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ABSTRACT

Random Fourier features (RFFs) provide a promising way for kernel learning in a spectral case.
Current RFFs-based kernel learning methods usually work in a two-stage way. In the first-stage
process, learning an optimal feature map is often formulated as a target alignment problem, which
aims to align the learned kernel with a pre-defined target kernel (usually the ideal kernel). In the
second-stage process, a linear learner is conducted with respect to the mapped random features.
Nevertheless, the pre-defined kernel in target alignment is not necessarily optimal for the general-
ization of the linear learner. Instead, in this paper, we consider a one-stage process that incorporates
the kernel learning and linear learner into a unifying framework. To be specific, a generative network
via RFFs is devised to implicitly learn the kernel, followed by a linear classifier parameterized as a
full-connected layer. Then the generative network and the classifier are jointly trained by solving an
empirical risk minimization (ERM) problem to reach a one-stage solution. This end-to-end scheme
naturally allows deeper features, in correspondence to a multi-layer structure, and shows superior
generalization performance over the classical two-stage, RFFs-based methods in real-world classifi-
cation tasks. Moreover, inspired by the randomized resampling mechanism of the proposed method,
its enhanced adversarial robustness is investigated and experimentally verified.

1 Introduction

Kernel methods reveal the non-linear property hidden in data and have been extensively studied in recent decades
[1, 2]. The selection of the kernel still remains a non-trivial problem, which requires prior knowledge and directly
affects the algorithm performance. Hence, learning a suitable kernel from data has been a universal choice [3, 4]. In
recent decades, a series of researches have been devoted to exploit the random Fourier features (RFFs) [5] in the kernel
learning task [6, 7].

The pioneering work [5] of RFFs constructed an explicit feature map ϕ to approximate a positive definite, shift-
invariant kernel. The feature map ϕ maps the input point x to the so-called random Fourier features ϕ(x,w), where
the associated weights w are sampled from the spectral distribution of the kernel function. A linear learner is then
conducted on the mapped features to categorize them. Intuitively, RFFs allow us to learn the weights w in a spectral
sense, i.e., to learn a kernel [6, 7]. To be specific, to involve the data information, typical approaches [6, 7] proposed
to solve the following target alignment problem [8] to learn the weights w,

argmax
w

∑
i,j

yiyjϕ(xi,w)Tϕ(xj ,w), (1)

where (xi, yi) and (xj , yj) denote the i-th and the j-th training samples respectively. The inner product of the two
mapped features ϕ(xi,w)Tϕ(xj ,w) denotes the implicit kernel function value k(xi,xj). Sinha and Duchi [6] learned
an optimal weight subset of w by solving Eq.(1) for an optimal feature subset of the vanilla RFFs, and proved the
consistency and generalization bound. The proposed algorithm [6] is efficient and highly scalable. Li et al. [7]
incorporated a deep neural network to implicitly learn the kernel, and trained the network by solving Eq.(1). The work
in [7] shows that the performance could be improved by involving a network to model the kernel distribution.
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These kernel learning methods [6, 7] follow a two-stage scheme: They first learn the random features ϕ(x,w), which
is equivalent to learning the weights w since the map ϕ is explicit, by solving Eq.(1), and then learn a linear classifier
on the features. The optimization target of Eq.(1) is to align the learned kernel with the pre-defined ideal kernel yyT .
However, this commonly-used ideal kernel in target alignment is not necessarily optimal for the generalization of the
linear classifier learned in the second stage. Hence, in such a two-stage way, the random features learned in the first
stage perhaps show excellent approximation performance towards the ideal kernel, but do not take much care of the
generalization or classification performance, which could be further improved.

To address this issue, towards learning a more well-generalized kernel, we propose to jointly learn the random features
and the classifier in an end-to-end way by straightly solving the following expectation risk minimization problem,

argmin
G,C

E(x,y)L
(
C
(
ϕ
(
x,EnG(n)

))
, y
)
, (2)

where L(·, ·) denotes the loss function and n denotes the noise random variable. A generative network G(·), a.k.a. a
generator, is devised to learn the kernel distribution, which takes a set of noises as input and samples weights from
the learned kernel distribution. Then, the corresponding random features are constructed based on the generated
weights according to the feature map ϕ. A linear classifier C(·) parameterized as a full-connected (FC) layer is
applied to the random features to categorize them. The generative network and linear classifier are jointly trained
by directly minimizing the loss between the true labels and predicted ones. Therefore, we achieve an end-to-end,
one-stage solution, which no longer pursues the approximation ability of random features towards any pre-defined
kernels. Instead, it is expected that distributions of the underlying kernel can be modeled by the generative network
for better classification or generalization performance. The proposed method is called Generative RFFs (GRFFs) since
the random features are built via the generative network.

Besides, this end-to-end training strategy naturally allows deeper features, in correspondence to a multi-layer struc-
ture of GRFFs. An associated progressively training strategy is designed to empirically guarantee the convergence
of the multi-layer GRFFs. The multi-layer structure further boosts the generalization performance, since a good
kernel on features is learned in this way. Moreover, the randomized resampling mechanism of GRFFs yields the non-
deterministic weights and brings the merit of adversarial robustness gains, which is investigated and experimentally
verified.

Our contributions can be summarized as follows,

• To the best of our knowledge, this is the first work in RFF-based kernel learning algorithms to incorporate
the kernel learning and the linear learner into a unifying framework via generative models for an end-to-end
and one-stage solution. Empirical results indicate the superior generalization performance over the classical
two-stage, RFFs-based methods.

• The end-to-end strategy enables us to employ a multi-layer structure for GRFFs, indicating a good kernel on
deeper features. A progressively training strategy is devised to efficiently train the multiple generators. The
multi-layer structure further advances the generalization performance.

• The adversarial robustness of the proposed method is also investigated. Empirical results show that, to some
degree, the randomized resampling mechanism associated with the learned distributions can alleviate the
performance decrease against adversarial attacks.

The rest of this paper is organized as follows. We briefly introduce the random Fourier features and the generative
models in Section 2. The one-stage framework, multi-layer structure, and progressively training strategy of the pro-
posed method are explained in detail in Section 3. Experiment results on classification tasks and adversarial robustness
are shown in Section 4. The discussions and the conclusions are drawn in Section 5.

2 Preliminaries

2.1 Random Fourier Features

In kernel methods, a positive definite kernel k(x,x′) with x,x′ ∈ Rd defines a map Φ : Rd → H, which satis-
fies k(x,x′) = ⟨Φ(x),Φ(x′)⟩H, where ⟨·, ·⟩H denotes the inner product in a Reproducing Kernel Hilbert Space H.
However, in large-scale kernel machines, there exist unacceptable high computation and memory costs: O(n2) kernel
evaluations, O(n2) in space, and even O(n3) in time to compute the inverse of the kernel matrix. Therefore, random-
ized features are introduced in large-scale cases to approximate the kernel function [5]. The theoretical foundation is
based on the Bochner’s theorem [9], which indicates that the Fourier transform of a kernel function is associated to a
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probability distribution: A continuous and shift-invariant kernel k(x,x′) = k(x−x′) onRd is positive definite if and
only if k(·) is the Fourier transform of a non-negative measure p(w). That is,

k(x− x′) =

∫
Rd

p(w)ejw
T (x−x′)dw. (3)

Considering a real-valued, shift-invariant and positive definite kernel k, by applying the Euler’s formula ejx = cos(x)+
j sin(x) to Eq.(3), we have

k(x− x′) = Re[k(x− x′)] =

∫
Rd

p(w) cos(wT (x− x′))dw.

=

∫
Rd

p(w)(cos(wTx) cos(wTx′) + sin(wTx) sin(wTx′))dw

= Ew

[[
cos(wTx) sin(wTx)

]T [
cos(wTx′) sin(wTx′)

]]
.

(4)

Therefore, one can construct an explicit feature map ϕ : Rd → R2D as follows:

ϕ(x, {wi}Di=1) ≡
√

1

D

[
cos(wT

1 x) · · · cos(wT
Dx) sin(wT

1 x) · · · sin(wT
Dx)

]
, (5)

known as the random Fourier features [5]. The set of weights {wi}Di=1 is sampled from the spectral distribution of
the kernel function. The mapped random Fourier features satisfy ϕ(x, {wi}Di=1)

Tϕ(x′, {wi}Di=1) ≈ k(x,x′) [5]. A
detailed analysis of the convergence can be found in [10].

The vanilla RFFs [5] accelerate the large-scale kernel machines a lot and are data-independent. Afterwards, RFFs
have been widely utilized, including the kernel approximation [11], extreme learning machines [12], the bias-variance
trade-off in machine learning [13] and the kernel learning task [6, 7]. A systematic survey on RFFs-based algorithms
can be found in [14].

Inspired by the vanilla RFFs, learning the features is equal to learning the weights {wi}Di=1, while learning the weights
is equal to learning the kernel distribution. Hence, to efficiently learn the distribution, generative models are intro-
duced.

2.2 Generative Models

Generative models have been widely applied in learning distributions from data [15]. Various generative models can
be categorized into two types: models that perform explicit probability density estimations, and models that perform
as a sampler sampling from the estimated distribution without a precise probability function.

Suppose a training set includes samples from a distribution Pdata, then the first type of generative models returns an
estimation Pmodel of Pdata. Given a particular value as input, the estimation Pmodel will output the corresponding
probability. While the second type tries to learn the latent Pdata as well, but in a rather different way: The learned
model actually simulates a sampling process, through which one can generate more samples from the estimated distri-
bution.

There exist lots of researches in the second type of generative models using a deep neural network as the sampler.
In computer vision, the family of generative adversarial networks (GANs) [16] has shown great generality in various
situations [17, 18]. The generative network in GANs performs as a useful image generator, which generates images by
sampling from the learned image distribution. Besides, in Bayesian deep learning, there is a series of hypernetwork-
based works, which use a neural network, called hypernet, to generate the parameters in another neural network, called
primary net. The hypernet also performs as a sampler to learn the parameter posterior distribution of the primary net
[19, 20].

Therefore, the generative networks are employed in the proposed GRFFs due to the powerful distribution learning
ability. The resulting merits are two-fold: On the one hand, the GRFFs could learn a well-generalized kernel distri-
bution from data. On the other hand, the generative networks could produce non-deterministic weights, bringing the
adversarial robustness gains.
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Figure 1: An illustration of the one-stage generative random Fourier features.

3 Generative Random Fourier Features Model

3.1 One-stage Generative Random Fourier Features

Previous RFFs-based kernel learning methods construct random features via sampling from the spectral distribution of
the kernel [5] or via approximating the ideal kernel [6, 7], and then train a classifier on these features. The classification
performance of the random features learned in this two-stage manner can perhaps be further improved. Therefore, we
propose generative RFFs to jointly learn the features and the classifier by optimizing the expectation risk minimization
problem in an end-to-end manner, which leads to a one-stage solution with better classification performance.

We first describe a general framework of our one-stage model, illustrated in Fig.1. A generator is designed to learn
and to sample from the latent kernel distribution. Then, the generative random Fourier features of the original data are
constructed by the sampled weights from the learned distribution. Finally, a linear classifier is applied to the features
to categorize them.

The generator in our method performs as a sampler. It implicitly learns some distribution Pk and generates samples
from it. Given an arbitrary noise distribution P0 and a set of noises N = {ni}Di=1 sampled from P0, the generator ΦG

takes them as input and generates the corresponding set of weights {wi}Di=1 sampled from Pk:

wi = ΦG(ni),ni ∼ P0,wi ∼ Pk, i = 1, ..., D. (6)

Given a training set {(xi, yi)}ni=1, the generative random Fourier features zi of each training point xi will be con-
structed with full use of the D weights {wj}Dj=1 according to Eq.(5):

zi = ϕ(xi, {wj}Dj=1),wj ∼ Pk, i = 1, ..., n. (7)

Notice that the weight wj and the data point xi are of the same dimension and that the dimension of zi equals to 2D.
In the end, the linear classifier ΦC will be applied on the GRFFs zi to predict the label ŷi = ΦC(zi).

Denote θG and θC as the parameters of the generator ΦG and the linear classifier ΦC respectively. Combining Eq.(6)
and Eq.(7), we have the following empirical risk minimization (ERM) problem:

min
θG,θC

1

n

n∑
i=1

L
(
ΦC

(
ϕ
(
xi,ΦG(N)

))
, yi

)
. (8)

3.2 Multi-layer Generative Random Fourier Features

The end-to-end training strategy by straightly optimizing the ERM problem naturally allows us to employ a multi-
layer structure of GRFFs, shown in Fig.2. To be specific, with one generator, we can build the random features of
the original data, which can be viewed as the first layer of features. Then, with another generator, a second layer
of random features can be constructed in the same way based on the features from the previous layer. After such a
layer-by-layer operation, the random features in the last layer are followed with an FC layer. The total networks, i.e.,
all the generators and the last FC layer, are again jointly trained to solve the ERM problem. In this way, in each layer,
there exists a corresponding generator which models the specific distribution on this layer of features, indicating a
good kernel learned on features.

In those two-stage approaches [5, 6, 7], the distribution is associated with a pre-defined kernel, which is restricted to
a single-layer structure, since the kernel for the multi-layer case is not clear. By contrast, we cover the multi-layer
case, and thus have an advantage in learning a much more linear-separable pattern from data under the guidance of the
learned kernels on features.
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Figure 2: An illustration of the multi-layer structure of GRFFs.

(a) Loss curves (b) Accuracy curves

Figure 3: An example of the training process on a bi-classification task. A two-layer structure is adopted. Loss and
accuracy variations are recorded. There are evident performance leaps, i.e., the drop of losses and the step-up of
accuracies, by adding a second layer at the turning point of 200-th epoch. Detailed settings can be found in section 4.

Without loss of generality, a detailed elaboration on the two-layer structure is presented below as an example, which
could be naturally generalized to any number of layers (see Alg.1). Denote ΦG1

and ΦG2
as the two generators in

the first and second layers respectively. The two generators, ΦG1
and ΦG2

, take two sets of noises N1 = {n1
i }

D1
i=1

and N2 = {n2
i }

D2
i=1 independently sampled from the same distribution P0 as input respectively, and generate the

corresponding weights W1 = {w1
i }

D1
i=1 and W2 = {w2

i }
D2
i=1:

w1
i = ΦG1(n

1
i ),n

1
i ∼ P0,w

1
i ∼ Pk1 , i = 1, ..., D1,

w2
i = ΦG2

(n2
i ),n

2
i ∼ P0,w

2
i ∼ Pk2

, i = 1, ..., D2,
(9)

where Pk1 and Pk2 are the distributions modeled by ΦG1 and ΦG2 respectively.

In the first layer, a training sample xi cooperates together with W1 to construct the generative random Fourier feature
z1i according to Eq.(5):

z1i = ϕ(xi, {w1
j}

D1
j=1),w

1
j ∼ Pk1

, i = 1, ..., n. (10)

Then, the random feature z1i cooperates together with the generative weights W2 from the second layer to construct
the generative random Fourier feature in the second layer z2i in the same way:

z2i = ϕ(z1i , {w2
j}

D2
j=1),w

2
j ∼ Pk2

, i = 1, ..., n. (11)

Again, notice that w1
j and xi are of the same dimension and that the dimension of z1i equals to 2D1. Accordingly, the

dimension of w2
j equals to 2D1 and the dimension of z2i equals to 2D2. Finally, there is a linear classifier ΦC applied

to the last random feature z2i to output the prediction.

Now we rewrite the ERM problem in Eq.(8) for the two-layer GRFFs as follows,

min
θG1

,θG2
,θC

1

n

n∑
i=1

L
(
ΦC

(
ϕ
(
z1i ,ΦG2

(N2)
))
, yi

)
, z1i = ϕ

(
xi,ΦG1

(N1)
)
. (12)

Advantages of the multi-layer structure are obvious. The generator in the current layer actually models some distribu-
tion on features from the previous layer, indicating a good kernel on features. Besides, associated with the proposed
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progressively training strategy (introduced in section 3.3), during the whole training process, by updating the gen-
erators layer-by-layer, there are distinct improvements on both the loss curves and the accuracy curves (see Fig.3),
implying that adding more layers leads to significant performance leaps. More details about the distributions on
features are illustrated in section 4.

3.3 Progressively Training

For the multi-layer generative random Fourier features, since there exist several generative networks, it is hard to
efficiently update all the parameters in multiple networks simultaneously, which possibly results in a total failure of
convergence [21]. Therefore, inspired by the training in ProGAN [18], we propose a progressively training strategy to
efficiently train the multiple generators in an inverse and layer-by-layer order.

The progressively training strategy contains several phases. The number of phases equals to the number of generators.
In the first phase, we freeze the update of all the parameters except the last generator and the FC layer. After the
training converges, we step into the next phase. Now the penultimate generator is unfrozen and gets updated together
with the last one and the FC layer until convergence, while the others are still kept fixed. In such an inverse and
layer-by-layer order, we progressively unfreeze the generators in each layer, add them to the training sequence one
by one, and finally train all these generators together with the FC layer, which is empirically proved as an efficient
training way for the multi-layer structure. This progressively training alogrithm is demonstrated in Alg.1.

In addition, more details of the generator are described. Every generator is parameterized as a multi-layer perceptron
(MLP), which can be viewed as a composition of several cascaded blocks. Among these blocks, except for the last
one, each block sequentially holds a linear layer, a batch normalization [22] layer, and an activation layer with leaky
ReLU function. In the last block, we remove the batch normalization layer and replace leaky ReLU with tanh function
as the activation. Fig.1 illustrates the described components inside the generator. Furthermore, one can customize the
network according to the practical cases. For example, it is allowed to increase the number of blocks in the MLP to
enhance its learning ability or to add dropout [23] to alleviate overfitting. The number of neurons in the last FC layer
can be modified freely for multi-classification or regression tasks.

Algorithm 1 The progressively training for GRFFs.

Require: Training set Xtr, number of generators K, numbers of epochs epo1, epo2, · · · , epoK w.r.t. K training
phases.

Ensure: K generators ΦG1
,ΦG2

, · · · ,ΦGK
and a linear classifier ΦC .

1: while not reach
∑K

i=1 epoi do
2: Sample K sets of noises from P0: Ni, i = 1, · · · ,K.
3: Take a batch of samples (x, y) from Xtr.
4: Build features at the k-th layer sequentially:

Zk = ϕ(Zk−1,ΦGk
(Nk)), Z

0 = x, k = 1, · · · ,K.
5: Determine the loss: loss = L(ΦC(Z

K), y).
6: for j = 1, · · · ,K do # the j-th training phase
7: if not reach

∑j
i=1 epoi then # inverse order

8: Update ΦGK−j+1
, · · · ,ΦGK

and ΦGC
via ∇loss by Adam.

9: Break.
10: end if
11: end for
12: end while

The standard normal distribution is set as the input noise distribution P0, which corresponds to a radial basis function
(RBF) kernel, the most widely used universal kernel. At each iteration, we independently resample noises from P0

to optimize the generators on the expectation of the distribution, and update simultaneously the parameters of the
generators and the classifier by Adam [24] optimizer. We choose the cross entropy function as the loss function L.
One can estimate whether the model is trained until convergence by watching the variation of the cross entropy loss
value, with which the final classification performance is closely connected.

For the inference process, given a new sample xnew, random noises are first sampled from P0, then the weights are
generated via the generators, then the corresponding generative random Fourier feature znew is constructed via the
weights and xnew by applying Eq.(7) or Eq.(10), Eq.(11). Finally, the linear classifier ΦC will predict the label of
xnew.
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So far, we finish building an end-to-end, one-stage kernel learning method, which implicitly learns the kernel distribu-
tion by solving an ERM problem via the generative RFFs. To learn the latent kernel distribution, a generative network
is designed to simulate the sampling process without an explicit definition of the probability density function of the
distribution. Besides, jointly learning the features and the classifier allows us to increase the depth of features. The
resulting multi-layer structure can learn a good kernel on features and thus even boosts the generalization performance.
In addition, a progressively training strategy is proposed to efficiently train the multiple generative networks.

Remark We would like to reiterate the following facts. It’s worth noting that the initial motivation of RFFs-based
methods is to reduce the time and space complexity in large-scale kernel machines. For instance, the vanilla RFFs
[5] speed up the kernel machines a lot, then get even accelerated in [6]. Further, random features are then extended
to kernel learning, since RFFs actually provide a good justification for kernel learning in the spectral cases. The
researches in [6, 7] are two typical kernel learning algorithms via random features, see a recent survey [14] on the
development of RFFs-based algorithms for kernel learning. Regarding to our method, the target is to perform kernel
learning via RFFs, but NOT reducing the time-consuming. In fact, since the neural network requires training, our
method and the method in [7] are inevitably inferior in the processing speed during training and inference, compared
with those algorithms specifically designed for kernel acceleration [5, 6]. Instead, the purpose of our method is to
learn a more well-generalized kernel based on the fact that the optimization objective in [6, 7], i.e., solving the target
alignment, is not necessarily optimal in classification tasks. To achieve such a purpose, we introduce the generative
networks and adopt an end-to-end scheme to reach a one-stage solution. The resulting two merits of this solution,
better generalization and stronger robustness, will be empirically illustrated in the next section.

4 Experiments and Results

We evaluate the classification performance of the proposed GRFFs on a wide range of data sets. Following the work
in [6, 7], we first test the performance on a synthetic data set. Second, we choose several benchmark data sets from
UCI repository1 and LIBSVM data2, including both large-scale and small-scale sets, and test the performance on these
data sets. Finally, we introduce a variant of the multi-layer GRFFs for image data and conduct an adversarial attack
on this variant to illustrate its adversarial robustness.

The simplest version of GRFFs only includes a single layer, i.e., one single generative network, denoted as SL-GRFF.
We denote the multi-layer GRFFs including more than one generators as ML-GRFF. We compare SL-GRFF and
ML-GRFF with the following approaches.

• RFF. Rahimi and Recht [5] first proposed the vanilla RFFs to approximate the kernel function by sampling
from its spectral distribution. This approach is data-independent.

• OPT-RFF. Based on the vanilla RFFs, Sinha and Duchi [6] proposed to optimize the random features by solv-
ing a target alignment problem. A feature subset of an optimal size is learned, which shows great superiority
in high processing speed in large-scale kernel machines.

• IKL. Li et al. [7] adopted a neural network to model the spectral distribution of the kernel function. The
network is trained by optimizing a target alignment problem. A linear classifier is applied on the features.

• MLP. The traditional MLP with ReLU activation function is also included in the comparison. Specifically,
the numbers of layers in the MLP equal to that in the ML-GRFF, and the numbers of neurons in each hidden
layer in the MLP equal to the numbers of sampled noises in each layer in the ML-GRFF.

In all the experiments, for RFF and OPT-RFF, the random features are generated by sampling weights from a normal
distribution, which makes the features approximate an RBF kernel. Regarding to the number of sampled weights, i.e.,
the value of D in Eq.(5), following the implement3 of OPT-RFF [6], a large enough number of weights are initially
sampled in OPT-RFF to learn a feature subset of an optimal size Dopt. Then this learned Dopt is employed to build
the vanilla RFFs [5]. The ridge regression is set as the linear classifier in the second stage of RFF and OPT-RFF. We
only compare with the results of IKL claimed in the paper [7] on the synthetic data set in section 4.1.

For our proposed GRFFs, in section 4.1 and 4.2, for the multi-layer version, we adopt a two-layer structure including
two generators, each of which is parameterized as an MLP. We set D1 = 256 and D2 = 64. The structures of the first
and second generators are 100→ 128→ 64→ 64→ dim and 100→ 512→ 256→ 256→ 512 respectively, where
dim denotes the input data dimension. The FC layer contains 2D2 = 128 neurons. For the single-layer GRFFs in
section 4.1, the generator is also parameterized as an MLP and holds a structure of 100 → 128 → 64 → 64 → dim.

1https://archive.ics.uci.edu/ml/datasets.html
2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
3https://github.com/duchi-lab/learning-kernels
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(a) Synthetic data when d = 2 (b) Test errors vs. dimension (c) Errors vs. dimension

Figure 4: Performance on the synthetic data. (a) Data distribution when the dimension equals to 2. (b) Misclassification
errors on the test set of different methods. (c) Misclassification errors on the training and test sets of SL-GRFF and
ML-GRFF.

We set D = 256, thus the following FC layer contains 2D = 512 neurons. We discuss GRFFs with more than 2
generators in A.

4.1 Performance on Synthetic Data

For the synthetic set, we generate {xi}ni=1 ∼ N (0, Id) with yi = sign(∥xi∥2 −
√
d), where d is data dimension.

The training set includes 104 samples and the test set contains 103 samples. Fig.4a shows the data distribution when
d = 2. An RBF kernel is ill-suited for this data set since the Euclidean distance used in this kernel fails to correctly
capture the data pattern near the boundary [6]. One may need to carefully tune the kernel width to alleviate the inherent
inappropriateness between the RBF kernel and the data set.

(a) PCA on SL-GRFF, d = 8. (b) PCA on ML-GRFF in the 1st layer,
d = 8.

(c) PCA on ML-GRFF in the 2nd layer,
d = 8.

(d) PCA on SL-GRFF, d = 24. (e) PCA on ML-GRFF in the 1st layer,
d = 24.

(f) PCA on ML-GRFF in the 2nd layer,
d = 24.

Figure 5: PCA visualizations of features of SL-GRFF and ML-GRFF, corresponding to synthetic data when d = 8
(top) and d = 24 (bottom) respectively. The blue diamond points denote positive samples, while the red pentagram
points denote negative samples.

8



(a) Loss curves when d = 2 (b) Accuracy curves when d = 2

(c) Loss curves when d = 6 (d) Accuracy curves when d = 6

(e) Loss curves when d = 8 (f) Accuracy curves when d = 8

Figure 6: Average loss and accuracy at each epoch on the synthetic data of different dimensions. The green curves
denote records on the test set, while the magenta curves denote records on the training set. The turning point of the 1st
and 2nd stages is the 200-th epoch.

Fig.4b illustrates the test errors of different methods corresponding to different data dimensions d ∈
{2, 4, 6, 8, ..., 18, 20}. Both RFF and OPT-RFF manifest a sharp performance decrease along with the increase of
d. By contrast, IKL and ML-GRFF both have rather stable performance as the dimension d increases, since they try to
learn the kernel distribution via a neural network without any prior kernel function definition. Particularly, by directly
optimizing the ERM problem in an end-to-end manner, ML-GRFF characterizes the data pattern much better than the
others and achieves the lowest test errors. Fig.4c shows the comparison results on the training and test sets of SL-
GRFF and ML-GRFF respectively. In a wide range of data dimensions, ML-GRFF always has an evident superiority
of classification errors on the test set over SL-GRFF.

Besides, to visualize the generative RFFs, we take PCA [25] to extract the top-3 principal components of random
features in SL-GRFF and different layers of ML-GRFF, shown in Fig.5. SL-GRFF and ML-GRFF are trained on the
synthetic data of two dimensions, d = 8 and d = 24, respectively. When d = 8, both SL-GRFF and ML-GRFF have
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Table 1: Training and test accuracy (%) on small-scale data sets of different models. The highest test accuracy is
highlighted in bold.

method data set monks1 monks2 monks3 australia climate diabetic sonar
(#tr;#te;d) (124;432;6) (169;432;6) (122;432;6) (345;345;14) (270;270;18) (576;575;19) (104;104;60)

RFF train 95.48± 3.15 98.82± 1.73 97.38± 0.69 93.51± 2.57 99.93± 0.17 79.90± 2.00 100.00± 0.01
test 81.48± 1.83 78.66± 1.56 93.61± 0.45 84.70± 1.53 91.48± 1.72 73.37± 1.39 77.88± 4.90

OPT-RFF train 100.00± 0.01 91.83± 3.28 96.23± 1.60 93.45± 2.29 99.70± 0.31 78.78± 2.08 100.00± 0.01
test 91.67± 4.29 77.45± 2.78 92.13± 1.96 83.83± 1.85 92.44± 1.42 72.40± 1.23 78.46± 7.02

MLP train 96.94± 0.32 96.80± 1.57 97.05± 0.40 92.93± 2.27 98.37± 0.83 84.27± 3.94 91.35± 5.09
test 84.31± 1.50 84.86± 2.98 85.37± 1.46 84.64± 1.54 93.26± 1.13 67.97± 1.36 75.77± 2.68

ML-GRFF train 97.90± 1.50 82.72± 1.96 95.08± 1.56 85.86± 1.93 95.04± 1.58 69.53± 2.01 80.38± 7.08
test 95.83± 2.15 79.72± 1.18 93.70± 0.99 86.09± 1.79 94.59± 1.42 70.76± 1.03 80.58± 7.02

Table 2: Training and test accuracy (%) on large-scale data sets of different models. The highest test accuracy is
highlighted in bold.

method data set adult ijcnn phishing
(#tr; #te; d) (32,561; 16,281; 123) (49,990; 91,701; 22) (5,528; 5,527; 68)

RFF train 84.50± 0.21 95.35± 0.19 94.53± 0.35
test 84.25± 0.16 93.18± 0.19 92.63± 0.61

OPT-RFF train 84.56± 0.29 94.85± 0.28 95.50± 0.14
test 84.47± 0.28 93.20± 0.05 94.26± 0.22

MLP train 85.05± 0.07 98.58± 0.48 97.76± 0.50
test 84.70± 0.19 98.54± 0.23 95.69± 0.23

ML-GRFF train 84.93± 0.14 94.03± 0.42 95.23± 0.32
test 84.76± 0.17 94.60± 0.57 95.20± 0.38

similar performance, while when d = 24, ML-GRFF performs better than SL-GRFF. For ML-GRFF, the extracted
principal components in the 1st layer (see Fig.5b and Fig.5e) do not show any evident linear separability. But, the
components in the 2nd layer (see Fig.5c and Fig.5f) follow a clear linear separable distribution. For SL-GRFF, we can
also see the linear separability of the extracted components from Fig.5a and Fig.5d, which is obviously weaker than
that of the extracted components of the 2nd layer in ML-GRFF. Hence, by going deeper and deeper, ML-GRFF is able
to learn a good kernel on features, which results in better performance.

To illustrate the traits of the progressively training strategy, we record the loss and accuracy curves during training on
the synthetic data of different dimensions in Fig.6. When the data is easy to be separated, i.e., it is low-dimensional
(d = 2), the whole training process does not show much differences between the two training phases in Fig.6a and
Fig.6b. As the dimension increases, there are obvious improvements, i.e., the drop of loss and the step-up of accuracy,
from the 1st training phase to the 2nd training phase in Fig.6c ∼ Fig.6f, at the turning point of the 200-th epoch. By
progressively training the generators layer by layer, the convergence is achieved and there is good performance.

4.2 Performance on Benchmark Data Sets

The models are trained on 7 small-scale data sets and 3 large-scale data sets. We randomly pick half of the data as
the training set, the other half as the test set, except for the data sets of which the training and test sets have already
been divided. After normalizing the data to [0, 1]

d in advance by min-max normalization, 20% of the training data are
randomly selected as the validation set. For RFF and OPT-RFF, the validation set is adopted to perform validations
on a group of 10 γ-s ranging from 0.5 to 1.4 with an interval of 0.1, where γ is the steep hyper-parameter in the
RBF kernel: k(x,x′) = exp(−γ||x − x′||2). For MLP and ML-GRFF, during training, models that achieve best
performance on the partitioned validation set are selected. All the experiments on every data set are repeated 5 times.

Tab.1 and Tab.2 illustrate the training and test accuracy of different methods on the small-scale and large-scale data
sets respectively. The sizes of the training and test sets and the data dimensions are also listed in the two tables. One
can find that in most cases, ML-GRFF outperforms RFF and OPT-RFF a lot and achieves competitive (sometimes
even slightly better) results compared with MLP.
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4.3 Performance on Image Data and Adversarial Robustness

As aforementioned, the promising performance on generalization of the proposed one-stage, end-to-end kernel learn-
ing method is empirically validated on both synthetic and real-world data. In the following, we conduct another
experiment on adversarial robustness to demonstrate the superiority of our GRFF.

4.3.1 Background and Motivation

The robustness of DNNs is demonstrated to be vulnerable and sensitive to imperceptible perturbations, a.k.a. adversar-
ial examples [26, 27], created by white-box adversarial attackers, which need availability to the complete information
of DNNs, e.g., model parameters [27, 28]. Hence, a line of adversarial defenses are based on an observation that
adversarial examples created on one model by these attacks might totally lose efficacy on another one of different
parameters [29], which inspires us to investigate the adversarial robustness of GRFF.

In GRFF, the independent samplings from the generators yield non-deterministic weights from the learned kernel
distributions. In other words, every time the independent sampling produces a GRFF model of different parameters.
Intuitively, such non-deterministic weights of GRFF raise the possibility of circumventing adversarial attacks on fixed
parameters, thus bringing stronger adversarial robustness. In the remainder of this subsection, we first describe a
variant of GRFF for image data, then evaluate its adversarial robustness against an iterative, gradient-based adversarial
attack [28].

4.3.2 Variant of GRFF for Image Data

When dealing with image data, an image of C×H×W size, where C,H ,W denote the number of channels, height and
width respectively, can be simply stretched to a 1-dimensional vector. Then multiple 1-dimensional weight vectors of
C×H ×W size could be generated to build the corresponding GRFFs of the image vector. However, it is impractical
to directly include so many C ×H ×W neurons in the output layer of the generator, resulting in extremely numerous
parameters and heavy computational burden. Therefore, we design a variant of GRFF to deal with image data. In the
following, we elaborate two main changes of this variant in detail: how to generate weights and how to build random
features.

To avoid posing C × H × W neurons at the output layer, the generators are now devised to generate small-size,
2-dimensional weights, which resemble the common convolution kernels and could efficiently reduce computational
costs. Accordingly, the generator structure should be modified. Specifically, the generators are parameterized the
same as those in DCGAN [17], instead of MLPs. Compared with the cascaded blocks in MLPs described in section
3.3 before, all the linear layers in the blocks are now substituted by transposed convolution [30] layers to generate
2-dimensional weights, and the leaky ReLUs are replaced by ReLUs. The others still remain the same.

The way to build random features for image data still basically follows the feature map ϕ of Eq.(5). The inner product
wTx between weights w and vectors x is now replaced by the convolution on image via the generated 2-dimensional
weights. The convoluted images then pass through cosine and sine functions respectively as indicated in Eq.(5), and the
resulting two pieces are concatenated along the image channels, followed by a pooling operation. These manipulations
could also be sequentially executed on the output of a preceding layer to build random features at the current layer,
thus forming a multi-layer structure. After such multi-layer operations, i.e., convolution, cosine and sine activation,
concatenation and pooling, the last random features are stretched to a 1-dimensional vector and an FC layer will make
the predictions.

4.3.3 Performance against Adversarial Attacks

Omitting the generators in the variant of GRFF described above, the model itself will reduce to a Convolution Neural
Network (CNN) with cosine and sine activation functions. The generators actually learn the convolution kernels in
every layer of the CNN. During inference, by resampling from the learned distributions for many times, the generators
will keep generating non-deterministic and independent convolution kernels, which every time will lead to a specific
CNN. Hence, inspired by the randomized resampling mechanism associated with the distribution learning ability of
GRFF, we investigate its application in defending the adversarial attacks.

In this subsection, we mainly exploit the robustness of GRFF against an iterative, gradient-based attack, called Itera-
tively, Least-Likely (Iter.L.L.) attack [28], which is developed from a one-step, gradient-based attack, Fast Gradient
Sign Method (FGSM, [27]). By taking the gradient on input images and moving the images a small step along the
direction of the sign of the gradient, FGSM creates the corresponding adversarial examples. Based on this one-step
FGSM, to acquire better attack performance, Kurakin et al. [28] proposed the iterative version, i.e., Iter.L.L. attack.
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Figure 7: Results of Iter.L.L. attack on GRFF and CNN. The blue solid curve and the magenta dotted curve denote
the variations of acc(2) and acc(1) respectively. While acc(0) refers to the accuracy at ϵ = 0. The red dash-dot curve
denotes the variation of the attacked accuracy of the CNN with cosine and sine activation functions.

The steps for creating the adversarial example xadv of an original example x can be summarized as follows,

xadv
(i+1) = Clipx,ϵ{xadv

(i)},

xadv
(i) ← xadv

(i) − α · sign(∇xL(model(xadv
(i)), yll)),

xadv
(0) = x.

(13)

At the i-th iteration, Iter.L.L. attack computes the loss between the predicted label and the least-likely label yll, moves
the image a small step α along the direction of the sign of the gradient of the input, and clips the pixel value of the
perturbed image to a specified range [xi,j − ϵ,xi,j + ϵ]. The step size is set as α = 1 by default. The number of
iterations is set as min{ϵ+ 4, 1.25ϵ}.
Iter.L.L. attack aims at linearizing the loss function around given fixed model parameters. While the weights in GRFF
are generated independently and thus are non-deterministic. Hence, we evaluate the ability of GRFF in defending
Iter.L.L. attack on MNIST [31] and have the following experiment design.

1. Given an image x and noises N(1) sampled from P0, GRFF can predict its label ŷ(0) and compute the loss
between ŷ(0) and the least-likely label.

2. By back propagation, the gradients on x are determined. Then the corresponding adversarial example xadv

is created according to Eq.(13).
3. GRFF can again take the original noises N(1) as input and output a prediction ŷ(1) of xadv.
4. By resampling independent noises N(2) from P0, now GRFF can take the new noises N(2) as input and output

another prediction ŷ(2) on xadv.

Based on the predicted results ŷ(0), ŷ(1) and ŷ(2) above, we could determine the corresponding unattacked accuracy
acc(0), attacked accuracy with original noises acc(1), and attacked accuracy with resampled noises acc(2). It is ex-
pected that the attacked accuracies acc(1) and acc(2) should be smaller than acc(0), and that acc(2) should be larger
than acc(1) since resampling should be helpful in defending the Iter.L.L. attack.

In this experiment, for the variant of GRFF, we also adopt a two-layer structure, the generators of which generate 16
and 8 weights of 5 × 5 size in the 1st and 2nd layers respectively. The max-pooling operator takes a perception field
of 2 × 2 size. The experiment results are shown in Fig.7. By omitting the generators, we acquire a CNN with cosine
and sine activation functions. We also record the results of the Iter.L.L. attack on such a CNN in Fig.7.

One can find that under Iter.L.L. attack, by resampling non-deterministic weights, acc(2) are generally larger than
acc(1), indicating stronger adversarial robustness brought by the resampling mechanism of GRFF. When ϵ equals
to 12 with 15 iterations, all the adversarial examples successfully fool CNN and GRFF with original noises and
result in zero accuracy. While by resampling independent weights, GRFF successfully identifies nearly 40% of these
adversarial examples, which is a promising improvement. Besides, both the attacked accuracies with resampled noises
and original noises are higher than the attacked accuracy of CNN. Therefore, due to the randomized resampling
mechanism associated with GRFF, our model is able to alleviate the performance decrease brought by the Iter.L.L.
attack. It also shows superiority over the common CNN of the same structure in defending the Iter.L.L. attack. Part of
the adversarial examples are shown in Fig.8.
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Figure 8: An illustration of some adversarial examples of Iter.L.L attack. Different ϵ values correspond to the different
rows. Among the 3 numbers at the top of each adversarial example, the first number denotes the true label, and
the middle one denotes the prediction ŷ(1), and the last one denotes the prediction ŷ(2). These adversarial examples
(except the first row) successfully fool GRFF without resampling. But GRFF successfully identifies these adversarial
examples by resampling.

5 Discussion and Conclusion

In conclusion, we proposed a one-stage kernel learning approach, which models some latent distribution of the kernel
via a generative network based on the random Fourier features. Not like the existing methods that learn the distribution
by the target alignment and then train a linear classifier, we directly solved the ERM problem to jointly learn the
features and the classifier for better generalization performance. Further, such an end-to-end manner enables the model
itself to extend to deeper layers, which leads to a multi-layer structure and implies a good kernel on features. Besides,
a progressively training strategy was proposed to efficiently train the multiple generators in an inverse, layer-by-layer
order. Empirical results illustrate the superiority of ML-GRFF in classification tasks over the classical two-stage,
RFFs-based methods. Meanwhile, GRFF enables us to resample independent and non-deterministic parameters from
the generators. Such parameter randomness is helpful in defending adversarial attacks and is empirically verified by
the enhanced robustness against the adversarial examples.

One of the limitations of the proposed method is that its performance on large-scale image data and deeper networks
is still restricted. In our method, for image data, the generators try to learn the distributions on 3× 3 or 5× 5 weights.
However, in deeper network, like ResNet [32], a usual size of kernels in the convolution layer is 512×512×3×3. The
generator cannot include 512× 512× 3× 3 neurons in its output layer since it is a heavy burden for GPUs to compute
the gradients. Besides, more layers indicate more generators. Training tens of, or even hundreds of generators still
remains a difficult problem.

Since the parameter distribution is modeled by the generative networks, which cost huge memory and computation
resources, future work will focus on how to design cheap and efficient mechanism to model the parameter randomness
and to achieve better robustness. Besides, based on the existing researches on the convergence of GANs [33, 34], a
theoretical guarantee on the convergence of the GRFF will be developed in the future.
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A More discussions on ML-GRFF

In this section, discussions on ML-GRFF including over 2 layers are further raised. Specifically, experiments on
synthetic data are designed and executed to illustrate the feasibility of the training algorithm Alg.1 even in the case of
more than 2 layers. We show that a two-layer structure is an empirically-optimal choice, simultaneously considering
the improved generalization performance and the difficulty of tuning hyper-parameters. The designed experiments and
results are outlined below.

Settings:

The experiments are executed on synthetic data, where (x, y) follows x ∼ N (0, Id) of dimension d = 80 and d = 100

with y = sign(||x||2 −
√
d). The training set includes 104 samples and the test set includes 103 samples. A validation

set containing 20% of the training data is partitioned to evaluate the model performance during training.

For ML-GRFF with K layers, we train multiple models w.r.t. K ∈
{
1, 2, 3, 4

}
. Important hyper-parameters, e.g.,

numbers of sampled noises
{
D1, D2, · · · , DK

}
and numbers of epochs

{
epo1, epo2, · · · , epoK

}
, are listed in Table

3. The experiments are repeated 5 times and the average results are recorded in Fig.9.

Table 3: Hyper-parameters of training ML-GRFF with K layers.

# layers K
{
D1, D2, · · · , DK

} {
epo1, epo2, · · · , epoK

}
1

{
256

} {
1000

}
2

{
256, 64

} {
200, 1000

}
3

{
64, 64, 64

} {
200, 200, 1000

}
4

{
64, 64, 64, 64

} {
200, 200, 200, 1000

}

Figure 9: Results on the test sets of synthetic data of ML-GRFF including K layers, K ∈
{
1, 2, 3, 4

}
. The synthetic

data is of 2 different dimensions, d = 80 and d = 100, denoted by distinct colors. The solid and dotted lines indicate
the results of RFF and OPT-RFF respectively.

Results and discussions:

As indicated in Fig.9, as the number of layers increases over 2, the progressively training strategy could still guarantee
the convergence of ML-GRFF and produce better results than RFF, OPT-RFF and single-layer GRFF. On the other
hand, the numbers of hyper-parameters of ML-GRFF also increase along with that of layers. It remains a difficult
problem to efficiently tune these hyper-parameters to always achieve significant generalization performance improve-
ments in the case of more and more layers. Based on the results in Fig.9, empirically, a two-layer structure is an
appropriate choice, and thus we focus on ML-GRFF of two layers in all the experiments.
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