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Abstract

In this study, we propose a new methodology to control how
user’s data is recognized and used by AI via exploiting the
properties of adversarial examples. For this purpose, we pro-
pose reversible adversarial example (RAE), a new type of ad-
versarial example. A remarkable feature of RAE is that the
image can be correctly recognized and used by the AI model
specified by the user because the authorized AI can recover
the original image from the RAE exactly by eliminating ad-
versarial perturbation. On the other hand, other unauthorized
AI models cannot recognize it correctly because it functions
as an adversarial example. Moreover, RAE can be considered
as one type of encryption to computer vision since reversibil-
ity guarantees the decryption. To realize RAE, we combine
three technologies, adversarial example, reversible data hid-
ing for exact recovery of adversarial perturbation, and encryp-
tion for selective control of AIs who can remove adversar-
ial perturbation. Experimental results show that the proposed
method can achieve comparable attack ability with the corre-
sponding adversarial attack method and similar visual qual-
ity with the original image, including white-box attacks and
black-box attacks.

Introduction
Online services, including social networking services that
utilize artificial intelligence trained with users’ data, make
our lives more convenient. For example, Facebook uses fa-
cial recognition technology to determine whether users are
in the photo image data being uploaded and suggest tags in-
dicating the user identities. Facial recognition technology,
including face authentication, is convenient and impactful,
but at the same time, it has many ethical issues. There have
been concerns pointed out about privacy issues. For exam-
ple, it would automatically identify an social network soft-
ware (SNS) user from a selfie uploaded to her anonymous
SNS account whose identity is not disclosed. These concerns
are not limited to facial images. User’s gender, race, and
other sensitive attributes, including health conditions and
diseases, could be estimated from voice data automatically
and unintentionally (Oh et al. 2019). There is no widespread
agreement among users on how to handle privacy issues re-
lated to data collected from users and the results of recogniz-
ing these data through AI (e.g., identities and other sensitive
attributes). Technologies that allow users to control how AI

recognizes their data would be helpful from the perspective
of enhancing privacy protection.

In (Gafni, Wolf, and Taigman 2019), techniques were pro-
posed to eliminate features in face images of movies that
allow identifying the person from face movies without mak-
ing a significant change in its appearance. These techniques
could, for example, allow users to leave anonymous, natural-
looking video messages in public places, which would not
be recognized by face recognition unintentionally. Further-
more, they can prevent users from being tracked for their
activities by facial recognition or from being identified from
videos uploaded to social networking sites. Adversarial ex-
amples have long been studied as an attack technique to ma-
nipulate the identification results of an image without chang-
ing its appearance, which can be designed not only for face
images (Sharif et al. 2016; Dong et al. 2019; Deb, Zhang,
and Jain 2019), but also for any objects (Xu et al. 2020;
Eykholt et al. 2018; Cao et al. 2019). Adversarial example is
used initially to make the classification performance of the
classifier robust (Xie et al. 2020; Miyato et al. 2018), while
several studies proposed to use adversarial examples to hin-
der unintentional face image identification from protecting
privacy (Gafni, Wolf, and Taigman 2019; Zhang et al. 2020).

The technologies mentioned above allow users to leave
anonymous, natural-looking image or video messages in
public places without being identified unintentionally. How-
ever, one limitation of these technologies is that once fea-
tures necessary for recognition are eliminated from the data
or adversarial perturbation is inserted into data, no one ex-
cept the holder of the original image can recover the orig-
inal image. For example, (Yang et al. 2020) proposed face
encryption by generating adversarial identity masks to pro-
tect users’ face images from unauthorized face recognition
systems. However, this type of face encryption can only be
considered as face perturbation since there is no decryption
process for it. Considering that the basic principle of privacy
protection is to be able to control one’s own information, it
is desirable that users themselves can decide which of their
images will be recognized and used by AI and which will
not. Moreover, we try to not affect users’ experience when
users share the protected images on social media, and si-
multaneously conceal their information from unauthorized
AI models.

Based on the above considerations, we propose a new
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methodology to exploit the properties of adversarial exam-
ples to control how user’s data is recognized and used by
AI. For this purpose, we propose reversible adversarial ex-
ample (RAE), a new type of adversarial example. On the
one hand, RAE is able to attack unauthorized AI models to
prevent unauthorized access to users’ image data since RAE
still functions as an adversarial example. On the other hand,
authorized AI models can exactly recover the original image
from RAE for recognition and further usage. We explain the
functionalities of RAE by taking face recognition system as
an example, but the idea of RAE works with any classifica-
tion task. Suppose we have a face image X (say, Alice’s face
image). Using X , we generate a RAE X ′ with a classifica-
tion model f, which is misrecognized as some label. Then,

• the appearance of RAE X ′ is quite similar to original
image X to human,

• X ′ works as an adversarial example for f (e.g., X ′ is
recognized as Bob),

• X ′ is expected to work as an adversarial example for
classifiers other than f due to transferability of adversar-
ial examples, and

• some classifier f ′ specified by the one who created the
RAE (say authorized classifier) can recover X from X ′

only, meaning only f ′ can recognize X ′ correctly as Al-
ice and use the original image X .

In other words, RAE can be considered as encryption to
computer vision. The reversibility of RAE guarantees the
decryption of this type of encryption.

To realize RAE, we employ (1) reversible data hiding (Ni
et al. 2006), which allows to embed secret information into
an image without being able to detected, and (2) highly func-
tional encryption (e.g., attribute-based encryption), which
enables to generate ciphertexts in a way that the ones who
can decrypt the ciphertexts can be selectively controlled by
the private key holder.

We demonstrate by experiments on the ImageNet (Deng
et al. 2009) dataset that RAEs can be misrecognized by
unauthorized classifiers, while only the authorized classifier
can recover the original images exactly. We demonstrate that
the visual quality of RAEs: RAEs look overall similar to
original images.

Preliminaries
Adversarial Example
First proposed by Szegedy et al. (Szegedy et al. 2014), var-
ious methods to generate adversarial examples have been
presented. In this part, we outline the details of the adopted
attack methods in this paper. We use l(x, y) to notate the
cross-entropy loss function where X is the input image and
y is the true class for the input image.

FGSM (Goodfellow, Shlens, and Szegedy 2014) crafts an
adversarial example under the `∞ norm as

Xadv = X + ε · sign (∇X l(X, y)) (1)

where ∇X l(X, y) denotes the gradient of the loss function
with respect to the input image.

BIM (Kurakin, Goodfellow, and Bengio 2016) extends
FGSM by taking iterative gradient updates in the following
equation:

X(t+1),adv = clipX,ε

(
X(t),adv + η · sign

(
∇X l

(
X(t),adv, y

)))
(2)

where clipX,ε guarantees the adversarial example to sat-
isfy the `∞ constraint.

C&W adopts the original C&W loss (Carlini and Wagner
2017) based on the iterative mechanism of BIM to perform
attack in classification tasks. In particular, the loss takes the
form of

Xadv = argminX′‖X ′−X‖ subject to Z
(
X ′
)
y
< max

i 6=y
Z (X)i−κ

(3)
where Z (X)i is the logit output of the classifier for the ith
class.

Reversible Data Hiding

Data hiding (Zeng 1998) is referred to as a method to
hide secret information into an image for covert commu-
nication. Reversible data hiding (RDH) (Ni et al. 2006)
is a special type of data hiding, which allows to recover
the original image without any distortion from the marked
image and extract the embedded hidden data. Classical
RDH algorithms are mainly divided into three categories,
compression-embedding(Fridrich, Goljan, and Du 2002),
difference expansion (Tian 2003), and histogram modifica-
tion (Ni et al. 2006). We adopt the histogram modification
based RDH in this paper. Intuitively, the algorithm of RDH
leverages the fact that the color histograms of natural images
distribute unevenly. By shifting the bins of the color his-
togram in a way that the visual appearance of the image does
not change significantly, we can encode a certain amount of
information into the image without being detected.

Let X ∈ RH×W×C be a C-channel image (referred to as
a cover image) whereH andW denotes the height and width
of the image, respectively. Let M ∈ {0, 1}∗ be a bit-string
message of arbitrary length to be encoded into the cover
image. The RDH process consists of two functions: encod-
ing and decoding. We use RDH : RH×W×C × {0, 1}∗ →
RH×W×C to denote the encoding method, which takes an
image and a secret bit-string as inputs and outputs an en-
coded image (referred to as a marked image) with the same
size. RDH−1 : RH×W×C → RH×W×C × {0, 1}∗ denotes
the decoding method, which takes an encoded image as in-
put, and outputs the exact recovery of the original image and
the secret bit-string.

For a given integer a1, the encoding procedure in one
color channel is processed as follows. For i = 1, . . . ,H and

1In the process of recovery, a is a key parameter for recovery.
So a small part of pixels in the cover image are preserved to embed
the value of a utilizing the data hiding technique. Moreover, the
information of recovering these preserved pixel values also needs
to be treated as a secret message and embedded into the other part
of pixels in the cover image utilizing RDH.
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Figure 1: Capacity of RDH with different image sizes.

j = 1, . . . ,W

XRDH
i,j =

{
Xi,j − 1, if Xi,j < a
Xi,j −M(i−1)W+j , if Xi,j = a
Xi,j , if Xi,j > a

(4)

where (i, j) represents the pixel coordinate in the cover im-
age and Xi,j denotes the pixel value at the specified index.
The length of binary string M is usually set as shorter than
H ×W ×C in RDH (see Figure 1 for the detail). When a is
set as the peak of the color histogram, this process shifts the
bins less than a towards smaller by 1 to create a vacant bin
for data embedding. Each secret bit in M is embedded into
the pixel whose value is a from left to right, top to bottom in
the cover image. By taking a as the histogram peak, the ca-
pacity of embedding is known to be maximized. As a result,
each bit of the string M is embedded into the pixel whose
value is a of the cover image and the marked image XRDH

is generated as XRDH = RDH(X,M).
On the decoder side, extraction of embedded bits M and

recovery of the cover image X is processed as follows:

M =


M ‖ 0, if XRDH

i,j = a

M ‖ 1, if XRDH
i,j = a− 1

M, otherwise
(5)

Xi,j =

{
XRDH
i,j + 1, if XRDH

i,j ≤ a− 1

XRDH
i,j otherwise

(6)

where ‖ denotes concatenation. We denote these operations
by [X,M ] = RDH−1(XRDH).

Capacity of RDH We test the capacity of RDH on Ima-
geNet (Deng et al. 2009). We adopt the state-of-the-art RDH
method (Zhang et al. 2013). (Zhang et al. 2013) is a his-
togram modification method for RDH which embeds the
data by recursively utilizing the decompression and com-
pression processes of an entropy coder. We separately use
1000 images with 3 color channels randomly selected from
ImageNet to perform the experiments. We resize the images
of ImageNet into different sizes: 32× 32× 3, 64× 64× 3,
128× 128× 3, 256× 256× 3 and 512× 512× 3. For each
image, we gradually increase the length of to-be-embedded

bit-string until RDH cannot embed any bit into the image.
Then we obtain the maximum length of a bit string that RDH
can embed on each image and calculate the embedding rate.
Finally, we average the embedding rate of 1000 images to
measure the capacity of RDH. Figure 1 illustrates the ca-
pacity of RDH with different image sizes. The x-axis is the
image size and the y-axis is the average bits per pixel (bpp)
to be embedded. The result shows that around 1 bit per pixel
can be embedded into an image on average. For example,
when the size of an image is 299 × 299 × 3 in ImageNet,
about 270,000 bits can be embedded covertly.

Highly Functional Encryption
RDH allows us to embed secret bit-string into an image
covertly; however, it does not necessarily mean that the secu-
rity is guaranteed. We need to use cryptography to guarantee
the security of the embedded message. More specifically, we
encrypt the secret bits before embedding it into the cover im-
age. Also, we can compress the bit-string before encryption
when the size of the bit-string exceeds the capacity of RDH
of the cover image. We can use any algorithm for encryption
and compression. Unless necessarily mentioned, we suppose
the bit-string is compressed and encrypted in the following.

Although any cryptosystem works with RDH, we can in-
troduce highly functional cryptosystem in order to selec-
tively control the AI to recognize the image. Suppose a com-
munication of secret information between a sender and re-
ceiver. Public key cryptosystem is a cryptosystem that uses
a pair of public keys pk (which may be known to others,
including the sender) and private keys sk (which should be
never known to anyone except the receiver).

In message transmission, anyone can encrypt a message
m ∈ {0, 1}∗ using the receiver’s public key as c ←
Encpk(m) where c is the resulting ciphertext, but the cipher-
text can only be decrypted with the receiver’s private key as
m← Decsk(c).

When a sender wants to specify multiple receivers that can
decrypt ciphertexts, attribute-based encryption can be used.
Attribute-based encryption, such as (Bethencourt, Sahai, and
Waters 2007; Okamoto and Takashima 2010), enables to
encrypt and distribute a message so that the correspond-
ing ciphertext can be decrypted only by entities that satisfy
a policy specified at the timing of encryption (e.g., public
sector only, authorized services only). Attribute-based en-
cryption enables enforcement of policies by attributes in a
non-interactive manner. Also, we can use timed-release en-
cryption scheme (Dent and Tang 2007; Matsuda, Nakai, and
Matsuura 2010) in which the sender specifies the time at
which the receiver can decrypt the ciphertext.

In the following sections, we employ RSA instead of a
highly functional encryption for simplicity, however this can
be exchanged with any kind of high functional encryption
without making any modifications.

Proposed Method
Overall Framework
In our problem setting, we have three stakeholders: user, au-
thorized classifier and unauthorized classifier. The abstract



process proceeds as Algorithm 12.

Algorithm 1: Reversible Adversarial Example Creation
Input: image X

Output: reversible adversarial example XRDH

1: All classifiers independently create a key pair of public-
key cryptosystem and every classifier distributes its pub-
lic key.

2: User chooses an authorized classifier f and obtains f’s
public key pkf .

3: User generates an adversarial example X ′ of image X .

4: User encrypts adversarial perturbation ∆U = X ′ −X
and auxiliary informationR necessary for recovery with
the f’s public key as I = Encpkf (∆U , R). Here we
simply use RSA algorithm as the encryption method to
achieve Encpkf (∆U , R).

5: User embeds I into the adversarial example X ′ and ob-
tains RAE as XRDH = RDH(X ′, I).

How the RAE is recognized is summarized as follows:

• When a human see XRDH, it appears quite similar to X
since RDH preserves visual quality of the cover image as
demonstrated later.

• When an unauthorized classifier obtains XRDH and rec-
ognizes XRDH with his unauthorized classifier, XRDH

is expected to be misclassified because XRDH works
as an adversarial example. He might be able to obtain I
by the decoding process of RDH, however, he can learn
nothing from I because I is encrypted by a cryptosystem.
So even when the unauthorized classifier learns I , exact
recovery cannot be obtained.

• When an authorized classifier obtains XRDH, he obtains
I and can obtain ∆U , R = Decskf (I). With adversarial
perturbation ∆U and auxiliary information R, the au-
thorized classifier can obtain the exact recovery X as
X = XRDH −∆U .

In the following, we show the detailed realization of each
step.

Generation of Adversarial Perturbation for RDH
A direct idea to achieve RAE is to embed adversarial per-
turbation into the adversarial image utilizing RDH scheme
so that the receiver can invalidate the adversarial perturba-
tion. However, RDH is only well suited to embedding a short
length of information into a large image. In RDH, Figure 1
shows that the average embedding rate is around 1 bit per
pixel. Since the size of adversarial perturbation is usually the
same size as the cover image, the capacity of RDH is usually

2Since I is encoded as a bit-string, we can use any lossless in-
formation compression algorithm to reduce the size of information
to embed. In our experiments, we use arithmetic coder (Howard
and Vitter 1994) for compression.

not enough to directly embed the adversarial perturbation
into the image. For example, if we set the `∞ norm perturba-
tion of BIM as 2, the required embedding rate is log2 4 = 2
bits per pixel. In order to solve this problem, we propose to
divide the images into super-pixels (e.g., treat pixels in 2×2
tile as a single pixel by smoothing) and then embed adver-
sarial perturbation generated for the super-pixels.

We denote X as the original image with size H ×W ×C
and X ′ as its adversarial example with size H × W × C.
Each pixel can take an integer value in {0, 1, . . . , 255}. For
each color channel, C (C is either of r, g or b), the origi-
nal image X and the adversarial image X ′ are divided into
non-overlapping tiles with the same size h × w, which are
called super-pixels. When h = 2 and w = 2, the super-
pixel consists of a set of four neighboring pixels. Let Pi,j
and P ′i,j be the (i, j)th super-pixel of the original image
and corresponding adversarial example where 1 6 i 6
dH/he, 1 6 j 6 dW/we. We consider a type of adversarial
perturbation where the pixel values of adversarial perturba-
tion are smoothed over each super-pixel. Due to smoothing,
the amount of information contained in such adversarial per-
turbation can be reduced up to 1

h×w , which is sufficiently
small to embed with RDH.

Post Smoothing Method This post smoothing super-pixel
adversarial attack method is the most straightforward way
to realize adversarial example over super-pixels. We first
generate an adversarial example in an arbitrary way. Let-
ting n = h × w, we denote the collection of the super-
pixels of the image and corresponding adversarial example
by Pi,j = {p1, p2, . . . , pn} and P ′i,j = {p′1, p′2, . . . , p′n}, re-
spectively. First, calculate the average value of adversarial
perturbations of all pixels in each super-pixel and round it to
get the closest integer ∆U i,j

∆U i,j = round

(
1

n

n∑
k=1

pk −
1

n

n∑
k=1

p′k

)
. (7)

We call this smoothing method as post smoothing.
Then we get the adversarial example generated with the

post smoothing method as p′′k = pk + ∆U i,j . Note that the
pixel value p′′k should be an integer between 0 and 255, so
the transformation may result in some overflow/underflow
pixel values. For exact recovery, the truncation information
for each super-pixel is recorded as Ri,j = {r1, r2, . . . , rn}
where n = h× w.

After transformation and truncation, we get a new tile
P ′′i,j . We get a super-pixel adversarial image X ′′ by com-
pleting transformations and truncations for all the tiles P ′′i,j
where 1 6 i 6 dH/he and 1 6 j 6 dW/we.

In-the-loop Smoothing Method One drawback of the
post-smoothing method is that the adversarial perturbation
is smoothed after finishing optimization, which can lower
the attack success rate. To avoid this, we introduce the in-
the-loop smoothing super-pixel adversarial attack method,
which is more costly, but is expected to have less effect
to the attack success rate. To describe how to generate the
super-pixel adversarial perturbation, we take BIM (Kurakin,
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Figure 2: Visual quality of reversible adversarial examples
with different super-pixel sizes.

Goodfellow, and Bengio 2016) as example and propose the
in-the-loop smoothing version of BIM.

BIM generates adversarial perturbation by repeatedly up-
date X by the gradient of the loss function with respect to X
so that the image is recognized as a wrong label. The idea of
the in-the-loop smoothing is to take the gradient with respect
to a noise vector ∆U whose length is the super-pixel num-
ber. We initialize the noise vector ∆U by randomly sam-
pling with uniform distribution in [−ε/2, ε/2].

∆U (t) = ∆U (t−1) + η · sign
(
∇∆U l

(
X(t−1),adv, y

))
(8)

After update, we obtain the tth update X(t),adv by

X(t),adv = clipX,ε

(
X + fpad(∆U (t), h, w)

)
(9)

where function fpad is a mapping function which fills each
element of the noise vector ∆U (t) into a h × w super-
pixel to get the full-size image of adversarial perturbation
padded with the super-pixel values. Note that clipX,ε oper-
ates on super-pixels of X and guarantees that the perturba-
tions within each super-pixel are still same. A super-pixel
adversarial example is generated by alternate iterations of
eq. 8 and eq. 9.

Experiments
In this section, we experimentally evaluate to what extent
the RAEs can deceive the DNN. If RAEs have a similar at-
tack success rate to regular adversarial examples, we can say
unauthorized classifiers cannot recognize given images cor-
rectly.

Thanks to RDH, the scheme of the proposed method guar-
antees that the authorized classifier can exactly recover the

Table 1: The attack success rate (%) of adversarial exam-
ples (AE) and reversible adversarial examples (RAE) on the
ImageNet dataset in the white-box setting (Inception-v3).

Attack Method Parameter AE RAE

FGSM
ε = 4 76.70 71.58
ε = 8 83.82 79.87
ε = 16 88.18 86.08

BIM (post)
ε = 4 96.71 73.84
ε = 8 97.83 83.61
ε = 16 99.78 89.45

BIM (in-the-loop)
ε = 4 96.71 81.01
ε = 8 97.83 94.67
ε = 16 99.78 97.41

C&W (post)
κ = 0 98.62 28.68
κ = 50 99.20 81.43
κ = 100 99.68 95.45

original image from the RAE without any distortion. So
we do not evaluate the classification accuracy of adversar-
ial from the viewpoint of the authorized classifier. We con-
firmed that RAEs generated for our experiments were recov-
ered to be the original images exactly.

We perform our experiments on 100,000 images ran-
domly selected from the ImageNet (Deng et al. 2009). Since
only correctly classified images are considered for evalua-
tion of the attack ability, the classification accuracy of the
original set is 100%. The pretrained Inception-v3 (Szegedy
et al. 2016) is adopted as the default target attack model,
which is evaluated with top-1 accuracy. The values of pixels
per color channel of the images range from 0 to 255. The ad-
versarial attack methods used in the experiments are FGSM,
BIM, and C&W, and we perform untargeted attacks in the
experiments. For FGSM, we set the perturbation budget ε
as 4/255, 8/255 and 16/255. For BIM, we set the perturba-
tion budget ε as 4/255, 8/255 and 16/255, the number of it-
erations as 20, the step size η as 1/255. We use `∞ norm
distance metric for FGSM and BIM. For C&W, we use l2
distance metric and κ = 0, 50, 100 where κ is the parameter
of attack confidence.

Selection of Super-pixel Size
Intuitively, smaller super-pixel size leads to less influence
on the attack success rate of the generated RAE while larger
super-pixel size leads to larger amount of data can be embed-
ded using RDH. In addition, we illustrate several samples of
RAEs with different super-pixel sizes. To have a clearer dif-
ference, in-the-loop smoothing version of BIM with ε = 4
is used here. As shown in Figure 2, smaller super-pixel
size achieves better visual quality of RAEs. So we choose
smaller super-pixel size in the experiments to achieve higher
attack success rate and better visual quality of RAEs.

For FGSM, the required embedding rate for RDH is
log2 2 = 1 bits per pixel. This embedding rate is within the
capacity of RDH. So we set the super-pixel size of FGSM
as 1 × 1. That is to say, we use RDH to directly embed the
adversarial perturbation of FGSM into the adversarial image



Table 2: The attack success rate (%) of adversarial examples and reversible adversarial examples on the ImageNet dataset. ∗
indicates the target model.

Model white-box black-box
Attack Method Inc-v3* Inc-v4 IncRes-v2 Inc-v3adv
FGSM 83.82 53.25 55.90 55.08
RAE-FGSM 79.87 48.28 50.54 50.12
BIM 97.83 40.72 37.23 30.82
RAE-BIM (post) 83.61 27.34 24.37 19.67
RAE-BIM (in-the-loop) 94.67 35.31 30.73 25.57
C&W 99.68 2.33 1.75 0.94
RAE-C&W (post) 95.45 1.12 0.85 0.34

to generate the RAE. So the in-the-loop smoothing method
for FGSM turns to be same as the post smoothing method
for FGSM when super-pixel size of FGSM is 1× 1.

For BIM, the required embedding rate of ε = 4 is log2 8 =
3 bits per pixel, the required embedding rate of ε = 8 is
log2 16 = 4 bits per pixel and the required embedding rate
of ε = 16 is log2 32 = 5 bits per pixel. So we set the super-
pixel size of BIM with ε = 4 as 1 × 3, ε = 8 as 2 × 2 and
ε = 16 as 1 × 5. Here we use the post smoothing method
and the in-the-loop smoothing method for BIM.

For C&W, the bit length of adversarial perturbation for
different images changes a lot. So we gradually increase the
super-pixel size for each adversarial image from 1 × 1 to
1× 2, 1× 3 and 2× 2 until the capacity of RDH is enough
to embed the perturbation. Here we use the post smoothing
method for C&W because the optimization of the in-the-
loop smoothing method did not complete within the prac-
tical computation time. We suspect the reason may be that
in-the-loop version of C&W is not so effective in finding the
suitable adversarial perturbations for super-pixels.

Attack Ability in the White-box Setting
To evaluate the attack ability, we adopt the attack success
rate against the pretrained classification models on Ima-
geNet dataset. Table 1 shows results on the attack success
rate of reversible adversarial examples (RAE) generated by
FGSM, BIM and C&W with parameters of different values
in the white-box setting. The column “AE” is the result of
adversarial examples while “RAE” is the result of reversible
adversarial examples. We compare three baselines FGSM,
BIM and C&W with our corresponding RAE. For BIM, we
presented the results of two variants, post smoothing and in-
the-loop smoothing. For FGSM, the in-the-loop smoothing
method is same as the post smoothing method when super-
pixel size of FGSM is 1×1. For C&W, only the result of the
post smoothing method is shown.

From the result, we can see that the gap of the attack suc-
cess rate between AE and RAE of FGSM is less than 6 per-
cent. For the in-the-loop smoothing method of BIM, the gap
of the attack success rate between AE and RAE is less than
4 percent when the perturbation budget ε is not smaller than
8/255. For C&W, the gap of the attack success rate between
AE and RAE is less than 5 percent when κ is set as 100. So
the attack success rates of regular adversarial examples and
RAEs in the white-box setting are quite close when we set

larger perturbation budgets, indicating RAEs can work cor-
rectly. Moreover, the success rate of RAE generated by the
in-the-loop smoothing method of BIM is at least 7 percent
higher than the post smoothing method of BIM, which re-
veals that the results of in-the-loop smoothing gives better
attack success rate compared to the post smoothing method.
This is because adversarial perturbation generated with the
in-the-loop smoothing is made considering the super-pixel
strategy while that of post smoothing ignores this in the pro-
cess of adversarial perturbation generation. Finally, we get
the conclusion from Table 1 that RAE generated by larger
budget adversarial perturbations can achieve comparable at-
tack ability with regular adversarial examples in the white-
box setting.

Visual Results
To evaluate the visual quality of RAE with different per-
turbation budgets, we show the visual results of in-the-loop
smoothing method for BIM with ε = 4/255, ε = 8/255 and
ε = 16/255 respectively in Figure 3, 4 and 5. For each row,
we show the original images (top), the adversarial examples
(middle) and the RAEs (bottom) respectively. We can see
that the adversarial images and their corresponding RAEs
look almost same. When the perturbation budget becomes
larger, the visual quality of RAE becomes worse to human
eyes. But human eyes can hardly perceive the difference be-
tween RAEs and the original images when the perturbation
budget ε is not larger than 8. These visual results reveal that
RAE can still achieve good visual quality to human eyes
when the adversarial perturbations are not large.

Attack Ability in the Black-box Setting
In real applications, the black-box setting is more impor-
tant for RAE. So we also evaluate the attack success rate
of RAEs with larger perturbation budget in the black-box
setting. The intention of the experiment setting is that users
mainly rely on the transferability of RAEs in real appli-
cations since users usually can not have direct access to
the authorized/unauthorized classifiers. In Table 2, we gen-
erated RAEs with Inc-v3, and evaluated the attack suc-
cess rate with Inception-v4 (Szegedy et al. 2017), Incep-
tion Resnet-v2 (Szegedy et al. 2017), and Inception-v3adv .
Here, Inception-v3adv denotes Inception-v3 (Szegedy et al.
2016) model with ensemble adversarial training (Tramer



Figure 3: Visual results of original images (top), adversar-
ial examples generated by BIM with ε = 4/255 (mid-
dle) and reversible adversarial examples generated by in-the-
loop smoothing method for BIM with ε = 4/255 (bottom).

Figure 4: Visual results of original images (top), adversar-
ial examples generated by BIM with ε = 8/255 (mid-
dle) and reversible adversarial examples generated by in-the-
loop smoothing method for BIM with ε = 8/255 (bottom).

Figure 5: Visual results of original images (top), adversar-
ial examples generated by BIM with ε = 16/255 (mid-
dle) and reversible adversarial examples generated by in-the-
loop smoothing method for BIM with ε = 16/255 (bottom).

et al. 2017) which is known to be robust against adversarial
attack. We set the perturbation budget ε as 8/255 for FGSM
and BIM, and the attack confidence κ as 100 for C&W. We
can confirm that attack success rate in the black-box setting
is lowered compared to the white-box setting in both regu-
lar adversarial examples and RAEs. Also, the gap between
regular adversarial examples and RAEs is enlarged. To have
better attack success rate in the black-box setting, introduc-
ing techniques to increase the transferability (Xie et al. 2019;
Huang et al. 2019) into RAE is straightforward.

Discussion
This paper proposes the first prototype framework of RAE
and makes a preliminary attempt in the black-box setting. To
have better attack success rate in the black-box setting, in-
troducing techniques to increase the transferability can be
a straightforward solution. In addition, reducing the drop
of attack ability in black-box setting can also be exploited
by improving the reversible data hiding algorithm or using
more efficient encryption schemes, such as “key agreement
protocol” + “symmetrical encryption”, to reduce the length
of information that reversible data hiding needs to embed.

The purpose of RAE is to control how user’s data is rec-
ognized by AI. We believe this proposal would have positive
societal impact. However, attackers with malicious purpose
may use RAE to attack AI. Since RAE is one type of adver-
sarial example, it can have similar potential negative societal
impacts as adversarial example. So RAE will also pose a po-
tential threat to safety and security critical applications. To
deal with the potential threat of RAE, adversarial defense
methods can be adopted as countermeasures to protect deep
neural networks.

Conclusion
In this paper, we propose reversible adversarial example to
control how user’s data is recognized and used by AI. The
AI specified by the user can exactly recover the original im-
age from the RAE while other AIs cannot recognize the
RAE correctly. This paper proposes the concept of RAE
and give the first prototype framework to verify its feasi-
bility. The proposed method combines adversarial example,
reversible data hiding and encryption to realize RAE. Exper-
iments show that the proposed method can achieve compa-
rable attack ability with the corresponding adversarial attack
method and similar visual quality with the original image. In
the future, we will further investigate how to increase the at-
tack ability of the RAE in the black-box setting.
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