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Abstract

Despite the progress of interactive image segmentation methods, high-quality pixel-level annotation is still time-
consuming and laborious — a bottleneck for several deep learning applications. We take a step back to propose
interactive and simultaneous segment annotation from multiple images guided by feature space projection. This
strategy is in stark contrast to existing interactive segmentation methodologies, which perform annotation in the im-
age domain. We show that feature space annotation achieves competitive results with state-of-the-art methods in
foreground segmentation datasets: iCoSeg, DAVIS, and Rooftop. Moreover, in the semantic segmentation context,
it achieves 91.5% accuracy in the Cityscapes dataset, being 74.75 times faster than the original annotation proce-
dure. Further, our contribution sheds light on a novel direction for interactive image annotation that can be inte-
grated with existing methodologies. The supplementary material presents video demonstrations. Code available at
https://github.com/LIDS-UNICAMP/rethinking-interactive-image-segmentation.
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1. Introduction

Convolutional Neural Networks (CNNs) can achieve
excellent results on image classification [1], image seg-
mentation [2], pose detection [3], and other images/video-
related tasks [4], at the cost of an enormous amount of
high-quality annotated data and processing power. Thus,
interactive image segmentation with reduced user effort
is of primary interest to create such datasets for the train-
ing of CNNs. Concerning image segmentation tasks, the
annotations are pixel-wise labels, usually defined by inter-
active image segmentation methods [5] or by specifying
polygons in the object boundaries [6].

Recent interactive image segmentation methods based
on deep learning can significantly reduce user effort by
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performing object delineation from a few clicks, some-
times in a single user interaction [7, 8]. However, such
deep neural networks do not take user input as hard con-
straints and so cannot provide enough user control. Novel
methods can circumvent this issue by refining the neural
network’s weights while enforcing the correct results on
the annotated pixels [9, 10]. Their results are remarkable
for foreground segmentation. Still, in complex cases or
objects unseen during training, the segmentation may be
unsatisfactory even by extensive user effort.

The big picture in today’s image annotation tasks is that
thousands of images with multiple objects require user in-
teraction. While they might not share the same visual ap-
pearance, their semantics are most likely related. Hence,
thousands of clicks to obtain thousands of segments with
similar contexts do not sound as appealing as before.

This work presents a scheme for interactive large-scale
image annotation that allows user labeling many similar
segments at once. It starts by defining segments from mul-
tiple images and computing their features with a neural
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Figure 1: Our approach to interactive image segmentation: candidate
segments are sampled from the dataset and presented in groups of sim-
ilar examples to the user, who annotates multiple segments in a single
interaction.

network pre-trained from another domain. User annota-
tion is based on feature space projection, Figure 1. As it
progresses, the similarities between segments are updated
with metric learning, increasing the discrimination among
classes, and further reducing the labeling burden.

Our implementation of this methodology is represented
in Figure 2 and it is described with further details in Sec-
tion 3.

Contribution: To our knowledge, this is the first in-
teractive image segmentation methodology that does not
receive user input on the image domain. Hence, our goal

is not to beat the state-of-art of interactive image seg-
mentation but to demonstrate that other forms of human-
machine interaction, notably feature space interaction,
can benefit the interactive image segmentation paradigm
and can be combined with existing methods to perform
more efficient annotation.

2. Related Works

This section is divided into two parts, a first section
where methodologies related to pixel labeling are pre-
sented and a second section where we review auxiliary
techniques that are employed in the proposed pipeline but
are not interactive segmentation methods.

2.1. Interactive segmentation and data annotation

In this work, we address the problem of assigning a la-
bel (i.e. class) to every pixel in a collection of images, de-
noted as image annotation in the remaining of the paper.
This is related to the foreground (i.e. region) segmentation
microtasks, where the region of interest has no specific
class assigned to it, and the delineation of the object is of
primary interest — in standard image annotation proce-
dures, this is the step preceding label assignment [6].

Current deep interactive segmentation methods, from
click [9, 7, 10], bounding-box [8] to polygon-based ap-
proaches [11] address this microtask of segmenting and
then labeling each region individually to generate anno-
tated data.

A minority of methods segment multiple objects
jointly; to our knowledge, in deep learning, this has been
employed only once [12]; in classical methods, a hand-
full could do this efficiently [13].

Fluid annotation [14] proposes a unified human-
machine interface to perform the complete image anno-
tation; the user annotation process starts from the pre-
dictions of an existing model, requiring user interaction
only where the model lacks accuracy, further reducing the
annotation effort. The user decides which action it will
perform at any moment without employing active learn-
ing (AL). Hence, the assumption is that the user will take
actions that will decrease the annotation budget the most.

This approach falls in the Visual Interactive Labeling
(VIAL) [15] framework, where the user interface should
empower the users, allowing them to decide the optimal
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move to perform the task efficiently. Extensive experi-
ments [16] have shown that this paradigm is as competi-
tive as AL and obtains superior performance when start-
ing with a small amount of annotated data.

Inside the VIAL paradigm, feature space projection has
been employed for user guidance in semi-supervised label
propagation [17, 18] and for object detection in remote-
sensing [19]. However, its use for image segmentation
has not been explored yet.

2.2. Complementary background
In this section, we briefly review necessary concepts

to the proposed pipeline, them being: boundary predic-
tion and its relationship to image segmentation; and met-
ric learning and dimensionality reduction.

Boundary prediction (i.e. edge detection). These meth-
ods regress pixels intensities of the transitions between
homogeneous regions (i.e. boundary), where a greater
value indicates a stronger boundary and a lower value a
weaker. The notion of weaker and stronger is context de-
pendent, usually being related to how discrepant regions
are from their neighbors.

The duality between boundaries (i.e. contour) and seg-
mentation is such a binary boundary, where background
is zero and the contour is one, contains a segment de-
lineated by the contour; on the fuzzy scenario where the
contours’ values are between zero and one, multiple sets
of segments can be obtained by creating a binary contour
consisting of only the pixels with values above a thresh-
old in the fuzzy contour, and computing segmentation as
described in the binary case. Moreover, an increasing se-
quence of thresholdings produce a decreasing set of dis-
joint segments, such that the previous segments are a sub-
set of the subsequent thresholdings, producing a hierar-
chical segmentation. This fuzzy contour representation
is known as a ultrametric contour map — an interested
reader can refer to [20, 21] to review the duality between
contours and hierarchies.

In Convolutional Oriented Boundaries [22], a CNN
predicts multiple boundaries in multiple scales and ori-
entations and combine them into an ultrametric contour
map (i.e. fuzzy contour) to perform the hierarchical seg-
mentation.

Holistically-nested Edge Detection (HED) [23] em-
ployed a CNN to predict boundaries at multiple scales in

what they called side predictions, starting from the shal-
lower layers of the network up to the last layer, and fusing
them into a single output image. Their loss function op-
timizes each side prediction independently and the com-
bined final output. Lie et al. [24] improved upon HED
by learning to fuse side outputs using 1 × 1 convolutional
blocks. Hybrid Convolutional Features [25] learns an ad-
ditional parameter to normalize the features of different
side predictions before the multi-scale fusion, balancing
the influence of earlier and latter feature blocks. Liu et
al. [26] incorporates semantic labels by predicting two
different outputs, a class-agnostic edge detection, as the
other approaches, and a edge-detection with class predic-
tions. Further boosting the edge prediction performance
by using higher-level semantic information.

Other tasks also employ edge estimation to enhance
their performance, notably PoolNet [27] switches be-
tween saliency object prediction and edge estimation in
the training loop with the same architecture to obtain
saliency with greater boundary adherence.

Dimensionality reduction and metric learning. Both of
these techniques concerns with learning a transformation
(i.e. function) or an embedding to aid a task of interest.
The former being in the unsupervised scenario and in the
recent literature, mostly embedding into a 2-dimensional
space for data visualization and exploratory analysis; and
the latter, being supervised or semi-supervised.

In this work, the dimensionality reduction is used to
arrange the data on a 2D plane for visualization and the
metric learning to update their positions as the user anno-
tates, facilitating subsequent annotations.

Dimensionality reduction aims at reducing a feature
space from a higher to a lower dimension with similar
characteristics. Some methods enforce the global struc-
ture (e.g. PCA); other approaches, such as non-linear
methods, focus on local consistency, penalizing neighbor-
hood disagreement between the higher and lower dimen-
sional spaces.

In some applications, the dimensionality reduction
aims to preserve the original features’ characteristics. In
our case, we wish to facilitate the annotation as much as
possible, hence, a reduction that groups similar segments
and segregates dissonant examples is more beneficial than
preserving the original information.

The t-SNE [28] algorithm is the most used technique
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for non-linear dimensionality reduction. It projects the
data into a lower-dimensional space while minimizing the
divergence between the higher- and lower-dimensional
neighborhood distributions.

Uniform Manifold Approximation (UMAP) [29] im-
proves upon t-SNE by providing a geometric and topo-
logical theoretical for dimensionality reduction, their im-
plementation produces consistent embedding given mul-
tiple executions by using the spectral embedding as ini-
tialization, and their optimization process to compute the
embedding is faster by not requiring to recompute a score
for every pair after each iteration, thus being much faster
than t-SNE.

Initially, metric learning methods were concerned with
finding a metric where some distance-based (or similarity)
classification [30, 31] and clustering [32] would be opti-
mal, in the sense that samples from the same class should
be closer together than adversary examples. Given some
regularity conditions, learning this new metric is equiva-
lent to embedding the data into a new space.

The metric learning objective functions can be roughly
divided into two main varieties, soft assignment and
triplet-based techniques. The former, as proposed in
NCA [31], maximizes a soft-neighborhood assignment
computed through the soft-max function over the neg-
ative distance between the data points, penalizing label
disagreement of immediate neighbors more than samples
further apart. Triplet-based methods [30] select two ex-
amples from the same class and minimize their distance
while pushing away a third one from a different class
when it violates a threshold given the pair distance. Thus,
avoiding unnecessary changes when a neighborhood be-
longs to a single class.

More recently, these methods began to focus mostly
on improving embedding through neural networks rather
than on the metric-centered approach.

3. Proposed Method

Our methodology allows the user to annotate multiple
classes jointly and requires lower effort when the data are
redundant by allowing multiple images to be annotated
at once. Multiple image annotation is done by extract-
ing candidate regions (i.e. segments) and presenting them
simultaneously to the user. The candidate segments are

displayed closer together according to their visual simi-
larity [33] for the label assignment of multiple segments
at once. Hence, user interaction in the image domain is
only employed when necessary — not to assign labels but
to fix incorrect segments. Since, this action is the one that
requires the most user effort and has been the target of
weakly-supervised methodologies [34] that try to avoid it
altogether. Therefore, this approach is based on the fol-
lowing pillars:

• The segment annotation problem should be evalu-
ated as a single task [14]. While dividing the prob-
lem into microtasks is useful to facilitate the user and
machine interaction, they should not be treated inde-
pendently since the final goal is the complete image
annotation.

• The human is the protagonist in the process, as de-
scribed in the VIAL process [15], deciding which
action minimizes user effort for image annotation
while the machine assists in well-defined microtasks.

• The annotation in the image domain is burdensome;
thus, it should be avoided, but not neglected, since
perfect segmentation is still an unrealistic assump-
tion.

• The machine should assist the user initially, even
when no annotated examples are present [16], and as
the annotation progresses, labeling should get easier
because more information is provided.

3.1. Overview
The proposed methodology is summarized in Figure 2

and each component is described in the subsequent sec-
tions.

The user interface is composed of two primary com-
ponents, the Projection View and the Image View. Red
contours in Figure 2 delineate which functionalities are
present in these widgets. The Projection View is con-
cerned with displaying the segments arranged in a canvas
(Figure 1), enabling the user to interact with it: assign-
ing labels to clusters, focusing on cluttered regions, and
selecting samples for segmentation inspection and correc-
tion in the image domain.

Image View displays the image containing a segment
selected in the canvas. It is highlighted to allow fast com-
ponent recognition among the other segments’ contours.
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Figure 2: The proposed feature space annotation pipeline. Input images’
gradients (i.e. edge detection) are estimated using a neural network, from
these gradients we partition the images into a set of candidate segments.
Another network extracts the segments’ features, which are used to com-
pute their 2D coordinates (i.e. embedding), the segments are arranged at
their respective coordinates and shown to the user for annotation. As
labels are provided, the segments’ features and coordinates are updated
using metric learning to cluster samples belonging to the same class. The
user can also select segments on the embedding for correction on the im-
age domain. Upon conclusion of the annotation, the assigned labels are
mapped to the original image domain using the segments’ regions.

Samples already labeled are colored by class. This wid-
get allows further user interaction to fix erroneous delin-
eation, as further discussed in Section 3.7. Segment se-
lection also works backwardly, when a region is selected
in the Image View, its feature space neighborhood is fo-
cused on the projection canvas, accelerating the search for
relevant clusters by providing a mapping from the image
domain to the projection canvas.

The colored rectangles in Figure 2 represent data pro-
cessing stages: yellow represents fixed operations that are
not updated during user interaction, red elements are up-
dated as the user annotation progresses, and the greens are
the user interaction modules. Arrows show how the data

flows in the pipeline.
The pipeline works as follows, starting from a collec-

tion of images, their gradients are computed to partition
each image into segments, which will be the units pro-
cessed and annotated in the next stages.

Since we wish to cluster together similar segments, we
must define a similarity criterion. Therefore, for each seg-
ment, we obtain their deep representation (i.e. features).
Their Euclidean distances are used to express this infor-
mation — they are more dissimilar as they are further
apart in the feature space.

The next step concerns the notion of similarity be-
tween segments as presented and perceived by the user.
We propose communicating this information to the user
by displaying samples with similar examples in the same
neighborhood. Hence, the segments’ features are used to
project them into the 2D plane while preserving, as best
as possible, their relative feature space distances.

The user labeling process is executed in the 2D canvas
by defining a bounding-box and assigning the selected la-
bel to the segments inside it. As the labeling progresses,
their deep representation is updated using metric learn-
ing, improving class separability, enhancing the 2D em-
bedding, thus, reducing the annotation effort. We refer
to [15] for a review in visual interactive labeling and [33]
for interactive dimensionality reduction systems.

This pipeline relies only upon the assumption that it
is possible to find meaningful candidate segments from a
set of images and extract discriminant features from them
to cluster together similar segments. Even though these
problems are not solved yet, existing methods can satisfy
these requirements, as they are validated in our study of
parts (Section 4.3).

3.2. Gradient and Image Partition

Gradient computation and watershed-based image par-
tition are operations of the first step of the pipeline, ob-
taining initial candidate segments. In the ideal scenario,
the desired regions are represented by a single connected
component, requiring no further user interaction besides
labeling.

However, obtaining meaningful regions is a challeng-
ing and unsolved problem. Desired segments vary from
application to application. On some occasions, users wish
to segment humans and vehicles in a scene, while in the
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same image, other users may desire to segment the clothes
and billboards. Thus, the proposed approach has to be
class agnostic and enables the user to obtain different seg-
ment categories without effort.

The usual approach computes several solutions (e.g.
Multiscale Combinatorial Grouping (MCG) [35]) and em-
ploys a selection policy to obtain the desired segments.
However, it does not guarantee disjoint regions, and it
generates thousands of candidates, further complicating
the annotation process.

Given that segments should be disjoint, and they are
also task dependent, we chose to employ hierarchical seg-
mentation techniques for this stage. Most of the relevant
literature for this problem aims at obtaining the best gradi-
ent (edge saliency) to compute segmentation, as described
in the boundary prediction paragraph of Section 2.2.

We opted to employ the flexible hierarchical watershed
framework [36, 37] for delineating candidate segments on
the gradient image estimated by PoolNet [27] architec-
ture, because we noticed that this approach produces less
irrelevant boundaries for image segmentation than other
methods. The hierarchical watershed allows manipula-
tion of the region merging criterion, granting the ability to
rapidly update the segments’ delineation. Besides, hierar-
chical segmentation lets the user update segments without
much effort (e.g., obtaining a more refined segmentation
by reducing the threshold, but as a trade-off, the num-
ber of components increases). Further, a watershed al-
gorithm can also interactively correct the delineated seg-
ments (Section 3.7).

Starting from a group of N images without annotations,
{I1, I2, . . . , IN}, their gradient images are computed. For
each gradient Gi, i ∈ [1,N], its watershed hierarchy is
built and disjoint segments {S i,1, . . . , S i,ni } are obtained
by thresholding the hierarchy. The required parameters
(threshold and hierarchy criterion) are robust and easy to
be defined by visual inspection on a few images. More
details about that are presented in Section 3.7.

3.3. Feature Extraction

Before presenting the regions arranged by similarity, a
feature space representation where dissonant samples are
separated must be computed. For that, we refer to CNN
architectures for image classification tasks, without their
fully connected layers used for image classification.

Each segment is treated individually; we crop a rect-
angle around the segment in the original image, consid-
ering an additional border to not impair the network’s
receptive field. In this rectangle, pixels that do not be-
long to the segment are zeroed out. Otherwise, segments
belonging to the same image would present similar rep-
resentations. The segment images are then resized to
224×224 and forwarded through the network, which out-
puts a high-dimensional representation, φi, j. In this in-
stance φi, j ∈ R2048, for each S i, j. We noticed that pro-
cessing the segment images without resizing them did not
produce significant benefits and restricted the use of large
batches’ efficient inference.

Since our focus is on image annotation, where labeled
data might not be readily available, feature extraction
starts without fine-tuning. It is only optimized as the
labeling progresses. Any CNN architecture can be em-
ployed, but performance is crucial. We use the High-
Resolution Network (HRNet) [2] architecture, pre-trained
on ImageNet without the fully connected layers. It is pub-
licly available with multiple depths, and its performance
is superior to other established works for image classifi-
cation, such as ResNet [1]. During the development of
this work, other architectures were proposed [38], signifi-
cantly improving the classification performance while us-
ing comparable computing resources. They were not em-
ployed in our experimental setup, but it might improve our
results.

3.4. Dimensionality Reduction
For dimensionality reduction we employed the previ-

ously mentioned UMAP [29] (Section 2.2), for the fol-
lowing reasons: the projection is computed faster, sam-
ples can be added without fitting the whole data, its pa-
rameters seem to provide more flexibility to choose the
projection scattering — enforcing local or global coher-
ence — and most importantly, it allows using labeled data
to enforce consistency between samples of the same class
while still allowing unlabeled data to be inserted.

Note that dimensionality reduction is critical to the
whole pipeline because it arranges the data to be presented
to the user, where most of the interaction will occur.

The 2D embedding can produce artifacts, displaying
distinct segments clustered together due to the trade-off
between global and local consistency even though they
might be distant in the higher-dimensional feature space.
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Therefore, the user can select a subset of samples and
interact with their local projection in a pop-up window,
where the projection parameter is tuned to enforce local
consistency. The locally preserving embedding (Figure 3)
separates the selected cluttered segments (in pink) into
groups of similar objects (tennis court, big households,
small households, etc.), making it easier for label assign-
ment.

Figure 3: Local re-projection example: Global projection with a region
highlighted in blue; A subset of segments is selected by the user, in pink;
Their local embedding is computed for a simpler annotation.

On images, CNN’s features obtain remarkable results
consistent with the human notion of similarity between
objects. Considering that an annotator evaluates images
visually, sample projection is our preferred approach to
inform the user about possible clusters, as explained in
the next section. Other visualizations must be explored
for other kinds of data, such as sound or text, where the
user would have difficulty to visually exploit the notion of
similarity [15, 33].

3.5. Embedding Annotation
Each segment is displayed on their 2-dimensional coor-

dinate, as described in the previous section. To annotate
a set of segments, the user selects a bounding-box around
them in the canvas, assigning the designed label. Hence,
each S i, j inside the defined box is assigned to a label Li, j.
Finally, to obtain annotated masks in the image domain,
the label Li, j of a segment S i, j is mapped to its pixels in
Ii, thus resulting in an image segmentation (pixel annota-
tion).

Due to several reasons, such as spurious segments or
over-segmented objects, a region could be indistinguish-
able. Hence, when a single segment is selected in the
projection, its image is displayed in the Image View as
presented earlier. This action also works backwardly, the
user can navigate over the images, visualize the current

segments, and upon selection, the segments are focused in
the projection view. Thus, avoiding the effort of searching
individual samples in the segment scattering.

Additional care is necessary when presenting a large
number of images, mainly if each one contains several
objects, because the number of segments displayed on the
canvas may impair the user’s ability to distinguish their
respective classes for annotation. Therefore, only a sub-
set of the data is shown to the user initially. Additional
batches are provided as requested while the labeling and
the embedding progress, reducing the annotation burden.

3.6. Metric Learning
The proposed pipeline is not specific to any objects’

class and does not require pre-training, but as the anno-
tation progresses, the available labels can be employed
to reduce user effort — less effort is necessary when the
clusters are homogeneous and not spread apart.

For that, we employ a metric learning algorithm. Fig-
ure 4 shows an example of how metric learning can make
clusters of a same class more compact and better separate
clusters from distinct classes in our application.

In our pipeline, the original large-margin loss [30] was
employed, using our previously mentioned feature extrac-
tor network, due to its excellent performance with only
a single additional parameter. We follow here Musgrave
et al. [39], which showed that some novel methods are
prone to overfitting and require more laborious parameter
tuning.

3.7. Segment Correction
Since segment delineation is not guaranteed to be per-

fect, component correction is crucial, especially for pro-
ducing ground-truth data, where pixel-level accuracy is of
uttermost importance. Hence, segments containing multi-
ple objects (under segmentation) are corrected by positive
and negative clicks, splitting the segment into two new
regions according to the user’s positive and negative cues.

Here we use a classical graph-based algorithm as we fo-
cus mainly on the feature space annotation; more modern
CNN-based approaches can be employed on a real sce-
nario.

Given an under-segmented region S i, j, we define an
undirected graph G = (V, E,w) where the vertices V are
the pixels in S i, j, the edges connect 4-neighbors, con-
strained to be inside S i, j, and each edge (p, q) ∈ E is
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(a) (b)

(c)

Figure 4: Example of metric learning in the Rooftop dataset: (a) Seg-
ment arrangement from an initial batch (10 images). (b) Displacement
after labeling and employing metric learning, foreground (rooftops) in
blue and background in red. (c) Projection with additional unlabeled
data (plus 20 images). Most rooftops’ segments are clustered together
(the cyan box). The magenta box indicates clusters from mixed classes
and spurious segments. They suggest where labels are required the most
for a next iteration of labeling and metric learning. The remaining clus-
ters can be easily annotated.

weighted by w(p, q) = (Gi, j(p) + Gi, j(q))/2. A segment
partition is obtained by the image foresting transform [13]
algorithm for the labeled watershed operator given two
sets of clicks Cpos and Cneg as defined by the user. This
operation offers full control over segmentation, is fast,
and improves segment delineation.

Further, the user can change the hierarchical criterion
for watershed segmentation, preventing interactive seg-
ment correction in multiple images. For example, in an
image overcrowded with irrelevant small objects, the user
can bias the hierarchy to partition larger objects by defin-
ing the hierarchy ordering according to the objects’ area
in the image domain, filtering out the spurious segments.

Therefore, the Image View interface allows inspection
of multiple hierarchical segmentation criteria and their
result for given a threshold. The segments are recom-
puted upon user confirmation, maintaining the labels of
unchanged segments. Novel segments go through the
pipeline for feature extraction and projection into the can-
vas.

4. Experiments

This section starts by describing the datasets chosen for
the experiments and the implementation details for our ap-
proach. Since our method partitions the images into seg-
ments and solves the simultaneous annotation of multiple
objects by interactive labeling of similar segments’ clus-
ters, we present a study of two ideal scenarios to evaluate
each main step individually. In the first experiment, the
images are partitioned into perfect segments constrained
to each object’s mask, the rest of the pipeline is executed
as proposed, evaluating the feature space annotation effi-
ciency. Next, we assess the image partition by assuming
optimal labeling, thus, only investigating the initial seg-
mentation performance. Hence, the study of parts eval-
uates the limitations of the initial unsupervised hierar-
chical segmentation techniques, description with metric
learning, and projection. Subsequently, we compare with
state-of-the-art methods and present the quantitative and
qualitative results. The supplementary materials include
videos of the UI usage and annotation experiments.

Note that our goal goes beyond showing that the pro-
posed method can outperform others. We are pointing
a research direction that exploits new ways of human-
machine interaction for more effective data annotation.

8



Typically, a robot user executes the deep interactive
segmentation experiments; in contrast, our study is con-
ducted by a volunteer with experience in interactive im-
age segmentation. Thus, we are taking into account the
effort required to locate and identify objects of interest.

4.1. Datasets

Since the proposed method is concerned with domain-
specific annotation and not the micro-task of segmenting
a single object, we selected datasets from video segmen-
tation, co-segmentation, and semantic segmentation tasks,
in which the objects of interest are to some extent related.
In the foreground versus background scenario (items 1,2
and 3), our approach is quantitatively compared to exist-
ing foreground segmentation methods, Section 4.4. In the
semantic segmentation case (item 4), we do qualitative
analysis and compare to existing results, Section 4.5. The
datasets used were:

1. CMU-Cornell iCoSeg [40]: It contains 643 natural
images divided into 38 groups. Within a group, the
images have the same foreground and background
but are seen from different point-of-views.

2. DAVIS [41]: It is a video segmentation dataset con-
taining 50 different sequences. Following the same
procedure as in [42], multiple objects in each frame
were treated as a single one, and the same subset of
345 frames (10 % of the total) was employed.

3. Rooftop [43]: It is a remote sensing dataset with 63
images, and in total containing 390 instances of dis-
joint rooftop polygons.

4. Cityscapes [44]: It is a semantic segmentation
dataset for autonomous driving research. It contains
video frames from 27 cities divided into 2975 im-
ages for training, 500 for validation, and 1525 for
testing. The dataset contains 30 classes (e.g. roads,
cars, trucks, poles), we evaluated using only the 19
default classes.

4.2. Implementation details

We implemented a user interface in Qt for Python. To
segment images into components, we used Higra [45] and
the image gradients generated with PoolNet . We com-
puted gradients over four scales, 0.5, 1, 1.5, and 2, and
averaged their output to obtain a final gradient image.

For the remaining operations, including the baselines, we
used NumPy, the PyTorch Metric Learning package and
the available implementations in PyTorch .

For segment description with metric learning, we used
the publicly available HRNet-W18-C-Small-v1 configu-
ration pre-trained on the ImageNet dataset. In the metric-
learning stage, the Triplet-Loss margin is fixed at 0.05. At
each call, the embedding is optimized through Stochas-
tic Gradient Descent (SGD) with momentum of 0.8 and
weight decay of 0.0005 over three epochs with 1000
triplets each. The learning rate starts at 0.1 and, at each
epoch, it is divided by 10.

We used UMAP [29] with 15 neighbors for feature pro-
jection and a minimum distance of 0.01 in the main can-
vas. The zoom-in canvas used UMAP with five neighbors
and 0.1 minimum distance; when labels were available,
the semi-supervised trade-off parameter was fixed at 0.5,
penalizing intra-class and global consistencies equally.

4.3. Study of Parts

Our approach depends on two main independent steps:
the image partition into segments and the interactive la-
beling of those regions. The inaccuracy of one of them
would significantly deteriorate the performance of the fea-
ture space annotation for image segmentation labeling.
Therefore, we present a study of parts that considers two
ideal scenarios: (a) interactive projection labeling of per-
fect segments and (b) image partition into segments fol-
lowed by optimal labeling.

In (a), the user annotates segments from a perfect image
partition inside and outside the objects’ masks. Hence, ev-
ery segment will always belong to a single class. Table 1
reports the results. The Intersection over Union (IoU)
distribution is heavily right-skewed, as noticed from the
differences between average IoU and median IoU, indi-
cating that most segments were labeled correctly. Visual
inspection revealed that user annotation errors occurred
only in small components. Table 1 also reports the to-
tal time (in seconds) spent annotating (user) and process-
ing (machine), starting from the initial segment projec-
tion presented to the user. It indicates that feature space
projection annotation with metric learning is effective for
image segmentation annotation.

In (b), we measure the IoU of the watershed hierarchi-
cal cut using a fixed parameter — the threshold of 1000

9



Dataset Avg. IoU Median IoU Time (s)

iCoSeg 95.07 99.96 5.32
DAVIS 98.54 99.97 7.82
Rooftop 95.10 99.99 3.96

Table 1: Average IoU, median IoU, average total processing time in
seconds per image.

Dataset Avg. IoU Median IoU

iCoSeg 84.15 91.86
DAVIS 82.46 88.50
Rooftop 75.14 76.77

Table 2: Automatic segmentation results with their respective dataset.

with the volume criterion. The segments were then la-
beled by majority vote among the true labels of their pix-
els. Table 2 shows the quality of segmentation, which
imposes the upper bound to the quality of the overall pro-
jection labeling procedure if no segment correction was
performed.

For reference, Click Carving [46] reports an average
IoU of 84.31 in the iCoSeg, dataset when selecting the
optimal segment (i.e. highest IoU among proposals) from
a pool of approximately 2000 segment proposals per im-
age, produced with MCG [35]. In contrast, we obtain an
equivalent performance of 84.15 with a fixed segmenta-
tion with disjoints candidates only.

Figure 5 presents example of the candidate segments
on the three datasets.

4.4. Quantitative analysis using baselines

Since existing baselines report scores only in a very
limited scenario, we executed our own experiments ac-
cording to the code availability; Them being, f-BRS-B [9]
and FCANet [7], both with Resnet101 backbone, with
their publicly available weights trained on the SBD [48]
and SBD plus PASCAL VOC [49] datasets, respectively.
We are not comparing with IOG [8] because we could
not reproduce the results (subpar performance) with their
available code and weights, and [10] is not publicly avail-
able. The results are reported over the final segmentation
mask, given a sequence of 3 and 5 clicks.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Candidate segments from the study of parts. First row is from
the iCoSeg dataset, second is from DAVIS and the last from Rooftop.

Table 3 report the average IoU and the total time spent
in annotation. For click-based methods, the interaction
time was estimated as 2.4s for the initial click and 0.9s
for additional clicks [47].

We achieve comparable accuracy results with state-of-
the-art methods while employing less sophisticated seg-
mentation procedures, qualitative results are presented in
Figures 6- 8. Despite this, existing methods require less
time to annotate these datasets; this is due to them being
specialized in the foreground annotation microtask, while
our approach wastes time annotating the background —
this is exacerbated on the DAVIS dataset where a back-
ground object might be a category equal to the fore-
ground.

The following experiment evaluates our performance
on a semantic segmentation, where labeling the whole im-
age is the final goal, not just the microtask of delineating
a single object.

4.5. Qualitative analysis for semantic segmentation

To verify the proposed approach in a domain-specific
scenario, we evaluate its performance on Cityscapes [44].
Since the true labels of the test set are not available, we
took the same approach as [50], by testing on the valida-
tion set. Further, the annotation quality was evaluated on
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Figure 6: The magenta boundaries delineate regions with foreground labels for the ground-truth data, our method, and the baselines using 5 clicks
per image on the iCoSeg dataset. Figure (i) shows that FCANet has difficulties when segmenting multiples instances, as mentioned in their original
article.
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Figure 7: The magenta boundaries delineate regions with foreground labels for the ground-truth data, our method, and the baselines using 5 clicks
per image on the DAVIS dataset.
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Figure 8: The magenta boundaries delineate regions with foreground labels for the ground-truth data, our method, and the baselines using 5 clicks
per instance on the Rooftop dataset.
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Dataset iCoSeg DAVIS Rooftop

Method IoU Time (s) IoU Time (s) IoU Time (s)

f-BRS (3 clicks) 79.82 4.2 79.87 4.2 62.57 4.2
f-BRS (5 clicks) 82.14 6 82.44 6 74.53 6
FCANet (3 clicks) 84.63 4.2 82.44 4.2 65.99 4.2
FCANet (5 clicks) 88.00 6 86.63 6 81.38 6
Ours 84.29 5.96 84.53 8.74 77.28 7.02

Table 3: Average IoU and time over images, except for Rooftop, where time is computed over instances. For robot user experiments, with multiple
budgets (3 and 5 clicks), time was estimated according to this study [47]. Our method obtains comparable accuracy, but it spends additional time
annotating foreground and background. The Cityscapes experiment shows our results on a more realistic scenario where every pixel is labeled (not
a microtask).

98 randomly chosen images (about 20% of the validation
set).

PoolNet was optimized based on the boundaries of the
training set’s true labels for five epochs using the Adam
optimizer, a learning rate of 5e−5, weight decay of 5e−4,
and a batch of size 8. Predictions were performed on a
single scale. The fine-tuned gradient ignores irrelevant
boundaries, reducing over segmentation.

The original article reports an agreement (i.e. accuracy)
between annotators of 96%. We obtained an agreement
of 91.5% with the true labels of the validation set (Fig-
ure 9), while spending less than 1.5% of their time —
i.e. our experiment took 1 hour and 58 minutes to anno-
tate the 98 images, while to produce the same amount of
ground-truth data took approximately 6.1 days (average of
1.5 hour per image [44]) — about 74.75 times faster than
the original procedure. These 98 images contain in to-
tal 6500 default classes’ polygons (i.e., instances). Thus,
with the estimate of 6 secs per instance, FCANet would
take 10 hours and 50 minutes to label them.

5. Conclusion

We presented a novel interactive image segmentation
paradigm for simultaneous annotation of segments from
multiple images in their deep features’ projection space.
Despite employing less sophisticated segmentation meth-
ods, it achieves comparable performance with more mod-
ern approaches. Moreover, existing interactive segmen-
tation methodologies are not direct competitors and can
complement the presented implementation, for example
FCANet could be used for segmentation correction and
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Figure 9: Cityscapes result, each column is a different image, row indi-
cates which kind.
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Parametric UMAP [51] to unify the embedding and fea-
ture extraction in an end-to-end procedure.

We believe that this work leads to several opportunities
for combining the whole pipeline into a holistic segmen-
tation procedure, where redundant samples are labeled at
once, and annotation on the image domain occurs only
when necessary.

In a real scenario, to decrease the users’ cognitive load
and to annotate in a distributed manner, we suggest letting
a leading user interact with the projection to evaluate ex-
isting annotated data, model performance (segments clus-
tering), and, when necessary, delegating segment correc-
tion to workers, as it is currently done in existing anno-
tation procedures, diminishing the total images annotated
on the image domain.

The proposed approach can also benefit applications
beyond the labeling of standard computer vision datasets.
For example, in biology, spatial transcriptomics [52]
datasets contain segments (i.e. cells) and their features
(i.e. transcriptomes) which naturally fall into our frame-
work, therefore, they could be explored and labeled using
the proposed pipeline.
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