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Abstract

A growing body of work has shown that deep neural networks are susceptible to adversarial examples.
These take the form of small perturbations applied to the model’s input which lead to incorrect predictions.
Unfortunately, most literature focuses on visually imperceivable perturbations to be applied to digital images
that often are, by design, impossible to be deployed to physical targets.

We present Adversarial Scratches: a novel L0 black-box attack, which takes the form of scratches in images,
and which possesses much greater deployability than other state-of-the-art attacks. Adversarial Scratches
leverage Bézier Curves to reduce the dimension of the search space and possibly constrain the attack to a
specific location.

We test Adversarial Scratches in several scenarios, including a publicly available API and images of traffic
signs. Results show that our attack achieves higher fooling rate than other deployable state-of-the-art
methods, while requiring significantly fewer queries and modifying very few pixels.

Keywords: Adversarial Perturbations, Adversarial Attacks, Deep Learning, Convolutional Neural
Networks, Bézier Curves

1. Introduction

Convolutional Neural Networks (CNN) [15] have
achieved state-of-the-art performance on a wide ar-
ray of tasks. These models, however, are surprisingly
susceptible to deception by adversarial examples [29],
consisting in small perturbations to the input that
lead to incorrect predictions. The relevance of this
security issue is made clear by the increased num-
ber of critical systems that make use of CNNs. A
plethora of papers have explored adversarial vulnera-
bilities in neural networks, such as [6] and [22], giving
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rise to a large corpus of attacks. Typically, attacks
are composed of two key components: the pertur-
bation model and the search strategy. The former
relates to how the image is modified (e.g. the attack
only affects a square patch), the latter regards how
a successful perturbation is computed, typically re-
quiring an iterative optimization procedure. Most of
the literature, however, focuses on attacks designed
for digital images. As such, perturbations are con-
fined to the digital domain, and are impossible to be
deployed to a physical target.

Recently, there has been a surging research interest
on attacks that can be deployed on real-world sys-
tems [9]. Following this line, in our work we present
attacks whose perturbations are designed to be de-

Published in Pattern Recognition - Elsevier: https://doi.org/10.1016/j.patcog.2022.108985

ar
X

iv
:2

20
4.

09
39

7v
3 

 [
cs

.L
G

] 
 1

8 
M

ay
 2

02
3

https://doi.org/10.1016/j.patcog.2022.108985


Deployable and non-deployable perturbations

L
1
,
L

2
,
L

∞

L1, L2, and L∞ attacks are not deployable
as they potentially modify all the image’s
pixels.
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Frame attacks are not deployable as they
modify pixels outside of the target object.
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Sparse attacks, even if localized to the tar-
get, are not deployable as they modify sev-
eral regions in the image. It is unfeasible to
apply this perturbation.
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The Patch and Scratch attacks are deploy-
able. The perturbations affects spatially
contiguous regions, which are entirely con-
tained in the target.
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Figure 1: Example adversarial attacks on the TSRD traffic sign dataset. Most perturbations designed for digital images cannot
be applied to a physical target. In our work, we focus on deployable perturbations.
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ployable. We define attacks to be deployable based
on two required characteristics:

C1: the perturbation only affects the image’s pixels
that belong to a specific target object;

C2: the perturbation is contained in a small, spa-
tially adjacent region.

When an attack does not meet the first condition, it
means that the perturbation spans multiple objects
in the image, possibly including the background. In
this case, the attack cannot be applied to a physical
target (for example, L1, L2, L∞ and Frame attacks
in Figure 1). When the second condition is not met,
the attack may modify a multitude of regions in the
target. Clearly, accurately accounting for the rela-
tive position of these regions on the target is hardly
feasible, rendering the attack non-deployable (for ex-
ample, the Sparse attack in Figure 1). Attacks such
as [6, 31] are some of the rare examples that satisfy
both (C1) and (C2), and rely on localizing the per-
turbation inside a square patch (Patch attack in fig-
ure 1). However, these either require many attempts
(high query requirement) [6] or large patches [31] to
be successful.

In this work, we propose Adversarial Scratches: a
novel, powerful, deployable attack, illustrated in the
Scratch attack in Figure 1 and in Figure 2. Adver-
sarial Scratches are constituted of parametric curves,
resembling graffiti or small damages when applied to
a target, and are thus spatially adjacent (C2). In
particular, we make use of Bézier curves, as these
can express a wide variety of shapes. Our intuition is
that these curves may introduce patterns in the image
to which CNNs are sensitive. Moreover, their com-
pact parametric representation allows efficient opti-
mization. Crucially, Bézier curves can be arbitrarily
clipped (see Section 4.1), allowing to confine the at-
tack to the target region (C1). Lastly, Adversarial
Scratches are set in the black-box attack scenario,
meaning that the model’s internals are not known
when computing the attack. As such, Adversarial
Scratches leverage a variety of gradient-free search
strategies. Our contributions are the following:

• Adversarial Scratches: We introduce a new
perturbation model which is deployable by design.

Adversarial Scratches only perturb small regions
in the image in the shape of Bézier curves. Fur-
thermore, the parametric nature of Adversarial
Scratches enables to achieve state-of-the-art fooling
rates while greatly reducing query requirements.

• Countermeasures: We propose two countermea-
sures to our attacks, namely, median filtering and
JPEG compression, and assess their impact in mit-
igating the effects of Adversarial Scratches.

• Adversarial software framework: We release a
Python open-source tool to design and perform ad-
versarial attacks on several popular CNNs for im-
age classification. Within our framework, we also
provide interfaces for various optimization strate-
gies, perturbation models, and target networks.

• A benchmark for deployable attacks: We
manually segment target regions for a subset of
samples of the TSRD [23] dataset, and make these
segmentations publicly available. The improved
dataset poses as a benchmark for simulation of de-
plyable attacks on in-the-wild traffic signs.

Our code and datasets are made publicly available
here.

Our extensive experimental evaluation analyzes
the performance of Adversarial Scratches across a
variety of scenarios. Firstly, we consider a well-
established test-bed on ImageNet, and compare
against other deployable and non-deployable state-of-
the-art attacks. Secondly, we design an experiment
utilizing our own-developed version of the TSRD
dataset, where perturbations are applied to images
of traffic signs. Furthermore, we launch an attack
against Microsoft’s commercially available Cognitive
Services Image Captioning API. Our attacks suc-
cessfully fooled the API, demonstrating the effective-
ness of Adversarial Scratches on a production-grade
Machine-Learning-as-a-service system. We have con-
tacted Microsoft regarding this vulnerability. Lastly,
we study the performance of Adversarial Scratches
across a variety of optimization strategies and para-
metric configurations.
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Figure 2: Successful Adversarial Scratches on ImageNet (one scratch, L0 = 50). Adversarial Scratches are powerful attacks
that both require a minimal perturbation (small L0) and a low number of queries to be successful. On top of this, the adjacency
of the perturbed region enables this attack to be deployable in the physical world.

2. Background and Related Work

After providing a formal description of the prob-
lem, we categorize adversarial attacks on neural net-
works and overview the state-of-the-art.

2.1. Problem Formulation

We denote as x ∈ [0, 1]w,h,c an image having width
w, height h, and c channels, and as f(·) an image
classifier (a CNN in our case). We assume the CNN
to return a vector f(x) where each component f(x)i
represents the posterior probability of x belonging to
class i, thus, the label assigned by the CNN to x is
C(x) = arg maxi f(x)i. We denote the ground truth
label as y.

Given a correctly classified sample x, namely,
C(x) = y, the problem consists in finding an ad-
versarial sample x′ ∈ [0, 1]w,h,c which, according to a
distance metric L and a distance threshold δ, is close

to the original sample x:

L(x′,x) < δ , (1)

such that the model is fooled, which means:

C(x′) 6= y. (2)

Typically, the distance L is realized in the Lp norm of
the difference between the original and the adversar-
ial samples, namely L(x′,x) = ‖x′−x‖p. We consider
the L0 norm as this is the only metric enabling spa-
tially contained perturbations, and in turn satisfying
(C2) (Figure 1). Another requirement for deploya-
bility of the attack is constraining the perturbation
to the target’s surface (C1). Therefore, for each im-
age x, we also require a target region r indicating the
pixels of x that belong to the target object. Figure 3
shows how this region is used.
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2.2. Prior Works and Categorization of Attacks
Biggio et al. [3, 2] were the first to present adversar-

ial examples in gradient-based learning systems, such
as support vector machines (SVMs) and neural net-
works. Szegedy et al. [29] discovered that this issue
also extends to ImageNet-trained deep neural net-
works. Other works show that adversarial examples
can target models addressing tasks other than clas-
sification, such as clustering [5]. Attacks to neural
networks are characterized by two major ingredients:
i) the perturbation model, which places constraints on
the attack, thereby defining the feasible search space
for x′, and ii) the search strategy used to explore this
space.

Perturbation models can be categorized along four
axes. The first regards the access level the attacker
has on the target neural network (i.e., attack surface),
the second specifies how the perturbation magnitude
is measured (i.e., metric), the third regards specific
constraints on the support of the perturbation (i.e.,
geometric structure), and the fourth denotes the aim
of the attack.
Attack Surface: along this axis, perturbation mod-
els are categorized in white-box and black-box. The
first category indicates that the attacker has a full
view of the internals of the model f , including its gra-
dients, the latter instead specifies that the attacker
may only control the input x′ and observe its output.
Black-box attacks can also be decomposed into score-
based attacks, when the full class score vector f(x′)
is provided [11], or decision-based ones [4], when only
the predicted label C(x′) is provided. An example of
a white-box attack is the JSMA attack [24], which
finds vulnerable pixels through saliency maps. Re-
garding black-box attacks, we mention DEceit [10],
which uses differential evolution to optimize an at-
tack with adjustable sparsity.

White-box attacks pose no serious threats to
production-level systems, as it is unlikely that
providers would disclose information regarding their
models. Thus, we choose to frame ourselves in the
black-box setting, and allow our search strategy to
only control the model input and have access only to
its output.
Metric: On the second axis, perturbation models
are categorized depending on the particular Lp norm

chosen to constrain the magnitude of the applied per-
turbation, which is measured by ‖x′−x‖p. L0 attacks
measure and regulate the number of perturbed pix-
els, L1 and L2 attacks the Manhattan and Euclidean
distance between the original and the perturbed im-
age, and L∞ attacks the largest pixel-wise difference
between the two. An adversarial sample x′ is deemed
valid when it is able to fool the model (2) and when
it is inside the Lp ball of a specified radius centered
in x (1).

Recent literature has proposed attacks in the L1,
L2, and L∞ norm constraint scenarios. Perhaps the
most common are L∞ attacks, such as [21], which
uses a surrogate problem to modify image patches,
and [16] which computes universal patches to fool
object detectors. Typically, L1, L2, and L∞ attacks
alter pixels by very small amounts, giving rise to
human-imperceptible perturbations. However, by
not constraining the number of perturbed pixels,
these attacks often modify the large majority of the
image (Figure 1, L1, L2, L∞ attacks), resulting in
non-deployable perturbations. In contrast, attacks
of L0 nature such as [22, 6] by definition limit the
number of perturbed pixels. Thus, we choose to set
Adversarial Scratches in the L0-bounded scenario.
Perturbation Structure: We categorize attacks on
this axis based on specific constraints imposed on
the perturbation, such as its localization or geomet-
ric structure (e.g., patches [31], objects [30], signa-
tures [17]). As an example of a structured attack,
we mention Patch Attack [31], which uses reinforce-
ment learning to optimally place pre-generated tex-
tured patches, albeit covering up to 20% of the en-
tire image. Adversarial Scratches are structured as
contiguous curves, this being a key element for the
deployability of our attack. Indeed, as shown in Fig
1, the perturbation of an unstructured attack, even
of the L0 type, cannot be contained in a spatially
adjacent region in the image (C2).
Aim: We finally sort attacks into targeted ones, for
which the goal is to force the prediction to a specific
class y′, such that C(x′) = y′, and untargeted ones,
where the objective is simply to induce misclassifica-
tion, independently of the resulting class, such that
C(x′) 6= y = C(x). For this categorization, we cite
Sparse-RS [6], as it displays both targeted and un-
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targeted attacks. In this work, we primarily focus on
untargeted attacks. In Section 6.2, we discuss how to
obtain targeted Adversarial Scratches.

In summary, Adversarial Scratches belong to the
black-box (score-based) category, are L0-bounded,
and adopt the structure of deployable scratches.
Alongside this formal categorization, we report in Ta-
ble 1 a comparison of popular perturbation models in
the literature, where we consider a variety of different
factors, such as whether the attacks are L0-bounded,
were launched on a large, ImageNet-scale network,
and most importantly whether these were deployable.
The analysis shows strong similarities between our
work and Patch-RS [6], the primary difference be-
ing the perturbation model. The attacks presented
in Sparse-RS achieve state-of-the-art performance in
several settings. In particular, Patch-RS is, to the
best of our knowledge, the most effective black-box
L0 attack which also allows deployable perturbations,
by modifying a single square patch in the image. As
such, this is the most relevant method amongst those
considered in our experiments. Nonetheless, we also
compare to non-deployable attacks, since they repre-
sent an ideal reference amongst all L0 attacks. The
“any-pixel” attack from [6], which modifies any k pix-
els in the image, shows the best results amongst non-
deployable L0 attacks. We remark that comparing
deployable attacks to non-deployable attacks is un-
fair, as the latter can exploit a much larger attack
surface.

3. Methodology

We frame the generation of Adversarial Scratches
as a constrained optimization problem. Given a
trained CNN classifier f and an input image x, the
adversarial sample x′ is found by minimizing the mar-
gin loss:

Lf (x,x′) = f(x′)y −max
i6=y

(f(x′)i) (3)

subject to the L0 bound:

‖x′ − x‖0 ≤ k, (4)

and to the localization constraint:

(r[i, j] = 0) =⇒ (x′[i, j] = x[i, j]). (5)

We define the margin loss (3) Lf as in [6] as the dif-
ference between the posterior probability f(x′)y of
x′ belonging to the ground truth class y, and the
maximum posterior probability maxi 6=y(f(x′)i) of x′

belonging to a class other than y. The sample x′ is
misclassified when maxi 6=y(f(x′)i) > f(x′)y.1 There-
fore, x′ is an adversarial sample for x when:

Lf (x,x′) < 0. (6)

We solve the constrained optimization problem
through an iterative optimization procedure. The
result is an image xv obtained by superimposing a
scratch B to the original sample x, where B is mod-
eled as a Bézier curve identified by parameter vec-
tor v. Figure 3 visualizes how the perturbation is
computed starting from this parameter configuration,
highlighting the usage of region r. In the remain-
der of the section, we detail the perturbation model
and the search strategy that characterize Adversarial
Scratches.

3.1. Perturbation Model

The model we adopt to describe Adversarial
Scratches is Bézier curves [13]. Bézier curves are
polynomial segments, as such, they are continuous
and continuously differentiable. While our solution
is general and accounts for Bézier of any order, we
illustrate our method for second-order curves, which
have shown to perform best in our experimental eval-
uation. A second-order Bézier (Figure 4) is defined
as:

B(t) = (1−t)2P0 +2(1−t)tP1 +t2P2, 0 ≤ t ≤ 1. (7)

As shown in Figure 4, second-order Bézier curves
are solely defined by their control points P0, P1, P2,

1This holds also when x is not correctly classified (C(x) 6= y),
and in this case we have Lf (x,x) < 0. However, x can never
be considered as an adversarial sample for itself. For this
reason, in our experiments, we follow the common practice of
discarding all misclassified images x.

6



Table 1: Comparison of methodologies in the literature and our own.

Method Search strategy
Perturbation

structure

Large

Network

(ImageNet)

Localized

Perturbation

(L0 limited)?

Deployable

attack?

Narodytska and

Kasiviswanathan, 2016 [22]
local random search sparse X X 7

JSMA [24] substitute model sparse 7 X 7

Boundary attack [4] gaussian perturbation unstructured X 7 7

Ilyas et al. 2018 [14]
natural evolution

strategy
unstructured X 7 7

CornerSearch [7]
coordinate-wise

gradient estimation
sparse 7 X 7

SimBA [11] Fourier coefficients
unstructured

sparse
X X 7

Parsimonious Black-Box

Adversarial Attacks [21]

greedy

local search
unstructured X 7 7

PatchAttack [31] RL agent patch X X X

DEceit [10] differential evolution sparse X X 7

Sparse-RS [6] (“any-pixel”) random search sparse X X 7

Sparse-RS [6] (Patch-RS) random search patch X X X

Adversarial Scratches (Ours) NGO scratch X X X

Table 2: Description of quadratic Bézier curve parametrization

Parameter Interpretation Min value Max value Description
v0 P0,x 0 w − 1 x coordinate of point P0

v1 P0,y 0 h− 1 y coordinate of point P0

v2 P1,x 0 w − 1 x coordinate of point P1

v3 P1,y 0 h− 1 y coordinate of point P1

v4 P2,x 0 w − 1 x coordinate of point P2

v5 P2,y 0 h− 1 y coordinate of point P2

v6 R 0 255 red component of scratch color*
v7 G 0 255 green component of scratch color*
v8 B 0 255 blue component of scratch color*

* Colors are restricted to be fully saturated, thus, the color components can only assume the extreme values
0 or 255 of the range. This means that there are only eight available colors: [0, 0, 0], [255, 0, 0], [0, 255, 0],
[0, 0, 255], [255, 255, 0], [0, 255, 255], [255, 0, 255], and [255, 255, 255].

such that they start in P0 and end in P2, with point
P1 regulating their path. Thus, each scratch is iden-
tified by a vector v ∈ R9 (Table 2), where six pa-
rameters indicate the location of the Bézier’s control
points expressed in image coordinates, and three pa-

rameters indicate the R,G,B color components of
the scratch. Following common practice, to reduce
the size of the search space, we only consider extreme
intensity values {0, 255}, meaning that only 8 RGB
triplets are available.
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v0, ..., v5
Perturbation

model

B r c

v6, v7, v8

x xv

Figure 3: Attack application methodology. From the parametric description of the attack, a perturbation can be constructed,
masked, and then applied to the image, thus obtaining the adversarial image.

P0

P1

P2

B(0.4)

Figure 4: Structure and construction scheme of a second-order
Bézier curve B(t) from its control points P0, P1, P2. The curve
is defined by interpolation of the three points by using a con-
trol parameter t ∈ [0, 1]. In the image, we depict an example
location of the curve B(0.4).

We chose Bézier curves because, despite their com-
pact parametric representation, they can express a
wide range of shapes. The intuition behind their ad-
versarial nature is that these curves introduce pat-
terns in the image to which CNNs are sensitive. Cru-
cially, Bézier curves possess the property of being ar-
bitrarily subdividable (see Section 4.1). This allows
to clip the perturbation to the target region, as shown
in Figure 3, and to bound them in L0 terms. These
properties, in turn, allow deployability of Adversarial

Scratches.
Our experiments confirm that Adversarial

Scratches are a powerful attack against CNN classi-
fiers. Moreover, our perturbations can in principle
be applied on a target by using a marker or a spray
can, as opposed to patches which are only applicable
through a printed sticker. Lastly, we note that while
we have defined perturbations consisting of a single
scratch, our formulation is more general. When more
than one scratch is to be applied, the parameter
vector v is expanded so that v ∈ R9n. In this case,
the perturbation will be in the form of n Bézier
curves, as discussed in Section 4.2.

3.2. Search Strategy

The optimization problem described in Section 3.1
is solved by finding a parameter configuration v that
leads to a successful adversarial attack. However, in
the black-box attack scenario, the gradient of Lf is
unknown. Therefore, search can only be performed
by using gradient-free optimizers. Aside from being
limited to this category of optimizers, the process is
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entirely transparent to the particular optimizer cho-
sen to compute the perturbation.

We tested four popular gradient-free optimizers:
random search (RS) [32], particle swarm optimiza-
tion (PSO) [33], differential evolution (DE) [25], and
neuro-genetic optimization (NGO) [27]. RS and DE
were chosen as they were used in related works [6, 10].
PSO and NGO were chosen as they represent evolu-
tions of genetic algorithms such as DE. We discuss
our choice of optimizer in Section 5.4.

3.3. Attack Procedure

Algorithm 1 describes how the attack is performed
on an image sample. For clarity, we only describe
the application of a single scratch. Section 4.2 details
the extension of this procedure to multiple scratches.
The required inputs are: the image x which we want
to perturb, its target class y, the query threshold
MAX ITER, the model f which we want to attack,
the optimizer that will solve the optimization prob-
lem (3), the L0 bound k, and the region r used to
restrict the attack only to the pixels belonging to the
target object.

In the first phase, the iteration count is initialized
and the model’s prediction for the original sample
is computed (Lines 1-2). Then, the algorithm pro-
ceeds with an iterative procedure that loops until ei-
ther a valid adversarial sample is found or when a
query limit is reached (Lines 3-18). Within this loop,
the first step is to request a solution from the op-
timizer through the standard ask-and-tell interface.
By calling optimizer.ask (Line 4), the optimizer pro-
duces a candidate solution in the form of a vector v,
which is detailed in Table 2 for second-order Bézier
curves. Because the optimizer is not constrained to
satisfy (4) and (5), v could represent a scratch which
doesn’t meet the L0 bound or the localization con-
straints given by the region r. To satisfy the above
constraints, the clip operation (Line 5) returns a sec-
ond parameter configuration v∗ that corresponds to
a scratch which is a subset of the original one. This is
possible since the set of Bézier curves is closed with
respect to arbitrary subdivision [1]. The details of
the clipping and parameter update procedure are de-
scribed in Algorithm 2. Given v∗, we compute i) the
support set of the scratch B∗ = {(x1, y1), . . . } by

Algorithm 1 general attack procedure

Require: x, y, MAX ITER, f , optimizer, k, r
1: iter ← 0
2: C ← arg maxi f(x)i . Predict class for original

image
3: for i = 1 to MAX ITER do
4: v ← optimizer.ask() . Obtain a solution

from the optimizer
5: v∗ ← clip(v, k, r) . Clip the scratch

(Algorithm 2)
6: B∗ ← Bézier(v∗0 , ..., v

∗
5) . Sample Bézier

7: c← (v∗6 , v
∗
7 , v
∗
8)

. Apply scratch to obtain adversarial image xv
∗

8: xv∗ ← x
9: for j = 1 to |B∗| do

10: xv∗ [b∗j ]← c . Set pixels on the scratch
support to the scratch color

11: end for
12: l← fy(xv∗)−max

z 6=y
fz(xv∗) . Feed xv∗ to the

model and compute loss
13: if l < 0 then
14: iter ← i
15: break
16: end if
17: optimizer.tell(v, l) . Update the optimizer

information
18: end for
19: if iter > 0 then
20: successful attack in [iter] iterations
21: else
22: unsuccessful attack
23: end if

sampling curve (7) and ii) its color c = {v∗6 , v∗7 , v∗8}
(Lines 6-7). The tentative adversarial image xv∗ is
then obtained by changing the color of x for each
pixel location in the scratch support B∗ to the scratch
color c (Lines 8-11):

xv∗ [i, j] =

{
c if (i, j) ∈ B∗

x[i, j] otherwise
. (8)

Thus, we compute the margin loss (3) by feed-
ing the tentative adversarial image xv∗ to the target
model f (Line 12), and if the attack is successful (6),
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the procedure ends (Line 20). Otherwise, the state of
the optimizer is updated (Line 17) by providing the
loss value for the given configuration, and the proce-
dure continues to the next iteration. If no adversarial
sample can be computed within the query limit, the
attack is unsuccessful and the algorithm terminates
(Line 22). In our experiments, in line with [6], the
query limit was set to 10 000. This is better discussed
in Section 5.1.

We note that the clipping operation transforms the
parameter vector v before the sample is perturbed.
Thus, when updating the state of the optimizer, the
parameter configuration v is associated to the mar-
gin loss Lf (x,xv∗) where the argument is the sam-
ple with the clipped perturbation xv∗ instead of xv.
This choice is justified since clipping does not mod-
ify feasible solutions, therefore, for all feasible xv,
Lf (x,xv) = Lf (x,xv∗).

4. Implementation Details

In this section, we provide practical details regard-
ing the generation of adversarial examples as shown
in Algorithm 1, and discuss the extension of the at-
tack to multiple scratches.

4.1. Scratch Clipping

Since the optimizer is agnostic to the underlying
perturbation model, it may propose parameters v
that may represent scratches that do not satisfy the
deployability constraints. We address this issue by
clipping the scratch to a connected segment of the
original one, such that the clipped scratch satisfies
the L0 constraint and is entirely contained in the
target region. The clipping procedure, described in
Algorithm 2, receives as input the configuration v,
the L0 bound k, and the region r, and returns a new
parameter configuration v∗. This procedure modifies
the coordinates of the control points of the Bézier,
leaving its color unchanged. For second-order Bézier
curves (Table 2), this means modifying parameters
v0, . . . , v5.

In practice, we sample the scratch identified by
v and obtain its support B (Lines 1-3). Then
(Lines 4-18), we select the longest contiguous sub-
set B∗ = {bp, bp+1, . . . , bp+q} of B which is entirely

Algorithm 2 Scratch clipping

Require: v, k, r
1: P0 = {v0, v1}, P1 = {v2, v3}, P2 = {v4, v5} .

Input Bézier control points
2: flag ← 0, d← 0, B∗ ← ∅ . Initialize flags and

scratch support
. Sample the Bézier to obtain points and their
parametric position

3: B, T ← Bézier(v0, ..., v5)
4: for j = 1 to |B| do
5: if flag == 0 and r[B] == 1 then .

Beginning of the segment found
6: p← j
7: flag ← 1
8: end if
9: if flag == 1 then

10: if r[B] == 0 or d == k then . End of
the segment is reached

11: q ← d− 1
12: break
13: else
14: d++
15: B∗ ← B∗

⋃
bj . Add the location to

the support
16: end if
17: end if
18: end for

. Split Bézier and return new parameter config-
uration

19: P ∗0 ← (b∗1,x, b
∗
1,y)

20: P
′

1 ← (1− tp)P1 + tpP2

21: P
′′

1 ← (1− tp+q)bp + tp+qP
′

1

22: P ∗2 ← (b∗|B∗|,x, b
∗
|B∗|,y)

23: v ← {P ∗0,x, P ∗0,y, P
′′

1,x, P
′′

1,y, P
∗
2,x, P

∗
2,y, v6, v7, v8}

24: return v∗

contained in the region r, starting at the first pixel2

of B belonging to the mask. The set of all Bézier
curves is closed with respect to arbitrary subdivision
[1], thus, given any two points P ∗0 , P ∗2 along a Bézier

2The ordering is given by the parametric location t along the
Bézier curve (7)
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B, it is possible to compute the parameters of a new
Bézier B∗ which is a segment of B starting in P ∗0
and ending in P ∗2 . We achieve this by using the arbi-
trary subdivision procedure [1] up to two times (Lines
19-20). By the first subdivision, we remove the seg-
ment {b1, ..., bp}, obtaining a Bézier starting in P ∗0 ,

ending in P2, and having control point P
′

1. By the
second subdivision we remove {bp+q + 1, ..., b|B|}, fi-
nally obtaining a Bézier starting in P ∗0 , ending in P ∗1 ,
having control point P

′′

1 . Lastly (Lines 21-22), we re-
turn the new parameter configuration v∗ representing
the clipped scratch. By construction, the new Bézier
satisfies the L0 and localization constraints.

4.2. Multiple Scratches

Algorithm 1 describes how to apply a single Adver-
sarial Scratch. We may however want to perturb x
by using n scratches. For second-order Bézier curves,
the parameter vector describing n scratches will be
v ∈ R9n, where each tuple of 9 parameters represents
one scratch, having supportBs and color cs, s = 1...n.
Before application, each scratch needs to be clipped
according to Algorithm 2 to obtain the clipped sup-
ports B∗s and parameter configuration v∗, then, the
scratches are applied in sequence, possibly overwrit-
ing already perturbed pixels when these overlap. We
extend (8) for the case with n > 1 scratches, so that
the image where scratches 1 . . . s are applied is de-
fined as follows:

x(s)[i, j] =

{
cs if (i, j) ∈ B∗s
x(s−1)[i, j] otherwise

, (9)

where x(0) = x and the end result is xv∗ = x(n).

Increasing the number of scratches makes the at-
tack more powerful, as it allows the perturbation to
cover different regions within r, but comes at the cost
of deployability, as one would need to account for the
relative positions between scratches. In practice, we
limit to a maximum of n = 5 Adversarial Scratches,
which we deem to be a reasonable bound allowing
for powerful yet deployable attacks. In Section 5.4
we study the effects of using attacks with varying
number of scratches.

5. Experiments

In this section, we analyze the performance of Ad-
versarial Scratches in a variety of experiments, utiliz-
ing the ImageNet [28] and TSRD [23] datasets. First,
we describe the employed experimental setup (Sec-
tion 5.1), then, we compare Adversarial Scratches
to state-of-the-art deployable attacks, presenting ex-
periments on the ImageNet and TSRD datasets,
and against Microsoft Cognitive Services API (Sec-
tion 5.2). We then compare Adversarial Scratches to
non-deployable state-of-the-art attacks (Section 5.3),
as they represent an ideal performance reference for
L0 attacks. Lastly, we present a thorough explo-
ration of several possible configurations of Adversar-
ial Scratches (Section 5.4). All experiments target
ResNet-50 classifiers, except where otherwise stated.
Since many considered attacks have a stochastic com-
ponent, we average results from five runs with differ-
ent random seeds, also reporting standard deviations
across runs.

5.1. Experimental Setup

We introduce our experimental evaluation frame-
work, and detail the figures of merit used throughout
the experiments.

Framework: We have developed a flexible Python
framework to run our experiments. The framework
allows to design, implement, and execute adversarial
attacks on images. The model to be attacked, the
optimizer, and the perturbation model are modular,
and can be combined to perform a variety of tests in
different combinations. The modules communicate
via straightforward interfaces, allowing seamless in-
tegration and extension to many attack methodolo-
gies, including those implemented in Sparse-RS [6].
We release our code to the public as a platform to
test adversarial attacks on neural networks.

Metrics: To measure the performance of the attacks,
we compute fooling rate (FR), average queries (AQ),
and median queries (MQ). These metrics are signifi-
cantly influenced by the query limit, thus, following
common practice, all methods are compared using
the same query limit of 10 000. The metrics are de-
fined as follows:
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• Fooling Rate (FR) is the fraction of image sam-
ples for which the attack was successful within the
query limit, out of all samples that were subject
to the attack. Higher FR indicates that the attack
was more successful.

• Average Queries (AQ) is the average number of
queries needed to craft a successful perturbation.
Lower AQ values indicate that the attack needs
fewer attempts, on average, to find a perturbation
that deceives the model.3

• Median Queries (MQ) is the median number of
queries needed to craft a successful perturbation.
MQ is useful since query requirements may greatly
vary between samples. Therefore, AQ and MQ, in
conjunction, allow to better understand the distri-
bution of query requirements.3

Considered Methods: In our experiments, we
compare Adversarial Scratches to several state-of-
the-art L0 attacks. Following [7] and [20], we do not
consider L1, L2, and L∞ attacks, since given a spe-
cific L0 bound it is impossible to define L1, L2, and
L∞ bounds that would result in comparable pertur-
bations. This is further justified by our interest in
deployable attacks. Indeed, as stated in Section 1,
L1, L2, and L∞ attacks cannot be deployed.

Optimizer: Results for Adversarial Scratches have
been obtained using the NGO optimizer, as it shows
the best performance amongst the considered ones.
In Section 5.4 we compare the performance of various
optimizers.

5.2. Comparison Against Deployable Attacks

We analyze the performance of Adversarial
Scratches against state-of-the-art deployable attacks
on the widely used ImageNet dataset. To further in-
vestigate the deployability of our attacks, we perform
experiments on the TSRD traffic sign dataset and we
deploy our attack against the publicly available Mi-
crosoft Cognitive Services API.

3Both AQ and MQ are computed over images where the attack
was successful within the query limit.

Considered Methods: We compare against Patch-
RS [6], PatchAttack [31], and LOAP w/ GE [26, 6],
as these are the best performing deployable attacks
in the literature. All of these attacks are based on
a perturbation model that modifies a square patch
(Figure 5, left), differing only in how the patch is de-
fined and optimized. Patch-RS uses random search
to overlap colored rectangles within the patch area,
while PatchAttack uses an RL agent to optimize a
textured adversarial patch. Lastly, LOAP is origi-
nally a white-box method that optimizes the adver-
sarial patch through gradient information, which is
adapted to the black-box scenario by using Gradi-
ent Estimation, as in [6], resulting in the black-box
LOAP w/ GE.
Experiments on ImageNet: This experiment pro-
vides a comparison to the state-of-the-art in a stan-
dard setting with no restrictions on the target region.

We compare 20×20 patches generated with Patch-
RS, LOAP w/ GE, and PatchAttack (total L0 = 400)
to an attack composed of three L0 = 133 scratches.
L0 bounds are thus comparable, as this Adversarial
Scratches attack is constrained to a total L0 = 399
(Figure 5, center). Since our experimental setup is
equivalent to that of Sparse-RS [6], results for Patch-
RS, LOAP w/ GE, and PatchAttack are taken as
reported from their paper.

Table 3 shows that Adversarial Scratches have
much higher fooling rate while requiring significantly
fewer queries than other compared methods. More-
over, we note that Adversarial Scratches are typically
shorter than their nominal length. Indeed, in this
experiment, Adversarial Scratches modify on aver-
age 331.9 pixels, fewer than the allowed 399 pixels.
Other attacks, in contrast, always modify all 400 al-
lowed pixels. These results show that Adversarial
Scratches are better than current state-of-the-art de-
ployable attacks in all considered metrics.
Experiments on TSRD: To better tests the de-
ployability of the attacks, we design an experiment
on the TSRD [23] dataset where attacks are only
allowed to perturb pixels in a target region which
corresponds to a traffic sign. The target model is a
ResNet-50 classifier finetuned to 98% test accuracy
on the TSRD dataset.
Considered Methods: For this experiment, we
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Patch Adversarial Scratches “any-pixel”
L

0
=

4
0
0

� Deployable

� Non-deployable

The attack perturbs a square region

of size
√
k pixels

The attack places three scratches, one
pixel wide and k

3 pixels long
The attack modifies k pixels any-
where on the image

Figure 5: Different attack structures with the same L0 constraint of 400 perturbed pixels. On the left, a patch attack [6, 26, 31],
in the middle, our 3-scratch attack, and on the right, the “any-pixel” attack [6].

Table 3: Comparison to deployable attacks. Results for Patch-RS, LOAP w/ GE and PatchAttack are reported from [6], which
uses the same experimental setup. Results are computed using a query limit of 10 000.

Attack FR AQ MQ Perturbation model
LOAP w/ GE 40.6% ±0.1% 6870 ±10 10000 ±0 20×20 patch
PatchAttack 49.6% ±1.2% 5722 ±64 5280 ±593 20×20 patch
Patch-RS 79.5% ±1.4% 2808 ±89 438 ±68 20×20 patch
Adversarial Scratches 97.9% ±0.3% 302 ±38 27 ±3 Three 133px long Bézier

only compare to Patch-RS as it was shown (Table 3)
to be the best performing deployable attack amongst
the tested ones. However, in its base form, Patch-
RS cannot be localized within a target region. To
solve this issue, we have developed a spatially local-
izable version of Patch-RS, namely, R-Patch-RS. This
was achieved with minimal modifications to Sparse-
RS’ code. Figure 6 shows an example of Adversarial
Scratches (center) and R-Patch-RS (left) attacks on
TSRD images.

Dataset Preparation and Model Setup: The
TSRD [23] dataset is composed of 6164 traffic sign
images, divided in 58 classes. For this experiment, we
have created target regions by manually segmenting
non-occluded pixels of traffic signs from more than
100 TSRD samples. We remark that this manual an-
notation was only performed to conform to a realistic
scenario where the attack perturbation is limited to
the region described by the street sign.

Since the TSRD dataset includes augmented and
duplicate images, to favor unique images, the im-

R-Patch-RS Adversarial Scratches Target region

L
0

=
40

0

Figure 6: Deployable attacks applied to the TSRD street sign
dataset. Left: a 20×20 R-Patch-RS attack. Centre: an attack
composed of two Adversarial Scratches with L0 bound set to
200. Both attacks are constrained to the street sign’s region r,
which is depicted on the right.

ages used for this experiment were selected manu-
ally. Selected images and their augmented versions
were never used for training, ensuring that attacks are
performed on images the model has never seen. We
publicly release these segmentation masks, together
with information on how to match them with images
in the original TSRD dataset.

Results: Table 4 shows that, although the attacks
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Table 4: Performance of attacks on the TSRD dataset when restricted to the target’s pixels.

Attack FR AQ MQ Comment
R-Patch-RS 97.5% ±1.4% 366 ±58 195 ±15 20× 20 patch (L0 = 400)
Adversarial Scratches 100% ±0.0% 68 ±31 6 ±1 Three Bézier each 133px long (L0 = 399)

are constrained to only affect pixels belonging to the
traffic sign in the image, both Adversarial Scratches
and R-Patch-RS are very successful, and ultimately
results in almost all samples being successfully at-
tacked. We find that Adversarial Scratches have bet-
ter AQ and MQ than R-Patch-RS. Most notably, me-
dian queries drop from 195 to 6, meaning that, by
using Adversarial Scratches, we could attack half the
traffic signs in the dataset with just 6 attempts.
Experiments on Microsoft Cognitive Services
API: We perform an attack against the Microsoft
Cognitive Services Image Captioning API [19] using
Adversarial Scratches. We formalize this API as a
model g which, given an image x, provides a cap-
tion describing the image’s content and the model’s
confidence h(x). Since the margin loss (3) cannot
be computed in the captioning scenario, we solve the
optimization problem by minimizing the loss:

Lg = h(x). (10)

The rationale behind this is to minimize the confi-
dence to induce the model to produce wrong cap-
tions. In this experiment, we analyze the perfor-
mance of Adversarial Scratches against a real-world
system, however, since the target is an online service,
physical deployability is irrelevant. Thus, in this set-
ting, we use 3 scratches each with L0 ≤ 500, with
no restriction to a target region. As API calls are
rate limited, it is unfeasible to perform thousands of
consecutive queries, thus, we have attacked a single
image and provide qualitative results in Figure 7.
Results: Adversarial Scratches were able to deceive
the API into generating wrong captions. Most no-
tably, we were able to significantly change the out-
put caption in just 6 iterations (the caption was al-
tered also in earlier iterations but not significantly,
e.g. “A plane” was substituted by “A jet”). Exam-
ples of these generated scratches are shown in Fig-
ure 7. The attacks were performed on September

6th, 2021. The vulnerability was reported to Mi-
crosoft.

5.3. Comparison Against Non-deployable Attacks

We compare the performance of Adversarial
Scratches to that of other non-deployable L0 attacks.
Importantly, this comparison is unfair to Adversarial
Scratches, since the non-deployable attacks we com-
pare to are more general than Adversarial Scratches
and can exploit a much wider attack surface.
Considered Methods: We compare to the “any-
pixel” attack from Sparse-RS (Figure 5, right), which
uses random search to optimize a perturbation of any
k pixels in the image, and SimBA [11], which finds
orthonormal directions to iteratively improve the per-
turbation. We chose SimBA and Sparse-RS’s “any-
pixel” attack as they are state-of-the-art attacks in
the black-box, L0 scenario.
Experimental Setup: Since we are comparing to
non-deployable attacks, we only focus on the Ima-
geNet dataset, with no restrictions on the target re-
gion. We test under L0 constraints of 400 and 50
pixels. In the L0 = 400 scenario, we use an at-
tack composed of three L0 = 133 scratches. For the
L0 = 50 scenario, we use a single L0 = 50 scratch, as
shorter segments would not display features typical
of scratches. All attacks are run with query limit set
to 10 000, exception made for SimBA, as this attack
perturbs one color channel of one pixel each iteration.
To enable a fair comparison, SimBA was limited to
a number of iterations equal to three times the L0

bound. Although this results in a lower query limit
than 10 000, this goes in favour of SimBA as the at-
tack can potentially modify three times more pixels.
Results: Table 5 shows that, in the L0 = 400
scenario, the fooling rate of Adversarial Scratches
is comparable to the state-of-the-art, with Sparse-
RS’ “any-pixel” attack being marginally better, and
SimBA being worse than both. The outcome is differ-
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Original

Input image

Predicted caption A plane flying in the sky A green and white rocket A wind turbine with a blue sky

Confidence 0.512 0.219 0.375

Iterations 0 6 25

L0 0 341 435

Input image

Predicted caption A group of thin thin thin thin thin
thin thin thin thin thin thin thin thin

thin thin thin

A close-up of a barbed wire fence A close-up of a bug

Confidence 0.169 0.493 0.539

Iterations 57 65 217

L0 481 419 683

Figure 7: Successful attacks against the Microsoft Cognitive Services Image Captioning API. The top left image denotes
the source image, which is captioned correctly as ‘a plane flying in the sky’. All other images are examples of images that
successfully deceived the captioning service. Note that, even though each of the three scratches composing the attack was
bounded to L0 ≤ 500, the overall L0 difference with respect to the original is much lower than 1500.

ent in the very strict L0 = 50 case, where the non de-
ployable Sparse-RS is still able to achieve 83.9% FR,
while our attack’s performance drops significantly to
55.8%. The performance of SimBA is also greatly
reduced, demonstrating that this is an extremely
constrained test scenario. These results show that,
when Adversarial Scratches can assume their typical

shapes, as is the case for the L0 = 400 scenario, our
attack achieves surprisingly good performance, com-
parable even to those of non-deployable state-of-the-
art attacks. This is not true for the L0 = 50 scenario,
where scratches are too short to display adversarial
features.
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Table 5: Comparison to non-deployable L0 attacks. SimBA is only run once as the provided code does not allow changing seed.

Attack FR AQ MQ Perturbation model

L
0

4
0
0

SimBA 71.3% 500.15 457 Any 1200 pixel channels in the image

Adversarial Scratches 97.9% ±0.3% 302 ±38 27 ±3 Three Bézier, each 133px long

“any-pixel” 99.9% ±0.2% 154 ±6 25 ±1 Any 400 pixels in the image

5
0

SimBA 12.1% 72.6 68 Any 150 pixel channels in the image

Adversarial Scratches 55.8% ±0.4% 866 ±35 75 ±7 One Bézier, 50px long

“any-pixel” 83.9% ±0.8% 1899 ±48 906 ±23 Any 400 pixels in the image

5.4. Exploration of Parametric Configuration of Ad-
versarial Scratches

We explore several configurations of Adversarial
Scratches, in terms of search strategy, number of
scratches, order of the Bézier curve, and color con-
figuration. All the experiments in this section are
performed on 1 000 samples of the ImageNet dataset.
Search Strategy: As discussed in Section 3.2, we
have tested four optimizers: Differential Evolution
(DE) [25], Particle Swarm Optimization (PSO) [33],
Neuro-Genetic Optimization (NGO) [27] and Ran-
dom Search (RS) [32]. We focus on the L0 = 400
case, and test an attack composed of three L0 = 133
scratches. We test the RS optimizer using our own
implementation of Sparse-RS’ Random Search algo-
rithm with scheduling. We also modify the stan-
dard DE implementation to return solutions which
are within the search boundaries of Table 2. Lastly,
we use default PSO and NGO implementations from
Nevergrad [27]. Table 6 shows high fooling rates for
all tested optimizers, with NGO displaying the best
performance. Remarkably, these results demonstrate
that Adversarial Scratches are effective across a va-
riety of optimizers, which may be due to the small
dimensionality of the parameter space required by
the attack.
Scratch quantity: The number of scratches is a pa-
rameter that significantly influences deployability. As
displayed in Figure 8, attacks with larger number of
scratches may be more powerful, since they can cover
a larger region in the image. This, however, comes
at the cost of deployability, as the relative position
between scratches must be accounted for.

Table 7 shows that FR improves when increasing
the number of scratches from 1 to 3, but there is no

difference when further increasing from 3 to 5. MQ
decreases as the number of scratches increases, indi-
cating a higher chance of finding a solution in the
very first iterations. However, as indicated by the
increase in AQ, search becomes more challenging as
the dimensionality of the parameter space increases.
This result supports the adoption of three scratches
for the attacks discussed in Section 5.2. From the
“Average L0” column, we also deduce that using sev-
eral, shorter scratches results in perturbations which
are closer to the L0 limit.
Order of Bézier: We test Adversarial Scratches
modeled as Bézier curves of varying order, as dis-
played in Figure 9. Higher order curves may express
more complex shapes, and in turn lead to better fool-
ing rates. Such expressive power, however, comes at
the cost of parametrization efficiency and deployabil-
ity, since more control points need to be defined and
resulting curves may be harder to draw. The formu-
lation (7) can be generalized to express a Bézier of
order n as follows:

B(t) =

n∑
i=0

(
n

i

)
(1− t)n−itiPi, 0 ≤ t ≤ 1, (11)

where Pi, i = 0, . . . , n are n + 1 control points in
the form (xi, yi). The degenerate case n = 1 gives
straight line segments, while for n > 2 the curve may
intersect itself. The parametrization of a Bézier of
order n requires 2(n+ 1) + 3 parameters, since there
are n+ 1 control points and 3 color components.

We run the attack using L0 = 133 Bézier curves
testing Bézier order 1 to 4. Table 8 shows that Adver-
sarial Scratches achieve similar performance across all
tested Bézier orders, with order 2 having marginal
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Table 6: Performance of different optimizers for the L0 = 400 attack for three Bézier line

Optimizer FR Comment
RS 83.6% ±0.5% Random search with step size scheduling [6]

PSO 90.5% ±0.6% Implementation provided by NeverGrad [27]
DE 93.9% ±0.9% Population size 20 and restarts each 200 iterations

NGO 97.9% ±0.3% Implementation provided by NeverGrad [27]

L
0

=
4
00

Original 1 scratch 2 scratches 3 scratches 4 scratches 5 scratches

Figure 8: L0 = 400 attacks with different number of scratches

Table 7: Performance of L0 = 400 Bézier attacks with different number of scratches

Bézier count Per-Bézier L0 FR AQ MQ Average L0

1 400 89.6% ±0.3% 509 ±71 54 ±2 186.7 ±1.7
2 200 96.6% ±0.4% 316 ±39 37 ±2 280.1.7 ±0.7
3 133 97.9% ±0.3% 302 ±38 27 ±3 331.9 ±1.1
4 100 97.9% ±0.1% 281 ±18 24 ±1 359.9 ±0.6
5 80 97.9% ±0.0% 301 ±11 23 ±1 373.2 ±1.3

L
0

=
40

0

Original 1st order 2nd order 3rd order 4th order

Figure 9: Example attacks with Bézier of varying order (three Bézier, each with L0 = 133).

better FR, order 4 better AQ, and order 3 better
MQ. Our choice of using second-order Bézier curves
in the experiments of Sections 5.2 and 5.3 is thus mo-
tivated, since they have optimal performance and are
more deployable than higher-order ones.

Color Configuration: We test different color con-

figurations and analyze changes in attack perfor-
mance. Focusing on an attack composed of three
quadratic L0 = 133 Bézier curves, we test:

• A “polychrome, saturated” attack where each
scratch assumes one of eight fully saturated colors;
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Figure 10: Example attacks with different color parametrization (three Bézier, each with L0 = 133).

Table 8: Performance of L0 = 400 Bézier attacks with varying
order

Bézier order FR AQ MQ
1 96.3% ±0.1% 302 ±33 31 ±3
2 97.9% ±0.3% 302 ±38 27 ±3
3 97.6% ±0.2% 290 ±24 25 ±3
4 97.3% ±0.5% 265 ±26 28 ±2

Table 9: Performance of L0 = 400 Bézier attacks with varying
color configuration

Color configuration FR AQ MQ
polychrome, saturated 97.9% ±0.3% 302 ±38 27 ±3
monochrome, saturated 97.6% ±0.1% 252 ±24 24 ±2
polychrome, gray-scale 92.4% ±0.6% 534 ±27 94 ±4

polychrome, image-color 87.7% ±0.6% 757 ±66 128 ±9

• A “monochrome, saturated” attack where all
scratches have the same fully saturated color;

• A “polychrome, gray-scale” attack where each
scratch assumes one gray-scale color;

• A “polychrome, image-color” attack where each
scratch assumes color equal to one of the available
pixels in the image.

Figure 10 shows example scratches with these color
configurations. Table 9 shows that the “monochrome,
saturated” attack has slightly better performance
in terms of AQ and MQ than the baseline attack
with three independently colored scratches, while
still matching it in terms of FR. The gray-scale and
image-color attack also show good performance, al-

beit lower than that of the other attacks, as less sat-
urated colors have diminished attacking power.

6. Discussion

Our experiments show that Adversarial Scratches
outperform other state-of-the-art deployable attacks,
achieving comparable performance even against non-
deployable L0 black-box attacks. Furthermore, our
experiments on the TSRD dataset show promising re-
sults for the applicability of Adversarial Scratches to
physical targets. We attribute the success of Adver-
sarial Scratches to the greatly reduced search space
compared to other attacks, especially those presented
in Sparse-RS. Indeed, the “any-pixel” attack has a
search space with dimensionality 5k, where k is the
L0 bound. Adversarial Scratches, instead, only re-
quire 9 parameters for each scratch, independently of
the L0 bound. In our experiments, we used single
scratches for the L0 = 50 case, which means a reduc-
tion of parameter count of more than 27× (9 parame-
ters for a single scratch attack against 250 parameters
for L0 = 50 “any-pixel” attack). For the L0 = 400,
we used 3 scratches, resulting in 74 times fewer pa-
rameters (27 parameters for three scratches against
2000 parameters for L0 = 400 “any-pixel” attack).

6.1. Defenses

Recent works have proposed methodologies to
counteract the effects of adversarial perturbations.
These techniques encompass robust training proce-
dures [18], perturbation detection and removal [12],
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Adversarial Adversarial JPEG compressed Median filtered

Figure 11: Defenses to Adversarial Scratches. We visualize
the results of two defense mechanisms against three Adversar-
ial Scratches, each with L0 bound 133. The defenses are JPEG
compression and median filtering. Median filtering is more ef-
fective as it removes most of the scratches from the image,
while JPEG compression only marginally alters the perturba-
tion.

and reconstructions through deep image priors [8].
To defend from Adversarial Scratches, following [9],
we consider defenses that rely on input filtering, as
these are more scalable than defenses that try to
make the model itself more robust. In particular,
we adopt:

• JPEG compression with varying quality factors.

• Median filtering separately to each channel with
a kernel size of 3× 3 pixels.

Metrics: We assess the effectiveness of defense d(·)
through the recovery rate (RR), defined as the frac-
tion of successful adversarial samples whose filtered
version is correctly classified:

RR =
|{C(x) = y}

⋂
{C(x′) 6= y}

⋂
{C(d(x′)) = y}|

|{C(x) = y}
⋂
{C(x′) 6= y}|

,

(12)
whereX ′ = {x′1, ...,x′n} is the set of perturbed images
(possibly including those for which the attack was not
successful) for samples X = {x1, ...,xn}.4
Results: We assess the effectiveness of these defenses
against a “polychrome, saturated” attack, using three
L0 = 133 second-order Bézier curves. The attack
achieved 97.9% FR on 1000 samples of ImageNet,
therefore, our defense analysis is based on a large pool
of 979 adversarial samples, from which we exclude
originally misclassified images (12).

4If the filtered image is classified differently than the adver-
sarial one C(x′) 6= C(d(x)), but the resulting class is not

Table 10 shows that both JPEG compression and
median filtering are effective defenses, with median
filtering providing the highest recovery rate (77.1%).
Figure 11 shows that median filtering can indeed re-
move scratch pixels from the image. JPEG compres-
sion is also a viable technique to recover the original
target class (up to 41.4% recovery rate with quality
= 85).

A drawback of filtering-based defenses is that these
transformations may result in a drop in classification
performance on non-adversarial images. To study
this phenomenon, we compute the performance of
the CNN used for our experiments on 1000 samples
from the ImageNet validation set. Then, we apply
the defense to each image in this set, and compute
the performance drop on the filtered samples. Ta-
ble 10 shows that the most effective median filtering
is also the most detrimental to the model’s perfor-
mance, resulting in a drop in accuracy of 3.7%. We
argue, however, that the high recovery rate justifies
this minor performance drop.

6.2. Targeted Attacks

In our work, we have focused on untargeted at-
tacks. Nonetheless, Adversarial Scratches are eas-
ily extendable to the targeted scenario. As detailed
in Section 2.2, targeted attacks generate adversarial
samples x′ that are classified as belonging to a spe-
cific target class y′, namely C(x′) = y′. To obtain
targeted Adversarial Scratches, we replace the opti-
mization objective (3) with a cross entropy loss H,
where the target vector 1y′ is all zeroes except for a
one in position y′:

H(f(x),1y′) = − log(f(x)y′)−
∑
i 6=y′

log(1− f(x)i) . (13)

In the untargeted scenario, the lower bound
Lf (x,x′) (6) identifies the threshold below which an
image is adversarial. This is not the case for targeted

the target C(d(x)) 6= y, the image is not considered to be
recovered.
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Table 10: Recovery Rate and effects of the defenses on model performance.

Defense strategy
Adversarial samples Original images

Recovery Rate Model performance Performance delta

No defense (baseline) 0% 76.7% 0%

Median filtering, 3× 3 kernel 77.1% 73.0% -3.7%

JPEG, quality = 85 41.4% 74.4% -2.3%

JPEG, quality = 90 39.0% 74.9% -1.8%

JPEG, quality = 95 32.6% 75.7% -1.0%

JPEG, quality = 99 25.7% 76.1% -0.6%

attacks, where classification (and thus attack suc-
cess) must be explicitly verified by checking whether
C(x′) = y′.

7. Conclusions and Future Works

In this paper, we propose Adversarial Scratches: a
novel attack structured as parametric Bézier curves
applied to the image, and designed to be deployable
to physical targets. We believe that our study of ad-
versarial attacks is very relevant to the security of ap-
plications making use of deep learning models, which
must be robust to attacks, and especially so to those
attacks that can be deployed in the real world. On
the one hand, our study demonstrates that Adver-
sarial Scratches are effective in a variety of scenarios,
including attacks against a publicly available API,
even though it requires modification of very few pix-
els. On the other hand, we have presented filtering-
based countermeasures to mitigate the vulnerabili-
ties originating from Adversarial Scratches, and have
quantitatively assessed the impact of these defenses
on the model’s performance.

In this work, we have limited our scope to one pixel
wide Bézier curves targeting image classifiers. Fu-
ture works may on the one hand study the effects of
such attacks against models addressing higher visual
recognition tasks, such as object detection and seg-
mentation. On the other hand, future works may ex-
pand on the concept of Adversarial Scratches, propos-
ing deployable attacks based on different paramet-
ric models. We also plan on developing countermea-
sures to extended versions of Adversarial Scratches,

as the proposed filtering techniques may not be effec-
tive. Another important direction is that of studying
the robustness of Adversarial Scratches to realistic
changes in the image acquisition, including pose, light
conditions, and background contents. In this work,
we focused on applying scratches to single views of
traffic signs, however, attacks that are successful re-
gardless of acquisition settings may pose very serious
threats to critical systems in the real-world, such as
autonomous vehicles and AI-powered security cam-
eras. Also in this case, we plan to develop new coun-
termeasures, as such robust attacks may not be af-
fected by simple filtering.
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