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Abstract

Object point cloud classification has drawn great research attention since the release of

benchmarking datasets, such as the ModelNet and the ShapeNet. These benchmarks

assume point clouds covering complete surfaces of object instances, for which plenty

of high-performing methods have been developed. However, their settings deviate from

those often met in practice, where, due to (self-)occlusion, a point cloud covering par-

tial surface of an object is captured from an arbitrary view. We show in this paper that

performance of existing point cloud classifiers drops drastically under the considered

single-view, partial setting; the phenomenon is consistent with the observation that se-

mantic category of a partial object surface is less ambiguous only when its distribution

on the whole surface is clearly specified. To this end, we argue for a single-view, par-

tial setting where supervised learning of object pose estimation should be accompanied

with classification. Technically, we propose a baseline method of Pose-Accompanied

Point cloud classification Network (PAPNet); built upon S E(3)-equivariant convolu-

tions, the PAPNet learns intermediate pose transformations for equivariant features

defined on vector fields, which makes the subsequent classification easier (ideally) in

the category-level, canonical pose. By adapting existing ModelNet40 and ScanNet

datasets to the single-view, partial setting, experiment results can verify the necessity

of object pose estimation and superiority of our PAPNet to existing classifiers.
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1. Introduction

Semantic analysis of 3D scenes gains increasing popularity with the ubiquitous

deployment of depth sensors, where point clouds are usually captured from the sensor

fields of view as the most direct representation of 3D shapes. Among various tasks,

classification of an input point cloud as one of a set of pre-defined object categories

arguably plays the most fundamental role towards semantic understanding of the 3D

scenes.

Research on 3D semantic analysis has largely been driven by preparation of bench-

marking datasets [1, 2, 3, 4, 5]. For classification, representative methods such as

PointNet [6], PointNet++ [7], and DGCNN [8] follows since the releasing of the Mod-

elNet [1] and the ShapeNet [2]; for 3D detection (more precisely, 7 degrees-of-freedom

object pose estimation), a plenty of methods have been proposed on the KITTI [5], the

SUN-RGBD [3], the ScanNet [4], and other benchmarks. Specific settings of these

tasks usually follow the original definitions proposed with the benchmarks. Some of

these settings could be in controlled, ideal conditions that deviate from those met in

practice; consequently, algorithms ranking top on the benchmarks may not work well

under practical conditions. For classification, for example, the benchmarking dataset

of the ModelNet40 [1] prepares its training and test instances of object point clouds

under the category-level, canonical poses [9].1 Even though such a problem setting is

already challenging — the state-of-the-art methods on the ModelNet40 achieve ∼ 93%

accuracies only, researchers find out that addressing the dataset challenges does not

always translate as innovations useful for the practical problem of object point cloud

classification, since some shortcut learning gives accuracies very close to the state-of-

the-art ones, by identifying a sparse set of specially distributed but semantically less

relevant points from each object point cloud [10]. The degenerate learning is (partially)

caused by the less practical setups defined with the benchmarks, since learning setups

closer to practical ones are more difficult to be hacked via shortcut learning [10].

1Intuitively speaking, one can think that a set of 3D mug models are under their category-level, canonical

poses when their handles are aligned towards one unique direction in the 3D space.
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Fig. 1: Top: four examples from the ScanNet [4] to visualize inter-class similarity and intra-class dissimi-

larity of object point clouds in practice; Bottom: comparative results of five popular point cloud classifiers,

i.e. PointNet [6], PointNet++ [7], DGCNN [8], Spherical CNN [11], and 3D Steerable CNN [12], under the

proposed single-view, partial setting and existing pre-aligned and arbitrarily posed settings.

More recently, the community realizes the less practical setups in existing bench-

marks of object point cloud classification, and proposes rotation-augmented versions of

these benchmarks by arbitrarily rotating their object instances [13, 11, 14]. They also

propose strategies coping with the rotation arbitrariness, including implicitly learning

object rotations in weakly supervised manners [6, 15], and extracting and learning rota-

tion invariant deep features [13, 14, 16]. However, the setups considered in these works

are still one step away from the truly practical one, where due to (self-)occlusion, a cap-

tured point cloud covers partial surface of an object only, instead of the complete one

considered in [1, 2]. In other words, the practical object point cloud classification is

often under the single-view, partial setting, whose examples are shown in the top row

of Figure 1. This subtle difference from complete to partial coverage of the object

surface brings significant challenges to point cloud classification, as observed in the

bottom plot of Figure 1, where the performance of representative methods drops dras-
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tically under the single-view, partial setting. Indeed, the semantic category of an object

point cloud is defined by its global, topological configuration of local shape primitives;

a partial point cloud observed from an arbitrary view captures a subset of local shape

primitives, whose classification is less ambiguous only when the distribution of partial

point cloud on the whole surface is clearly specified.

We thus argue in this paper that, for effective classification of an arbitrarily posed,

partial object point cloud, it is necessary to explicitly learn and predict its pose in the

S E(3) space. This technically means that an auxiliary task of supervised object pose

learning should be accompanied with classification. On one hand, classification of ob-

ject point clouds and pose estimation are relevant tasks, and good performance on one

task can benefit the other. Specifically, discounting object poses encourages discrim-

inative features for classification, while shape priors of object instances within each

class can reduce the difficulty of pose estimation. On the other hand, it is not trivial to

design a model to jointly estimate object categories and poses on point sets, in view of

inherently contradictory characteristics of features desired for both tasks. In detail, rep-

resentation learning of object point cloud classification concerns on achieving rotation

invariance, whereas rotation equivariant features are demanded for 6D pose estimation.

In this paper, we rely on steerable CNNs [17, 12] and propose a new architectural

design termed Pose-Accompanied Point cloud classification Network (PAPNet). The

PAPNet starts with a backbone that processes an input point cloud of partial object sur-

face with S E(3)-equivariant convolutions, where pose-sensitive, equivariant features

defined on the vector fields of each layer are learned with the filters constructed from

steerable basis kernels; on top of the backbone, we stack a pose estimation head in

parallel with an object classification head; a key design in our PAPNet is to enforce

a transformation of the pose-specific features at the backbone output into the pose-

normalized ones in the canonical object pose, where classification can be (ideally)

made easier. Technically, the shared backbone can thus alleviate the dilemma of rota-

tion specific and invariant feature encoding simultaneously; only focus on extracting

rotation equivariant features for pose estimation.

In the problem of pose-accompanied classification, class-agnostic pose estimation

can be more challenging than classification on single-view partial point clouds; there-
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fore, unreliable pose predictions can lead to a larger feature variation to inhibit object

point cloud classification. To address such a problem, we introduce three simple yet

effective strategies to improve feature discrimination – 1) inspired by the label distribu-

tion learning [18, 19], the problem of pose estimation (typically a regression problem,

whose labels are intrinsically continuous) is formulated into a supervised classification

with a soft target code, tolerant for intra-class feature inconsistency in pose estimation;

2) using ground-truth pose labels with adding random variations in their neighbourhood

of pose space to replace pose predictions for arbitrary-to-canonical feature transforma-

tion, to reduce feature variations in object classification; and 3) an ensemble of top con-

fidential pose predictions during inference. To test the efficacy of our design, existing

benchmarks of object point cloud classification are adapted to the single-view, partial

setting. Thorough experiments confirm the necessity of pose estimation for the con-

sidered practical setting of object point cloud classification, under which our method

greatly outperforms existing ones, especially for the more challenging cross-dataset

evaluation.

Main contributions are summarized as follows.

• We approach object point cloud classification from a more practical perspective,

and propose the single-view, partial setting under which point clouds covering

the partial surface of object instances are observed. We discuss the limitations

of existing methods, and show that their performance drops drastically under the

practical setting.

• We propose a baseline method of Pose-Accompanied Point cloud classification

Network (PAPNet), which accompanies the classification task with an auxiliary

one of supervised object pose learning. Built upon S E(3)-equivariant convolu-

tions, a key design in PAPNet is an intermediate transformation of vector-field

features to ease the classification by (ideally) making it in the canonical pose

space.

• To advance the research field, we adapt existing ModelNet40 and ScanNet bench-

marks to the single-view, partial setting. Thorough experiments show the efficacy

of our proposed PAPNet, which performs significantly better than existing meth-
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ods, especially on the challenging transferability evaluation across datasets.

Datasets and codes will be released after acceptance2.

2. Related Works

In this section, we briefly review existing research that pursues object point cloud

classification in practical, real-world conditions, and also the closely related research

of object pose estimation. Discussions on the existing methods of point cloud classifi-

cation under controlled conditions will be given in Section 4.

Towards Real-World Object Point Cloud Classification – Very few existing works

[20, 15] have explored to handle the compound challenges of rotation variations and

partially visible shape. Uy et al. [20] propose a realistic point cloud classification

benchmark – the ScanObjectNN, whose setting is similar to ours, but the main differ-

ences lie in two folds. On one hand, object shapes in the ScanObjectNN [20] only

have arbitrary rotations along the vertical axis, instead of the S O(3) rotation group

containing all possible rotation transformations as our setting. On the other hand,

point clouds in the ScanNet [4] and the SceneNN [21] were obtained by fusing a se-

quence of depth images with multiple viewpoints, and thus objects segmented by the

ScanObjectNN [20] can not reflect the single-view partiality of real-world data. Con-

sequently, although both methods are interested in semantic analysis on partial point

clouds, their method concerns more on robust classification performance with noisy

point cloud input, while our method treats pose variations as the main challenge. Yuan

et al. [15] share a similar observation to handle with partial and unaligned point clouds,

but their weakly-supervised learning nature of spatial transformation can hardly guar-

antee canonical pose transformation (more details investigated in Sec. 4 and inferior

performance to our PAPNet reported in Table 1).

Object Pose Estimation – The problem of 6D pose estimation aims to predict ob-

ject poses (i.e. a rotation and translation) in camera space according to a canonical

pose. Existing 6D pose estimation can be categorized into two groups – instance-level

2Link-of-datasets-and-codes-to-be-downloaded.
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[22, 23, 24, 25] and category-level [26, 27, 28]. In instance-level 6D pose estimation

[22, 23, 24, 25], a typical assumption is adopted that CAD models for object instances

to be estimated are available. In this sense, these methods concern more on learning

to match partial observation to the CAD model. In category-level 6D pose estimation

[26, 27, 28], CAD models of each instance are unavailable during training and testing.

Such a problem is made more challenging to cope with shape variations of unseen ob-

ject instances and thus relies on learning a high-quality category-level mean shape. The

pose estimation task in our method falls into the latter group but without estimating the

translation and size of object instances compared to existing category-level pose esti-

mation methods, as negative effects of translation and size variations can be eliminated

by normalizing the input point cloud to a unit ball in the classification task. Existing

works on category-level 6D pose employ the MLP-based feature encoding, which is

less effective to retain rotation information. Our method takes advantage of the equiv-

ariance property of steerable convolution to estimate the rotaiton which perform much

better.

3. The Practical Problem Formulation

As examples illustrated in the top row of Figure 1, our considered practical setting

assumes access to a point cloud P = {pi ∈ R3}Ni=1 ∈ X covering partial surface of an

object. Given a training set {Pi, yi}
M
i=1 of M instances, the task is to learn a classification

model Φ : X → Y that classifies any test P into one of K = |Y| object categories. We

define Y = {1, . . . ,K} and yi ∈ Y for any ith training instance. As discussed in Sec. 1,

to achieve effective point cloud classification under the single-view, partial setting, it is

better to impose an auxiliary supervision for object pose estimation. This amounts to

augmenting the training set as {Pi, yi,Ti}
M
i=1, where the ground-truth pose Ti ∈ S E(3),

T = [R|t] with rotation R ∈ S O(3) and translation t ∈ R3, applies to Pi in a point-

wise manner and transforms Pi into its canonical pose as TiPi. Note that the canonical

pose of each P is pre-defined at the category level, which can be obtained in a semi-

automatic manner during preparation of training instances [9]. In view of difficulty in

annotating object poses given visual observation, real world labelled data for 6D pose
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estimation is typically sparse, which can be alleviated by leveraging synthetic data

generated from CAD models with an off-the-shelf renderer such as Blender [29].

In contrast, existing methods either assume an arbitrarily rotated, complete point

cloud P̃ = {pi ∈ R3}Ñi=1 covering the whole surface of an object [13, 14, 11], or assume

TP̃ where T rigidly transforms P̃ into the category-level, canonical pose [6, 7, 8].

They correspondingly learn classification models using training sets of either {P̃i, yi}
M
i=1

or {TiP̃i, yi}
M
i=1. Note that in the latter case, {Ti}

M
i=1 are implicitly assumed and are not

used for classification learning; in other words, all the training and test instances have

been pre-aligned into their canonical poses.

4. Existing Rotation-Agnostic Methods

In this section, we discuss existing strategies for classification of arbitrarily posed,

complete point clouds. Denote Φ f ea : RÑ×3 → Rd as the feature encoding module,

which produces d-dimensional feature embedding Φ f ea(P̃) for any input P̃, and Φcls :

Rd → [0, 1]K as the final classifier typically constructed by fully-connected layers.

These methods implement point cloud classification as a cascaded function Φ = Φcls ◦

Φ f ea.

Weakly Supervised Learning of Spatial Transformation – Given an arbitrarily posed

input P̃, a module Φtrans parallel to Φ f ea is considered in [6, 8, 15] to predict a trans-

formation T̂ = [R̂| t̂], which is then applied to P̃ to reduce the variation caused by pose

arbitrariness of P̃. Learning of Φtrans is conducted in a weakly supervised manner:

classification supervision imposed on the network output of classifier Φcls propagates

error signals back onto Φtrans, whose updating is expected to improve the classification

at the network output Φcls. Such a Φtrans, termed T-Net, is proposed in [6], which is

further improved as an iterative version in [15] ; mathematically, let ∆T̂ denote the pre-

dicted transformation update per iteration, and we have the transformation predicted

at iteration t as a composition T̂t =
∏t

i=1 ∆T̂i. Ideally, the predicted T̂ after a certain

number of iterations are expected to transform P̃ into its canonical pose, such that clas-

sification can be made easier on T̂P̃; however, weakly supervised learning does not

guarantee to achieve this, and in practice, the predicted T̂ is usually less relevant to
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canonical pose transformation.

Rotation Invariant Feature Extraction and Learning – Rotation invariant feature ex-

traction requires that [Φ f ea ◦Φgeo](RP̃) = [Φ f ea ◦Φgeo](P̃) for any R ∈ S O(3), where a

module Φgeo generates rotation invariant geometric quantities. It can be easily verified

that simple quantities such as point-wise norm and angle between a pair of points are

rotation invariant, i.e. ‖Rp‖2 = ‖p‖2 ∀ p ∈ R3 and 〈Rp, Rp′〉 = 〈p, p′〉 ∀ p, p′ ∈ R3.

Higher-order geometric quantities invariant to rotation can be obtained by constructing

local neighborhoods around each p ∈ P, which altogether provide rotation invariant

input features for subsequent learning via graph networks [7, 8]. Rotation invariant

feature learning methods [13, 14, 30, 16] thus implement Φ f ea by learning point-wise

features from these invariant outputs of Φgeo, followed by pooling in a hierarchy of

local neighborhoods constructed by graph networks [7, 8]. These methods may also be

augmented with global pre-alignment of P̃ (ideally) to the canonical pose, by comput-

ing the main axes of geometric variations of P̃ via singular value decomposition [16].

We note that these invariant quantities only partially capture the geometric informa-

tion contained in any P̃; consequently, deep features learned from them would not be

optimal for classification of P̃.

Achieving Invariance via Learning Rotation Equivariant Deep Features – Rota-

tion invariance can also be achieved by first encoding the input into rotation equivari-

ant deep features and then converting the rotation equivariant features into the rota-

tion invariant ones. Typical methods are spherical CNNs [31, 11]. Denote a rotation

equivariant layer as Ψ : S O(3) × Rdin → S O(3) × Rdout ; it processes an input signal

f : S O(3)→ Rdin with dout layer filters, each of which is defined as ψ : S O(3)→ Rdin .3

Rotation equivariant Ψ has the property [ψ ? [T R f ]](Q) = [T ′R[ψ ? f ]](Q), where

Q ∈ S O(3) and T R (or T ′R) denotes a rotation operator that rotates the feature func-

tion f as [T R f ](Q) = f (R−1Q), and ? denotes convolution on the rotation group;

spherical convolution defined in [31, 11] guarantees achievement of the above prop-

erty. A rotation invariant Φ f ea can thus be constructed by cascading multiple layers of

3Note that both f and ψ, and the filtered responses are defined on the domain of rotation group S O(3);

when the layer is the network input, f and ψ are defined on the domain of a sphere S 2.
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Ψ, followed by pooling the obtained features over the domain of S O(3). To implement

Φ f ea(P̃), one may first cast each point p ∈ P̃ onto the unit sphere, with the accompany-

ing point-wise geometry features (e.g. the length ‖p‖2), and then quantize the features

to the closest grid of discrete sampling on the sphere. To implement Φ f ea(P̃), one

may need to convert P̃ into spherical signals. Due to numerical approximations and

the use of nonlinearities between layers, the encoder based on spherical CNNs is not

perfectly rotation equivariant, which affects the rotation invariance of features obtained

by the subsequent pooling [32]. Alternative manners [33, 12] exist that directly learn

rotation equivariant point-wise filters based on steerable basis kernels in the Euclidean

domain. Similarly, these filters of each layer are stacked together to construct a S O(3)-

equivariant feature encoding module Φ f ea to generate scalar-, vector-, and tensor- field

features, which are normalized to achieve rotation invariance via pooling before fed

into the classification module Φcls.

Limitations with Single-View Partial Setting – The aforementioned existing methods

are originally proposed for classifying point clouds sampled from complete object sur-

faces; nevertheless, one might be tempted to apply them to the single-view, partial set-

ting considered in the present paper. However, we will analyze that the simple change

of settings from complete to partial surfaces brings significant challenges to classifi-

cation, and may cause either failure or severe performance degradation of the above

methods. Indeed, as discussed in Sec. 1, semantics of object point clouds are defined

by global configurations of local shape primitives; a partial object surface observed

from an arbitrary view captures a subset of local shape primitives only, which makes

it difficult to specify some semantics that can be clearly defined only when the global

configurations are available. More specifically, for methods [6, 8, 15], the learned T̂ via

training Φtrans in a weakly supervised manner becomes even less relevant to canonical

pose transformation when the input is a point cloud P of partial surface; for both the

methods using rotation invariant feature extraction [13, 14, 30, 16] and those achieving

invariance by pooling over learned rotation equivariant deep features [31, 11, 33, 12],

a partial P observed from an arbitrary view is ambiguous for specifying how such a

P is configured globally on the whole surface, and consequently classifiers would be

10
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Fig. 2: Pipeline of our PAPNet on classifying partial point sets with an auxiliary prediction of object pose.

The channels of steerable convolution and residual block can be represented by a tuple of numbers, where the

position denotes the order of the irreducible features and the corresponding value is the number of features

of that order.

confused between the global and local levels. In addition, we note that pre-alignment

of a partial P via computation of main geometric axes easily causes misalignments.

Figure 1 verifies the above analysis empirically. More comprehensive experiments are

presented in Sec. 6. In view of the limitations of existing methods for the practical

challenge of object point cloud classification under the single-view, partial setting, we

argue that an explicit, supervised learning of object pose from the partial point cloud

is necessary.

5. Pose-Accompanied Point Classification Net

As aforementioned, the global configurations of local shape primitives are de-

sired to specify semantic patterns when only single-view partial point clouds avail-

able, which encourages an auxiliary task of supervised regression on object poses to

accompany object point cloud classification. As a result, we propose a novel Pose-

Accompanied Point cloud classification Network (PAPNet), whose pipeline is shown in

Figure 2, to introduce a key intermediate feature transformation to tackle the dilemma

of rotation sensitive and invariant feature encoding for the shared backbone.
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5.1. S E(3)-equivariant Convolution Based on Steerable Basis Kernels

Our PAPNet relies on the 3D steerable convolution proposed in [12], which guar-

antees that rigid transformations of objects in the Euclidean space can lead to an equiv-

alent transformation of features in feature space. To this end, features f (v) ∈ Rdl on

position v ∈ R3 of layer l is represented by a set of scalar-valued and vector-formed

features, where function f : R3 → Rdl defines the feature space Fl as a combination of

multiple scalar and vector fields.

Each field transforms independently under rigid body motion T = [R|t] as:

[T (T) f ](v) := ρl(R) f (R−1(v − t)), (1)

where T denotes the transformation operator and ρl is a representation of S O(3) which

describes the rotation behavior of fields in layer l. Since the translation of the observed

point cloud can be approximated well by its coordinate mean in the classification task,

we translate the observed point cloud to the origin by its coordinate mean and simplify

the transformation law in feature space with only rotation R as follows:

[T R(R) f ](v) := ρl(R) f (R−1v), (2)

where T R denotes the rotation operator.

As any representation of S O(3) can be constructed from irreducible representation

of dimension 2k + 1, for k = 0, 1, 2, . . . ,∞, which is known as the Wigner-D matrix

Dk(R) of order k [12], the S O(3) representation in layer l can thus be written as:

ρl(R) = Q−1

 Fl⊕
i=1

Dki (R)

Q, (3)

where
⊕

denote the construction of a block-diagonal matrix with blocks Dki (R), and

Q is a change of basis matrix. As a result, the S O(3)-equivariant features in layer l is a

stack of Fl features f i(v) ∈ R2ki+1, so that dl =
∑Fl

i=1(2ki + 1).

In [12], Weiler et al. derived analytically that the equivariant convolutional kernel

between adjacent feature spaces must satisfy the kernel constraint:

κ(Rv) = ρl+1(R)κ(v)ρl(R)−1, (4)

12



where κ : R3 → Rdl+1×dl is the convolutional kernel. The solution space formed by

this linear constraint can be spanned by the steerable basis kernels [12]. Consequently,

equivariant convolutional kernel built up by linearly combining these steerable basis

kernels using learnable weights guarantee that features in layer l+1 transform according

to ρl+1(R) if features in layer l transform according to ρl(R). Such a rotation equivariant

property allows us to use object poses to align features from the arbitrarily posed input

point clouds to canonical pose space.

5.2. Network Architecture

Dependent on 3D steerable convolutions [12], the proposed PAPNet consists of

three modules: a steerable convolutional backbone, a pose classifier, and an object

classifier. Note that, as negative effects of translation t in pose T can readily be elim-

inated by normalizing the input point cloud to a unit ball in the classification task, we

only concern on estimating rotation R of partial point clouds. With the voxelized repre-

sentation of a point cloud P from partial object surface as input, the backbone network

processes to generate the rotation equivariant feature f which consists of scalar fields

and vector fields (see the top left module of Figure 2). The output features of the back-

bone are fed into the pose classifier to output predictions R̂, while the ground-truth R

with random rotation augmentation U(−δ, δ) are employed to enforce explicit align-

ment of the vector-field feature f of the backbone into the category-level canonical

pose. As a result, negative effects of rotation arbitrariness and inter-class shape ambi-

guity on point cloud classification can be mitigated in the pose-normalized vector-field

feature space (see the top right module of Figure 2). During inference, given an unseen

instance as input, the backbone first generates rotation equivariant feature f , which is

then fed into the pose classifier to output pose probability. The top k confidential pose

candidates R̂ are selected for feature transformation on rotation equivariant feature f ,

and all the k transformed features are utilized in object classifier to predict semantic

category in an ensemble manner (see the bottom row of Figure 2).

Backbone – The backbone module contains ten steerable convolutional layers and fea-

tures from three different layers (visualized in Figure 2) are concatenated to enhance

the feature discrimination. Such a shared backbone encodes the input into an equivari-
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ant feature volume f : R3 → Rd where the feature vector f (v) ∈ Rd anchored on each

voxel v ∈ R3 is made up of multiple scalars and high-dimensional vectors. Direction

of the vector features change equivalently with pose varying of input point clouds so

as to better retain pose-sensitive information.

Rotation Classification on Rotation Equivariant Features – The rotation estimation

branch comprises two steerable convolution layers followed by three fully connected

(FC) layers. The equivariant feature volume f generated by the backbone is fed into

the pose classifier to produce a rotation prediction R̂. Note that, pose estimation is for-

mulated into a classification problem to assign f into one of rotation bins, generated by

using a icosahedral group uniformly divide S O(3) space into 60 bin [34], whose center

is adopted as pose prediction R̂. Such a setting shares the same spirit as ε-insensitive

Hinge loss in Support Vector Regression [35] to tolerate unreliable predictions within

a pre-defined neighborhood (i.e. the width of pose bins) of ground-truth R. To mitigate

intra-class feature inconsistency, the typical strategy of using soft label as supervi-

sion signal is adopted, which can be generated via assigning non-zero probability to

multiple nearest neighbours of ground-truth rotation bin or adopting label distribution

[18, 19]. It is straightforward that rotation prediction R̂ can be used to transform the

equivariant feature f under the camera space to approach its canonical space by Eqn

(2). However, we find out that R̂ can be replaced by ground-truth pose R with random

variations U(−δ, δ)4 for feature transformation during training, where we obtain the

canonical feature volume fc = T R(R−1) f by augmented ground-truth pose R. Such an

replacement can prevent feature inconsistency in object classification from unreliable

pose predictions.

Pose-Aligned Object Classification – The object classifier consists of three steerable

convolution layers and three FC layers. 3D steerable CNN [12] achieves rotation in-

variance by converting all rotation equivariant vector fields into rotation invariant scalar

fields before pooling over the Euclidean space. Different from [12], our PAPNet trans-

forms the pose-sensitive vector-field features to their canonical pose as input of the

classifier and pools the canonical vector fields in the last steerable convolutional layer

4We independently add a noiseU(−δ, δ) to each of the three Euler angles of ground-truth pose R.
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of the classifier to obtain a pose-normalized global feature while preserving discrimi-

nation of high-dimensional vector features. Our motivation lies in, after transformation

on equivariant features, feature learning under the category-level canonical space can

be made easier owing to less semantic ambiguity.

Loss Functions – In our scheme, for each point cloud instance P, we have two types

of supervision signals – the class label y and the pose label R ∈ S O(3). For supervising

object and pose classifiers, the typical cross entropy loss [6, 8] is used for both Lcls and

Lpos, and the total loss of our PAPNet is as: Ltotal = Lcls + λLpos where λ is a trade-off

parameter. Moreover, object symmetry is an inevitable problem for pose estimation, as

a large number of objects are continuous symmetry or discrete symmetry, e.g. bottle,

table in the ModelNet40. We use the method in [36] to map ambiguous rotation labels

to unambiguous ones.

Ensemble of Top Confidential Pose Predictions – As feature encoding of object

classification is made less ambiguous when equivariant feature volume f as output

of the backbone can be aligned in category-level canonical space, we adopted an en-

semble strategy to improve robustness of the transformed features against unreliable

predictions. To this end, in view of sensitivity of vector-field features to pose varia-

tion, we can select top-k confidential pose candidates R̂i, i = 1, ..., k to transform f by

fi = T R(R̂i
−1

) f ; then feed the aligned feature fi into object classifier to obtain k class

predictions ci and its corresponding scores si which response with high activation value

at ci; the final class prediction is generated by cout = arg maxci
(si).

6. Experiments

6.1. Single-View Partial Point Cloud Datasets

Very few works have explored to generate and release benchmarks of arbitrarily-

posed partial point cloud classification, but the available datasets [1, 20] lacks object

pose annotations, which thus fails to specify the configuration of partial shape on the

object surface. In light of this, the ModelNet40 [1] and ScanNet [4] are adapted to the

single-view partial setting with examples shown in Figure 3.
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Fig. 3: Illustration of the PM40 and PS15 datasets adapted from the ModelNet40 [1] and the ScanNet [4].

PartialModelNet40 (PM40) – The ModelNet40 [1] contains 12,311 CAD models be-

longing to 40 semantic categories which are split into 9,843 for training and 2,468

for testing. For the PM40, we randomly sampled rotation R on S O(3) and translation

within tx, ty ∼ U(−2.0, 2.0), tz ∼ U(2.0, 5.0), and rendered 10 depth images with corre-

sponding pose labels [R|t] for each training instance in the ModelNet40 to generate the

training set, while its testing set is constructed by randomly sampling one depth image

of each testing instance under one arbitrary view. These depth images are converted

into partial point clouds using the intrinsic parameters of a virtual camera. In general,

the PM40 contains 98,430 training samples and 2,468 testing samples.

PartialScanNet15 (PS15) – The ScanNet [4] contains 1513 scanned and reconstructed

real-world indoor scenes. We selected 15 categories with sufficient instances in the

scenes and segmented and collected those instances using provided bounding boxes

and semantic labels. With the pose annotations provided by Scan2CAD [38], the seg-
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Table 1: Comparative evaluation on classification accuracy (%) with the PartialModelNet40 (PM40) and the

PartialScanNet15 (PS15), as well as transferability evaluation between both datasets.

Methods Input (Size) PM40 PS15 PM40→PS15 PS15→PM40

PointNet [6] pc (1024 × 3) 68.8 73.5 35.0 41.8

DGCNN [8] pc (1024 × 3) 78.8 78.4 40.0 42.8

PointNet++ [7] pc (1024 × 3) 79.1 80.4 37.2 44.1

SimpleView [37] views (6 × 1282) 79.9 84.5 47.3 49.5

TNet-PN++ [6] pc (1024 × 3) 80.6 84.0 40.1 46.0

ITNet-PN++ [15] pc (1024 × 3) 80.9 85.2 40.1 47.5

RRI-PN++ [13] pc (1024 × 3) 80.8 84.1 41.7 48.8

Spherical CNN [11] voxel (1 × 642) 79.5 85.8 44.2 46.4

Steerable CNN [12] voxel (1 × 643) 81.5 88.1 48.5 46.5

PAPNet (Ours) voxel (1 × 643) 83.5 91.5 56.0 54.6

mented point cloud is first aligned to the canonical space, from which point cloud

instances are sampled under ten randomly selected viewpoints. These point clouds

are then transformed into the camera coordinate system. Since the original ScanNet

is generated by fusing a sequence of depth scans and object shapes segmenting from

the ScanNet contain redundant surface observed from multiple views, we employ the

hidden point removal (HPR) method [39] to filter out the invisible points due to self-

occlusion under a single perspective. Using HPR may lead to some outliers contami-

nating the data. We manually filter out samples containing too many outliers, too few

observed points, and the mislabeled ones. In total, the PS15 contains 22,670 training

samples and 5,650 test samples belonging to 15 categories.

6.2. Settings

Comparative Methods – We compare representative point classifiers and a number of

rotation-agnostic methods mentioned in previous sections with the proposed PAPNet.

Beyond the popular PointNet [6], DGCNN [8] and PointNet++ [7], we take Simple-

View [37] as a strong competitor based on multi-view observation generated from point

clouds. The spatial transformation network (TNet) [6] and iterative transformation net-

work (ITNet) [15] are adopted as a weakly-supervised explicit spatial transformation
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module. For learning rotation invariant feature representation, we choose the rigorously

rotation invariant (RRI) representation proposed in ClusterNet [13], which can achieve

the state-of-the-art performance with a solid theoretical guarantee. TNet, ITNet, and

RRI are all followed by conventional PointNet++ (PN++) for feature encoding and

classification, owing to its best performance among rotation-sensitive point classifiers

(see Table 1). We employ Spherical CNN [11] and (3D) steerable CNN [12] as compet-

ing rotation equivariant methods. For a fair comparison, generation of point clouds for

each object instance is identical in all methods, as well as data augmentation, i.e. ran-

dom S O(3) rotation and jittering. Default parameters and training strategies suggested

in the paper are adopted.

Implementation Details – We adopt the Adam optimizer with a learning rate of 0.005

for training and train our method for 20 epochs. For the soft target code of pose classi-

fication, we set a relatively higher value, i.e. 0.4, to the ground truth bin, with a value of

0.2 assigned to top 3 nearest bins, based on angular distance as [40]. Our method con-

tains a total of 1.15M parameters, comparable with other comparative methods (0.12M

- 3.59M parameters).

6.3. Results

Comparative Evaluation – We compare our PAPNet with competing methods on

the PM40 and PS15, whose results are shown in Table 1. In general, all rotation-

sensitive point classifiers, i.e. PointNet, DGCNN and PointNet++, are outperformed

by all rotation-agnostic methods under the single-view partial setting, while the Sim-

pleView can perform comparably. More specifically, both TNet and ITNet can only

slightly outperform the baseline PointNet++, indicating that weak supervision on pose

transformation can hardly tackle the pose variation in the single-view partial setting.

Spherical CNN and Steerable CNN have better performance than RRI-PN++. Such

a result can be due to pose-insensitive feature encoding on rotation invariant quanti-

ties, which destroys feature discrimination for inter-class similar geometries (see exam-

ples in Figure 1) and thus less distinguishable, in comparison with implicitly encoding

pose variation into features in rotation equivariant methods. Our PAPNet gains at least

2.0% and 3.4% improvement on classification accuracy over the other methods on the

18



Table 2: Ablation studies of our PAPNet on classification accuracy (%) with the PM40 and the PS15. (Tr.

denotes Transformation)

Methods PM40 PS15 Methods PM40 PS15

PAPNet w/o. pose 81.6 89.8 Pred Tr. (Reg) 81.8 90.2

Cascaded PAPNet 81.7 88.9 Pred Tr. (Cls) 81.9 90.4

Multi-task PAPNet 81.7 89.0 Pred Tr. (Cls) + Ensem. 82.0 90.8

Input Transformation 82.7 91.1 GT Tr. (Cls) + Ensem. (Ours) 83.5 91.5
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Fig. 4: Effectiveness of k and δ in our PAPNet on the PM40.

PM40 and PS15 respectively. Such an observation demonstrates learning from pose-

normalized geometries under the canonical space can mitigate suffering from feature

inconsistency with pose variation and partiality. The performance gap of our PAP-

Net over the other methods is consistently more significant on the more challenging

cross-dataset evaluation (e.g. at least 7.5% improvement on its baseline Steerable CNN

[12]), as illustrated in the right two columns of Table 1, which further supports our

claim about the necessity of auxiliary supervised pose estimation on disambiguating

intra-class geometric dissimilarity of partial shapes.

Evaluation on Network Structure – We compare two degenerated network architec-

tures for joint pose estimation and classification, which are a more fair comparison

with the proposed PAPNet, in the perspective of using both pose and class supervision.

The first model is in a cascaded learning manner, where the backbone and pose branch

of our PAPNet is used to estimate object pose, while another PAPNet without pose

branch (PAPNet w/o. pose) classifies the aligned point cloud using the predicted pose

in the first stage. The second model is organized in typical multi-task learning, shar-
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ing a backbone followed by two task-specific headers, which shares the same network

architecture as our PAPNet but without feature transformation into canonical space.

Compared to our PAPNet without pose estimation header, two methods – cascaded

PAPNet and multi-task PAPNet can hardly gain any improvement, as shown in Table

2, demonstrating that the problem of joint pose estimation and object classification is

not-trivial because of dilemma of contradictory characteristics of features desired in

two tasks, which also verify the rationale of network structure of our PAPNet.

Input vs. Feature Transformation – The only difference between our PAPNet and the

“Input Transformation” variant in Table 2 lies in conducting pose-normalization trans-

formation on the input or the intermediate equivariant features. The PAPNet with fea-

ture transformation performs consistently better on both datasets, as pose-normalized

feature encoding for object classification enables the shared backbone to encode com-

plementary information of two tasks with the pose-sensitive vector-field feature.

Pose Regression vs. Classification – Pose estimation can be formulated into a regres-

sion task or a classification task. In Table 2, we see that pose classification can achieve

a slightly better performance than pose regression, owing to more tolerance (i.e. omit

small errors within the width of pose bins) to unreliable predictions in pose classi-

fication, which encourages us to improve accuracy of pose estimation and alleviate

negative effects of unreliable predictions.

Pose Prediction vs. Augmented Ground truth for Feature Transformation – Ac-

cording to Table 2, when predicted pose R̂ was used for feature alignment during train-

ing, there was only a slight improvement even with ensemble strategy (only 0.4% com-

pared to PAPNet w/o. pose). Our method using augmented ground-truth pose align-

ment can gain a 1.9% improvement by U(−45◦, 45◦), with more results visualized in

Figure 4, which further demonstrates that reliable pose can disambiguate feature en-

coding for object classification.

Effects of Ensemble Strategy – As illustrated in Figure 4, it is observed that, with

increasing k in the ensemble strategy, classification accuracy in pose estimation in-

creases, which leads to consistently superior performance on object classification to

those without prediction ensembling (i.e. k = 0) regardless of choice of random vari-

ation δ in argumented pose labels. Using ground-truth pose for feature alignment in
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Fig. 5: Top-k accuracy in pose classification on the PartialModel40. PAPNet w/o. Vector denotes replacing

the vector-field features in the last steerable convolution layer of pose classifier with the scalar-field features.

PAPNet w/o. Symmetry denotes PAPNet without using the symmetry processing in Sec. 6.4.

inference, our method obtains 88.2% and 94.3% on the PM40 and the PS15 respec-

tively, revealing its upper bound.

6.4. Ablation Studies in Pose Classification

In the ModelNet40, a large number of objects are symmetrical, and therefore one

partially observed surface can correspond to multiple or even infinite poses, which can

cause ambiguity of mapping from observation to object poses and thus affect accuracy

of pose estimation. The following Map operator proposed in [36] is adopted to map

the pose label of (quasi-)symmetric categories to unambiguous ones as:

Map(R) = RŜ−1, with Ŝ = arg min
S∈M(Y)

‖RS−1 − I3‖F , (5)

whereM(Y) is a set of rigid motion that preserve the appearance or geometry of cat-

egory Y and I3 is an identity matrix. For categories with continuous symmetry along

the z-axis, such as cup, bowl, and flower pot, Ŝ can be simplified to:

Ŝ = Rz(θ), with θ = arctan2(R21 − R12, R11 + R22) , (6)

where Rz(θ) denotes rotating objects by angle θ along the z-axis from the canonical

pose. For categories with 180° symmetry along axis v ∈ {x, y, z},M(Y) = {I3, Rv(π)}
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Table 3: Symmetry type of each class in the PartialModelNet40. ’z-inf’ denote continuous symmetry along

z-axis. ’x/y/z-180’ denote 180° symmetry along x-, y- or z-axis.

No. Class Symmetry No. Class Symmetry

0 airplane none 20 laptop none

1 bathtub z-180 21 mantel none

2 bed none 22 monitor none

3 bench none 23 night stand z-180

4 bookshelf xyz-180 24 person none

5 bottle z-inf 25 piano none

6 bowl z-inf 26 plant z-inf

7 car none 27 radio xyz-180

8 chair none 28 range hood none

9 cone z-inf 29 sink none

10 cup z-inf 30 sofa none

11 curtain xyz-180 31 stairs none

12 desk none 32 stool z-inf

13 door xyz-180 33 table z-180

14 dresser xyz-180 34 tent z-180

15 flower pot z-inf 35 toilet none

16 glass box xyz-180 36 tv stand z-180

17 guitar y-180 37 vase z-inf

18 keyboard xyz-180 38 wardrobe xyz-180

19 lamp z-inf 39 xbox xyz-180

and Ŝ can be easily calculated using Eqn (5). Symmetry type of each class is shown in

Table 3, and corresponding symmetry processing method is adopted in the experiments.

In Figure 5, accuracy of pose classifier is greatly improved with symmetry processing

(i.e. PAPNet vs. PAPNet w/o Symmetry). Moreover, experimental results in Figure 5

can confirm that the equivariance property of vector-field features is beneficial to the

pose estimation task (compared to PAPNet w/o. Vector).
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Fig. 6: Visualization of failure of testing samples of the PAPNet without pose estimation (w/o. Pose) on the

left that can be distinguished by our PAPNet on the right. The text in red denotes mis-classification of point

clouds, while those instances in dark blue text are correctly classified. The transformed point clouds with

top-5 pose predictions can robustly contribute to final classification prediction, which is highlighted in blue

bounding boxes. Note that, pose transformation in our PAPNet is carried out in the feature space, while we

apply the pose transformation to the input point cloud for illustrative purpose.

7. Qualitative Results

Figure 6 visualizes robustness of an ensemble of top-K confidential pose predic-

tions for classifying single-view partial point clouds, while partially observed point

clouds are easily confused with classes having similar local geometries, i.e. without

accompanying an auxiliary pose estimation.

23



8. Conclusion

This paper introduces a practical perspective of classification of object point clouds,

which desires global configurations to alleviate semantic ambiguity. To this end, a

novel classification network accompanied with supervised pose estimation is proposed.

It is found out that accuracy of pose prediction limits classification performance on par-

tial point clouds, which encourages coping with negative effects of unreliable pose pre-

dictions. Experiment results show that feature transformation to category-level canon-

ical space and an ensemble of classification prediction on aligned equivariant features

are critically effective, but our method still suffers from inaccurate pose estimation. In

addition, the contributed scheme might be under adversarial attacks, causing total fail-

ure of the whole perception system, which encourages academic researchers and safety

engineers to mitigate these risks. In future, exploration on improving class-agnostic

pose estimation is a promising direction.
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