, we also provide their FLOPS in the 2nd row
that have never been reported before among existing surveys
to the best of our knowledge. SE-SSD [27] shows a superior
performance of speed-accuracy tradeoff, as evidenced by the
1st and 2nd rows of Table 9.

4.2.3. Error Analysis
To identify the key parameters affecting the performance

of detectors, we report error analysis in Table 10. As men-
tioned in Sec. 2.1, we adopt 7 parameters for an oriented 3D
bounding box. These 7 parameters are treated equally when
we regress variables. However, what mainly restricts 3D
detection performance remains unexplored largely. Inspired
by Monodle [21], we therefore conduct an errors analysis by
replacing part of predicted 3D bounding box parameters with
their corresponding ground truth values. A prediction will
be assigned with a ground truth if the ratio of overlapping
area exceeds a certain threshold. We set 0.6 in this paper.
As shown in Table 10, we achieve a significant AP3D gain
among all selected models in the 2nd row if the predicted 3D
location is replaced by ground truth, where the maximum
gain is 13.19%. According to Table 10, we observe that 3D
location error plays the leading role of error contribution,
followed by depth and 3D size error.
4.2.4. Robustness Analysis

To understand to what extent detectors are resilient to
LiDAR sparsity, we report robustness analysis in Table
11. As mentioned in Sec. 2.2, LiDAR, typically an HDL-
64E Velodyne LiDAR, is several orders of magnitude more
expensive than camera, which leads to an exorbitant cost
for deployment. Therefore, resorting to a less dense point
cloud for 3D detection is encouraging. In this paper, we use
algorithms proposed in Pseudo-LiDAR++ [73] to sparsify
KITII LiDAR signals from 64 to 32, 16, 8 accordingly. As
shown in Table 11, Point-GNN [52], SECOND [25], 3DSSD
[51] Part-A2 [56], SA-SSD [53] and CIA-SSD [26] maintain
a reasonable accuracy when LiDAR signals are reduced
from 64 to 32.We also observe an obvious performance drop
among all models when LiDAR signals are reduced from 32
to 16.

15

https://github.com/rui-qian/SoTA-3D-Object-Detection


R. Qian, X. Lai and X. Li Pattern Recognition 130 (2022) 108796

Table 10
Error Analysis. We replace the predicted 3D bounding boxes partially with their corresponding ground truth values. Numbers in
1st row indicate 3D detection on moderate difficulty for Car category sorted in ascending order by AP3D|R11 .

Methods CaDDN[74] PointPillars[6] TANet[76] Point-GNN[52] SECOND[25] PointRCNN[78] 3DSSD[51] Part-A2[56] SA-SSD[53] CIA-SSD[26] PV-RCNN[39] Voxel R-CNN[28] CT3D[29] BADet[79] SE-SSD[27]

baseline 19.19 77.28 77.54 78.34 78.62 77.38 79.23 79.38 79.80 79.74 83.56 84.54 85.47 86.21 86.25

w/ gt 3D location 32.20 87.20 87.08 88.79 88.31 87.31 88.72 88.11 89.45 89.15 88.40 88.53 88.65 89.06 89.09

w/ gt depth 30.32 78.68 78.66 79.02 82.59 78.08 85.97 83.47 86.88 86.58 84.18 84.80 86.19 86.70 86.56

w/ gt 3D size 19.36 78.42 77.88 78.80 79.16 78.07 85.69 83.36 86.26 79.80 83.95 84.47 85.86 86.34 86.25

w/ gt orientation 19.38 77.52 77.73 78.46 78.72 77.56 79.24 79.42 86.23 79.78 83.68 84.32 85.58 86.28 86.33

Table 11
Robustness Analysis. Numbers in 1st row indicate 3D detection on moderate difficulty for Car category sorted in ascending order
by AP3D|R11 .

LiDAR beams CaDDN[74] PointPillars[6] TANet[76] Point-GNN[52] SECOND[25] PointRCNN[78] 3DSSD[51] Part-A2[56] SA-SSD[53] CIA-SSD[26] PV-RCNN[39] Voxel R-CNN[28] CT3D[29] BADet[79] SE-SSD[27]

64 (Baseline) n.a. 77.28 77.54 78.34 78.62 77.38 79.23 79.38 79.80 79.74 83.56 84.54 85.47 86.21 86.25

32 n.a. 68.32 67.09 75.85 75.58 70.11 77.27 76.06 76.10 76.32 77.60 76.43 78.15 76.47 76.11

16 n.a. 57.26 46.23 58.75 59.09 57.06 59.65 59.41 57.06 56.22 63.34 58.61 60.82 57.39 57.27

8 n.a. 32.49 24.25 32.56 31.58 34.26 31.53 34.22 30.55 29.50 35.80 34.05 38.96 30.29 31.11

5. RETROSPECT AND PROSPECT
5.1. Concluding Remarks

This research presents a survey on 3D object detection in
the context of autonomous driving, for the sake of holding
potential interest and relevance for 3D visual data analysis,
and consequently facilitating a mature taxonomy for the in-
terested audience to either form a structured picture quickly
or start their own research from scratch easily.

Depending on what modalities are actually fed into net-
works during inference, we structure existing literature along
three dimensions: (1) image based, (2) point cloud based,
and (3) multimodal fusion based, allowing us to clarify the
key challenge that stems from nature properties of modal-
ity itself. We attribute challenges to visual appearance re-
covery in the absence of depth information from images,
representation learning from partially occluded unstructured
point clouds, and semantic alignments over heterogeneous
features from cross modalities. Having taken a glimpse
of evolution of 3D object detection, an apples-to-apples
comparison of the state-of-the-arts is presented. We notice
that there is a growing tendency for point clouds based
methods to further broaden accuracy advantages over their
image based counterparts. A case study on the basis of
fifteen selected models is conducted to justify the state-of-
the-arts, in terms of runtime analysis, error analysis, and
robustness analysis. We observe that what mainly restricts
the performance of detection is 3D location error.

In retrospect of what has been done, we draw concluding
remarks for the surveyed works. Seminal works are pro-
found. VoxelNet [24] takes the first lead to propose an end-
to-end trainable network via learning an informative 3D vol-
umetric representation instead ofmanual feature engineering
as most previous works do. Subsequently SECOND [25] ex-
ploits sparse convolution operation to only convolve against

non-empty voxels, mitigating unnecessary computation in-
curred by unavailing zero-padding voxels in light of the spar-
sity of point clouds. VoxelNet-like pipelines incorporated
with sparse convolution have been continuously inspiring
their successors ever since. Auxiliary network learning is
artful. SA-SSD [53] explores an auxiliary network to endow
voxel features with structure-aware capability. SE-SSD [27]
and LIGA-Stereo [72] exploit distilled intermediate repre-
sentation and beyond from a teacher network, which subtly
differs frommulti-task learning [81] as they are detachable in
the phase of inference artfully. Transformers are promising.
A new paradigm of applying transformers [94] to object
detection has recently evolved as the effectiveness of acquir-
ing long-range interactions for faraway objects and learn-
ing spatial context-aware dependencies for false negatives,
wherein CT3D [29] andVoTr [5] have achieved a remarkable
performance gain.
5.2. Reflections on Future Work

In prospect of what remains to be done, we identify the
avenues for future work. Safety is nothing without security.
Reasoning under uncertainty matters. 3D visual data holds
potentials of uncertainty by nature, regardless of LiDAR
signals or images. Therefore, all critical decisions that au-
tonomous driving system makes should be under the guid-
ance of uncertainty constraints, e.g. the system needs to
recognize a higher uncertainty in foggy weather than that
under sunny conditions. Whereas, how to trade off the con-
cerns between “minimizing risks” and “completing tasks” is
still an imperative yet largely unexplored problem [36]. We
notice MonoFlex [69] and MonoRCNN [19] take certainty
into account in their works among our surveyed literature.
Adversarial attack matters. Note that modern autonomous
driving system relies heavily on deep learning. Whereas,
deep learning methods have already been proved to be
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vulnerable to visually imperceptible perturbations [97] and
therefore poses an inherent security risk. With sabotage and
threats of blind spots on the rise, adversarial attacks on 3D
object detection should arouse enough attention of 3D vision
community. Rethink what we have on hand. Representation
matters. Whether the data representation or the discrepancy
in depth estimation mainly results in the performance gap
between images and LiDAR signals remains open. Pseudo-
LiDAR series [71, 73] break the stereotype that images can
only be leveraged in the form of 2D representation, which
remind us to rethink the off-the-shelf 3D sensor data. DSGN
[4] and CaDDN [74] try to learn a latent depth distribution
for an intermediate 3D representation directly instead of
resorting to empirical geometric constraints. These findings
also provide a new idea formultimodal fusion as they remove
the requirement of point-wise correspondences retrieval for
semantic alignments. Shape learning matters. A point cloud
is self-occluded by nature, which makes itself 2.5D in prac-
tice. Shape learning from partially occluded sparse point
clouds seems to be necessary, as evidenced in SE-SSD [27],
SPG [77], and BtcDet [10]. In summary, we hope that this
survey will shed light on 3D object detection and inspire
more follow-up literature in this area.
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