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Abstract

Existing online multi-label classification works cannot well handle the online

label thresholding problem and lack the regret analysis for their online algo-

rithms. This paper proposes a novel framework of adaptive label thresholding

algorithms for online multi-label classification, with the aim to overcome the

drawbacks of existing methods. The key feature of our framework is that both

scoring and thresholding models are included as important components of the

online multi-label classifier and are incorporated into one online optimization

problem. Further, in order to establish the relationship between scoring and

thresholding models, a novel multi-label classification loss function is derived,

which measures to what an extent the multi-label classifier can distinguish be-

tween relevant labels and irrelevant ones for an incoming instance. Based on this

new framework and loss function, we present a first-order linear algorithm and

a second-order one, which both enjoy closed form update, but rely on different

techniques for updating the multi-label classifier. Both algorithms are proved to

achieve a sub-linear regret. Using Mercer kernels, our first-order algorithm has

been extended to deal with nonlinear multi-label prediction tasks. Experiments

show the advantage of our linear and nonlinear algorithms, in terms of various

multi-label performance metrics.
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1. Introduction

In many real-world applications, each data instance is naturally associated

with multiple semantic meanings. For example, in an image classification system

[1, 2], each image may contain multiple objects and thus can be described with

multiple semantic classes; in the sentiment classification of microblogs [3], each

microblog can be simultaneously associated with multiple emotional states; in

a news classification system [4], each piece of news may belong to multiple

categories. Thus, owing to increasing applications, multi-label classification has

attracted great attention in the past decades.

Most of research on multi-label classification, however, is focused on batch

learning methods, e.g., [5, 6, 7, 8, 9, 10, 11, 12]. These methods commonly re-

turn a real-valued predictive function as the learned model which can output a

real-valued score (or confidence) on each label for an instance. Thereafter, in or-

der to convert the scores to classification results, one label thresholding model is

additionally required. Various label thresholding strategies have been proposed

or adopted [13]. Label-wise thresholding strategies assign a different threshold

for each label and a label is predicted as relevant if its score is higher than its cor-

responding threshold and irrelevant otherwise [6, 8]. Instance-wise thresholding

strategies assign a different threshold for each instance and exploit the threshold

to bipartition all the labels into relevant and irrelevant subsets according to their

scores [5, 14, 15], or alternatively, predict directly the number of relevant labels

Nx for each instance and pick the top Nx highest scoring labels as relevant [16].

Global thresholding strategies adopt a fixed threshold for all labels and instances

[11, 12]. In the aforementioned thresholding strategies, some are tailored to spe-

cific scoring models [6, 8, 14, 11, 12], and some are general-purpose which can

be applied to any scoring model [5, 15, 16]. In general-purpose strategies, the

thresholding model is mostly learnt based on the output of the scoring model on
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all training instances and thus is closely related to the scoring model. Typically,

once a new batch of data arrives, batch learning methods suffer from expensive

re-training cost, regardless of thresholding strategies, which involves re-training

of their scoring model and possibly thresholding model. Thus, batch learning

methods are not efficient for large-scale or streaming multi-labeled classification

tasks. In contrast, online learning methods can provide promising solutions for

such tasks by processing data one-by-one. In order to learn a multi-label classi-

fier incrementally from data in a sequential manner, online methods should no

doubt be able to learn both scoring and thresholding models simultaneously in

an online manner.

Although several online multi-label classification methods have been devel-

oped recently, they cannot learn the label thresholding model well. Online Se-

quential Multi-label Extreme Learning Machines (OSML-ELM) [17] and ELM

based Online Multi-Label Learning (ELM-OMLL) [18] are both ELM-based on-

line multi-label classifiers, where ELM is a feedforward neural network with

a single layer of hidden nodes. OSML-ELM uses an offline post-processing

procedure to determine its global label threshold. ELM-OMLL [18] improves

OSML-ELM by defining a new objective function based on the label ranking in-

formation and by directly fixing its global label threshold as zero in the objective

function. Both ELM-based methods, however, suffer from limited performance

in many cases. Methods in [19, 20, 21] adjust existing techniques, namely, tree-

based, clustering-based and Bayesian-based methods respectively, to the online

multi-label setting, and then use the label cardinality computed on a fixed or

variable length window of examples as the predicted number of relevant labels.

These thresholding strategies in [19, 20, 21] learn the thresholding model inde-

pendently of their scoring model. The potential relationship between two models

is thus neglected, which loses chances to exploit the scoring model to learn an

improved threshold model. The method in [22] transforms the multi-label clas-

sification into a multi-target regression problem and solves the problem using

a streaming multi-target regressor, and then in order to convert a multi-target

prediction into a multi-label prediction, a fixed threshold is required, but how
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to select the threshold is left unsolved in this paper.

Some other methods are related to online multi-label learning, but aim not

for online multi-label classification. Park and Choi applied the accelerated nons-

mooth stochastic gradient descent [23] to optimize the primal form of Rank-SVM

[5] and proposed an online label ranking method [24], which only aims to rank

the relevant labels higher than irrelevant ones and thus the label thresholding

for classification is disregarded. Gong et al. [25] proposed an online metric

learning method based on k-Nearest Neighbor and large margin principle, but

this method is not concerned about how to perform online multi-label prediction

in the process of metric learning.

In this paper, we aim to address the label thresholding problem for online

multi-label classification. Our contributions are as follows:

1. A novel framework of adaptive label thresholding is proposed. Its key

feature is that both scoring and thresholding models are included as im-

portant components of our online multi-label classifier and are directly

encoded into one online optimization problem so as to be learnt simulta-

neously in an online style.

2. In order to establish the relationship between scoring model and label

thresholding model, a novel multi-label classification loss function is de-

rived, which measures to what an extent the multi-label classifier can

distinguish relevant labels from irrelevant ones for an incoming instance.

3. Based on the framework and this loss function, we present a linear first-

order algorithm and a second-order one. In updating the multi-label clas-

sifier, the first-order algorithm uses online gradient descent, while the

second-order one adopts adaptive mirror descent method. Both algorithms

enjoy an efficient closed-form update and have been proved to achieve a

sub-linear regret, which reveals that, on the average, their online multi-

label classifier performs as well as the best fixed multi-label classifier cho-

sen in hindsight.
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4. Using the kernel trick, our first-order algorithm has been extended to

handle nonlinear multi-label prediction tasks.

5. Experiments on nine multi-label classification datasets demonstrate the

superiority of our proposed linear and nonlinear algorithms, compared

with several state-of-the-art online multi-label classification algorithms,

in terms of various multi-label performance metrics.

The remaining parts of this paper are organized as follows. Section 2 reviews

some related work and Section 3 presents the notation and the problem setting.

The technical details of our proposed algorithms and their theoretical analyses

are provided in Section 4. In Section 5, we extend our linear first-order algo-

rithm so as to handle nonlinear multi-label classification tasks. Experiments

are provided in Section 6. Finally, Section 7 concludes this study with some

perspectives of further research.

2. Related work

Online learning. Online learning algorithms represent a family of efficient

and scalable machine learning techniques [26, 27]. In past decades, online algo-

rithms for single-label classification tasks have been well explored. For example,

PA [28], Pegasos [29], CW [30], FOGD and NOGD [31], WOS-ELMK [32] have

been developed for binary or multi-class classification tasks. Single-label clas-

sification can be regarded as specific instances of multi-label classification, by

restricting each instance to have only one relevant label, and thus multi-label

classification is generally more difficult to learn than single-label tasks due to

the generalization [33]. Currently, several online multi-label classification al-

gorithms have been proposed in [17, 18, 19, 20, 21, 22]. These algorithms,

however, cannot handle the online label thresholding problem well and lack the

regret analysis. Our algorithms are proposed to overcome the shortcomings.

Multi-label learning. Existing multi-label learning methods can be cate-

gorized as problem transformation methods and algorithm adaptation methods

5



[34, 35]. The former transform the problem of multi-label classification into the

problem of binary classification, multi-class classification, or label ranking, and

then solve the resulting problem using well-established methods. The trans-

forming techniques are often algorithm independent, typically including binary

relevance [1, 36], classifier chains [37, 38], calibrated label ranking [14] and

random k-labelsets [39, 12]. The latter modify popular techniques to handle

multi-label classification problems directly. For example, lazy learning tech-

niques [33, 40], SVM [5], decision trees [9, 41] and neural networks [11, 42] have

been respectively adapted to the multi-label setting. Most of the above meth-

ods are batch learning methods which cannot update their scoring models and

possibly label thresholding models incrementally. In contrast, in our proposed

algorithms, both scoring and thresholding models are directly encoded into one

online optimization problem and thus both can be learnt in an online style.

3. Notation and problem setting

In this paper, let [L] denote the set {1, 2, · · · , L} for a positive integer L.

Let Y = [L] denote the set of all L possible labels. Let (x1, Y1), (x2, Y2), · · · ,

(xT , YT ) be an arbitrary sequence of input examples, where Yt ⊆ Y is a label

set associated with the instance xt ∈ Rd for any t ∈ [T ]. Let Ȳt denote the

complementary set of Yt, that is, Ȳt = Y − Yt. So labels in Yt are relevant to

xt, while labels in Ȳt are not. Let 1[a] = 1 if a is true and 1[a] = 0 otherwise.

The online multi-label classification problem can be formulated as a repeated

prediction game between the learner and its environment. At each online round

t, a new data instance xt ∈ Rd is supplied to the learner, which is required

to predict the set of all relevant labels for xt using its current model Wt that

belongs to some known hypothesis class H. Once the learner has submitted

its prediction, say Ŷt, the true set Yt ⊆ Y associated with xt is revealed, and

the learner suffers a loss `(Wt; (xt, Yt)) that measures its multi-label predictive

performance. In light of this loss, the learner is allowed to choose a new model

Wt+1 ∈ H, hoping for improving its performance in the subsequent rounds.
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Our goal is to devise such online multi-label classification algorithms which

can achieve low regret relative to the best fixed multi-label classifier chosen

in hindsight. Formally, the regret that the learner suffers on a sequence of T

examples is defined as

RegretT =

T∑
t=1

`(Wt; (xt, yt))− min
U∈H

T∑
t=1

`(U ; (xt, yt)).

Low regret means that RegretT grows sub-linearly with the number of learning

rounds, T , and thus implies that an online learner asymptotically matches the

performance of the best fixed multi-label classifier chosen in hindsight.

4. The proposed approach

4.1. The framework of adaptive label thresholding

We first use linear approaches to solve the online multi-label classification

problem. At each online round t, our learner maintains a multi-label classifier

Wt = [w
(1)
t , · · · ,w(L)

t ,w
(L+1)
t ] ∈ Rd×(L+1), which consists of L label predic-

tors for computing scores for each label and one additional threshold predictor

w
(L+1)
t for determining the label threshold. When a new instance xt ∈ Rd ar-

rives, our learner uses Wt to predict the relevant labels for xt. Specifically, a

real-valued score x>t w
(i)
t is assigned to each label i ∈ Y and a threshold score

x>t w
(L+1)
t is also computed. Then the predicted set of relevant labels at round

t is obtained as Ŷt = {i ∈ Y : x>t w
(i)
t > x>t w

(L+1)
t }. Namely, labels with higher

scores than the threshold score are regarded as relevant to xt, while labels with

lower scores than the threshold score are predicted as irrelevant. When the

true set Yt of xt is revealed, our learner improves Wt to a new classifier Wt+1.

According to the above descriptions, we summarize the framework of Adaptive

Label Thresholding (ALT) in Algorithm 1.

Different from existing approaches, our framework explicitly learns both

scoring model and thresholding model simultaneously in the online learning

process. Based on this new framework, we construct two algorithms, for which,

the main difference lies in how to update Wt to Wt+1.
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Algorithm 1: The Framework of Adaptive Label Thresholding (ALT)

Input: Hyperparameters

Output: WT+1

1 W1 = [w
(1)
1 , · · · ,w(L+1)

1 ] = [0, · · · ,0]

2 for t = 1, 2, · · · , T do

3 Observe xt ∈ Rd

4 Predict the set of relevant labels Ŷt = {i ∈ Y : x>t w
(i)
t > x>t w

(L+1)
t }

5 Receive the true set of relevant labels Yt ⊆ Y

6 Update Wt to Wt+1

4.2. First-order ALT algorithm (FALT)

At the end of round t, we expect the online learner to find a new classifier

that solves the following problem:

Wt+1 = argmin
W∈Rd×(L+1)

1

2
||W −Wt||2F

s.t. x>t w
(i) − x>t w(L+1) ≥ 1, ∀i ∈ Yt

x>t w
(L+1) − x>t w(j) ≥ 1, ∀j ∈ Ȳt (1)

where W = [w(1), · · · ,w(L+1)] and || · ||F denotes the Frobenius norm of a

matrix. The consideration for this update is two-fold. On the one hand, Wt+1 is

kept close to Wt in order to retain the information learnt from previous rounds.

On the other hand, the update requires Wt+1 to not only correctly separate

relevant labels from irrelevant ones for the instance xt, but also separate with

high confidence. By imposing such constraints, relations between the predictors

of relevant labels and the label threshold predictor and relations between the

label threshold predictor and the predictors of irrelevant labels can both be

explicitly considered by our multi-label classifier.

In presence of label noise and outliers, forcing aggressively the new classifier

Wt+1 to satisfy all the L hard-margin constraints in problem (1) may cause

Wt+1 to update dramatically towards a wrong direction and thus bring unde-

sirable consequences. To cope with such problem, the common technique for de-
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riving soft-margin classifiers [43, 28] is adopted and nonnegative slack-variables

are introduced into problem (1) to relax the L constraints, which leads to the

following optimization problem:

(Wt+1, ξt+1) = argmin
W ,ξ

1

2
||W −Wt||2F + η

( 1

|Yt|
∑
i∈Yt

ξi +
1

|Ȳt|
∑
i∈Ȳt

ξi
)

s.t. x>t w
(i) − x>t w(L+1) ≥ 1− ξi, ∀i ∈ Yt

x>t w
(L+1) − x>t w(j) ≥ 1− ξj , ∀j ∈ Ȳt

ξi ≥ 0, ∀i ∈ {1, 2, · · · , L} (2)

where η > 0 is used to control the tradeoff between the first regularization term

and the second slack variable term. It is worth noting that the weighted sum

of slack variables, instead of their unweighted sum, is used in the optimization

objective, in order to avoid the situation that one sum dominates over the other

one in
∑
i∈Yt

ξi and
∑
i∈Ȳt

ξi.

Further, let ξi = max
{

0, 1−(x>t w
(i)−x>t w(L+1))

}
for any i ∈ Yt, and let

ξj = max
{

0, 1−(x>t w
(L+1)−x>t w(i))

}
for any j ∈ Ȳt. Then, all constraints in

(2) can be eliminated, so that the constrained problem (2) is transformed into

the following unconstrained one:

Wt+1 = argmin
W

1

2η
||W −Wt||2F + ft(W ) (3)

where ft(W ) is defined as

ft(W )=
1

|Yt|
∑
i∈Yt

max
{

0, 1−(x>t w
(i)−x>t w(L+1))

}
+

1

|Ȳt|
∑
i∈Ȳt

max
{

0, 1−(x>t w
(L+1)−x>t w(i))

}
. (4)

It is difficult to solve problem (3) directly due to the piecewise linear prop-

erty of ft(W ). Instead of directly optimizing ft(W ), we resort to its first-order

approximation, that is, ft(W ) ≈ ft(Wt) +
∑L+1
i=1 (∇(i)

t )>(w(i) − w(i)
t ), where

∇(i)
t = ∇w(i)ft(Wt). By replacing ft(W ) in (3) with its first-order approxi-

mation and eliminating the terms irrelevant to W , problem (3) is simplified as
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follows:

Wt+1 =argmin
W

1

2η
||W −Wt||2F +

L+1∑
i=1

(∇(i)
t )>w(i) (5)

The benefit of this simplification is that an efficient closed-form solution can

be derived, meanwhile, such update can achieve a sub-linear regret. Since the

objective function in (5) is differentiable and convex with respect to each w(i),

the necessary and sufficient condition for w
(i)
t+1 to be optimal is the gradient

of the objective function with respect to w(i) at w
(i)
t+1 is zero vector, that is,

1
η (w

(i)
t+1−w

(i)
t ) +∇(i)

t = 0. Solving this equation, we get the following update:

w
(i)
t+1 = w

(i)
t − η∇

(i)
t , ∀i ∈ [L+ 1]. (6)

where

∇(i)
t =


−a

(i)
t

|Yt|xt, if i ∈ Yt
b
(i)
t

|Ȳt|
xt, if i ∈ Ȳt

( at
|Yt| −

bt
|Ȳt|

)xt, if i = L+ 1

with a
(i)
t = 1[x>t w

(i)
t −x>t w

(L+1)
t < 1], b

(i)
t = 1[x>t w

(L+1)
t −x>t w

(i)
t < 1],

at =
∑
j∈Yt

a
(j)
t and bt =

∑
j∈Ȳt

b
(j)
t .

Algorithm 1 using (6) for computing the new multi-label classifier Wt+1 is

termed “First-order ALT (FALT)”, since only the gradient of the loss function

ft(W ) is required.

We now analyze the regret of FALT relative to the best fixed multi-label

classifier U∗ = [u
(1)
∗ , · · · ,u(L+1)

∗ ] ∈ Rd×(L+1) on an arbitrary sequence of ex-

amples, where U∗ is chosen in hindsight and has the same predictive form

Ŷt = {i ∈ Y : x>t u
(i)
∗ > x>t u

(L+1)
∗ } as our classifier.

Theorem 1. Let (x1, Y1), · · · , (xT , YT ) be an arbitrary sequence of input ex-

amples, where xt ∈ Rd, Yt ⊆ Y, and ||xt|| ≤ R for all t. If FALT is run on

this sequence of examples, then, for any U∗ ∈ argminU∈Rd×(L+1)

∑T
t=1 ft(U), it

holds that

T∑
t=1

(
ft(Wt)− ft(U∗)

)
≤ 1

2η
||U∗||2F + ηR2T (7)
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Setting η = ||U∗||F /(R
√

2T ), then the regret becomes

T∑
t=1

(
ft(Wt)− ft(U∗)

)
≤
√

2R||U∗||F
√
T . (8)

Remark 1. The regret bound (8) is sub-linear, which implies that on the aver-

age, FALT performs as well as U∗. Moreover, one advantage of this bound is

that it is independent of L, the number of labels.

4.3. Second-order ALT algorithm (SALT)

Essentially, FALT relies on ft(W ) defined in (4) to evaluate its multi-label

predictive performance at online round t and exploits online gradient descent to

minimize this loss. Thus, each element in Wt is updated in the same learning

rate η. In many classification tasks where data instances are very sparse and

only have a few non-zero features, methods that can update each dimension

of the classifier with an adaptive learning rate are deemed better than online

gradient descent [44]. Therefore, in this section, we present a novel second-

order ALT algorithm where ft(W ) is minimized using Adaptive Mirror Descent

method (AMD) [44] which can endow each element in Wt with an adaptive

learning rate by constructing an approximation to the Hessian of ft(W ).

Let `t(wt) be an instantaneous convex loss for measuring the predictive

inaccuracy of an online binary classifier wt ∈ Rd. The sub-differential set of

`t at the point w is denoted by ∂`t(w). We use I as an identity matrix. For

a vector st, its ith element is denoted by st,i and we use diag(st) to denote a

diagonal matrix with the elements in st on the diagonal line. For a d× t matrix

G1:t, its ith row vector is denoted by G1:t,i. For any p ∈ [1,∞], the `p norm of

a vector w is denoted by ‖w‖p, and the Mahalanobis norm of w for a positive

definite matrix H is denoted by ‖w‖H which is given by
√
w>Hw. Based on

the notation, the pseudocode of AMD for binary classification is summarized in

Algorithm 2.

In order to apply AMD to the multi-label classification tasks, we first re-

place the binary classifier wt with our multi-label classifier Wt and change the
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Algorithm 2: AMD [44]

Input: δ > 0, η > 0

Output: wT+1 ∈ Rd

1 w1 = 0

2 for t = 1, 2, · · · , T do

3 Observe xt ∈ Rd

4 Predict the label ŷt = sign(w>t xt)

5 Receive the true label yt ∈ {−1,+1}

6 Let gt∈∂`t(wt) and G1:t=[g1, · · · , gt] ∈ Rd×t

7 Let Ht = δI+diag(st) where st,i = ||G1:t,i||2
8 wt+1 = argminw∈Rd

{
g>t w + 1

2η‖w −wt‖
2
Ht

}

predictive rule to the one used in Algorithm 1, and then specify the loss func-

tion as ft(W ) in (4). We next need to calculate the subgradient of ft(W ) with

respect to W at Wt, which can be transformed into calculating the subgradi-

ent of ft(W ) with respect to each w(i) at Wt, that is, calculating ∇(i)
t for any

i ∈ [L + 1]. To understand the transformation, one can image the matrix Wt

as a long column vector whose elements are taken columnwise from the matrix.

After that, following the same calculation process as Algorithm 2, we obtain

the proposed Second-order ALT (SALT) in Algorithm 3, where the problem at

Step 8 has a closed-form solution:

w
(i)
t+1 = w

(i)
t − η(H

(i)
t )−1∇(i)

t , ∀i ∈ [L+ 1].

In light of H
(i)
t , all elements in Wt+1 are updated in different learning rates.

Now we start to analyze the regret of SALT relative to the best fixed multi-

label classifier U∗ ∈ Rd×(L+1) chosen in hindsight.

Theorem 2. Let (x1, Y1), · · · , (xT , YT ) be an arbitrary sequence of input ex-

amples, where xt ∈ Rd and Yt ⊆ Y for all t. If SALT is run on this sequence
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Algorithm 3: Second-order ALT (SALT)

Input: δ > 0, η > 0

Output: WT+1

1 W1 = [w
(1)
1 , · · · ,w(L+1)

1 ] = [0, · · · ,0]

2 for t = 1, 2, · · · , T do

3 Observe xt ∈ Rd

4 Predict the set of relevant labels Ŷt = {i ∈ Y : x>t w
(i)
t > x>t w

(L+1)
t }

5 Receive the true set of relevant labels Yt ⊆ Y

6 ∀i ∈ [L+ 1], get ∇(i)
t and then set G

(i)
1:t=[∇(i)

1 , · · · ,∇(i)
t ] ∈ Rd×t

7 ∀i ∈ [L+ 1], H
(i)
t = δI+diag(s

(i)
t ) where ∀j ∈ [d], s

(i)
t,j = ||G(i)

1:t,j ||2
8 Wt+1 = argminW

∑L+1
i=1

(
1
2η ||w

(i)−w(i)
t ||2H(i)

t

+(∇(i)
t )>w(i)

)

of examples, then, for any U∗ ∈ argminU∈Rd×(L+1)

∑T
t=1 ft(U), it holds that

T∑
t=1

(
ft(Wt)−ft(U∗)

)
≤ (

Q

2η
+ η)

L+1∑
i=1

d∑
j=1

‖G(i)
1:T,j‖2 +

δ

2η
‖U∗‖2F (9)

where Q = maxi∈[L+1],t∈[T ] ‖w
(i)
t − u

(i)
∗ ‖2∞.

Remark 2. According to [44], the bound (9) is sublinear and when the gradient

vectors are sparse, SALT is expected to perform better.

5. Extension of FALT to nonlinear multi-label classification tasks

So far, we focus on the linear multi-label classifierW = [w(1), · · · ,w(L+1)] ∈

Rd×(L+1) with the predictive form of Ŷt = {i ∈ Y : x>t w
(i) > x>t w

(L+1)}. It is

noteworthy that FALT can be easily generalized using the kernel trick. Indeed,

each component classifier of Wt can be expressed by w
(i)
t =

∑t−1
k=1 τ

(i)
k xk for

any i ∈ [L+ 1] where

τ
(i)
k =

η(
1[i∈Yk]a

(i)
k

|Yk| − 1[i∈Ȳk]b
(i)
k

|Ȳk|
), if i ∈ [L]

η( bk
|Ȳk|
− ak
|Yk| ), if i = L+ 1.
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By introducing a Mercer kernel K(·) that induces a nonlinear feature map-

ping φ(·), we can get a nonlinear component classifier w
(i)
t =

∑t−1
k=1 α

(i)
k φ(xk),

where α
(i)
k is obtained by replacing xk occurring in τ

(i)
k with φ(xk). Exploit-

ing the kernel trick, scores for all labels and the threshold can be efficiently

computed:

φ(xt)
>w

(i)
t =

t−1∑
k=1

α
(i)
k φ(xk)>φ(xt) =

t−1∑
k=1

α
(i)
k K(xk,xt).

Therefore, it is not necessary to explicitly compute φ(·), but instead nonlinear

multi-label prediction is achieved by replacing the inner product in the origi-

nal feature space with a simple kernel function operation. According to [43],

Theorem 1 provided for linear FALT also holds for kernelized FALT.

By contrast, it is not easy to extend SALT using the kernel trick since

computing the matrix H
(i)
t requires us to explicitly compute φ(·).

6. Experiments

6.1. Datasets

The datasets used are presented in Table 1, which are selected to cover

various domains and present diverse characteristics. The first three datasets can

be downloaded from LIBSVM website1 and the remaining ones are available at

Mulan website2.

6.2. Performance metrics

Owing to the complexity of the multi-label classification, it is suggested to

compare algorithms from different perspectives [34]. Thus, the following metrics

are used.

• Precision (Psn), Recall (Rcal) and F1-measure (F1): Psn= 1
N

∑N
i=1

|Yi∩Ŷi|
|Ŷi|

,

Rcal= 1
N

∑N
i=1

|Yi∩Ŷi|
|Yi| , and F1 = 2∗Psn∗Rcal

Psn+Rcal where N is the number of ex-

amples for evaluation.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
2http://mulan.sourceforge.net/datasets-mlc.html
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Table 1: A summary of datasets in the experiments

Dataset domain #training #testing #features #labels card fea.density

Rcv1v2(industries) text 23,149 781,265 47,236 313 0.696 0.0016

Rcv1v2(regions) text 23,149 781,265 47,236 228 1.312 0.0016

Rcv1v2(topics) text 23,149 781,265 47,236 101 3.241 0.0016

Bibtex text 4,880 2,515 1,836 159 2.402 0.0374

Birds audio 322 323 260 19 1.014 0.5858

Scene images 1,211 1,196 294 6 1.074 0.9885

Emotions music 391 202 72 6 1.868 0.9952

Yeast biology 1,500 917 103 14 4.237 1.0000

Mediamill video 30,993 12,914 120 101 4.376 1.0000

1 “card” represents the label cardinality, which equals to 1
M

∑M
i=1 |Yi| where M

= # training + # testing.

2 fea.density = 1
M·d

∑M
i=1 nnz(xi) where d = # features and nnz(·) counts the

number of non-zero elements in one vector.

• MacroF1 and MicroF1: Let tpj , fpj and fnj denote the number of true

positive, false positive and false negative testing examples with respect

to the label j. Then, MacroF1 = 1
L

∑L
j=1

2∗tpj
2∗tpj+fpj+fnj

and MicroF1 =

2∗
∑L

j=1 tpj∑L
j=1(2∗tpj+fpj+fnj)

. Note that both are label-based metrics, which eval-

uate the performance on each label respectively and return the result

across all labels.

• Hamming loss (Hl): Let ∆ stands for symmetric difference between two

sets, then Hl= 1
N∗L

∑N
i=1 |Ŷi∆Yi|.

• Ranking loss (Rl): Let h(xi, j) denote the real-valued score assigned to the

label j for the instance xi, then Rl= 1
N

∑N
i=1

∑
j∈Yi,k∈Ȳi

1[h(xi,j)≤h(xi,k)]

|Yi|∗|Ȳi|
.

For Hamming loss and Ranking loss, the smaller the metric values, the better

the method’s performance. For the other metrics, the larger the metric values,

the better the method’s performance.
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6.3. Baselines

To demonstrate the advantage of our proposed algorithms, we have compared

them with the following online multi-label classification algorithms:

• OSML-ELM [17]: Online Sequential Multi-Label Extreme Learning Ma-

chine.

• ELM-OMLL [18]: Extreme Learning Machine based Online Multi-Label

Learning.

• PA-I-BR(l) and PA-II-BR(l): Two Passive-Aggressive (PA) algorithms

for linear binary classification, namely, PA-I and PA-II [28], were imple-

mented and adapted to the multi-label classification setting using Binary

Relevance (BR) [34].

• PA-I-BR(k) and PA-II-BR(k): the kernelized extension of PA-I-BR(l) and

PA-II-BR(l), respectively.

• FALT(l): Our proposed linear first-order algorithm.

• FALT(k): The kernelized extension of FALT(l).

• SALT: Our proposed linear second-order algorithm.

All kernelized algorithms use the RBF kernel with hyperparameter δ2, that

is, K(xi,xj) = exp (− ||xi−xj ||2
2δ2 ), and the kernel matrix is precalculated for

accelerating the computation. It is reasonable to compare linear algorithms on

linear classification tasks and compare nonlinear algorithms on nonlinear tasks.

So we evaluate the linear PA-I-BR(l), PA-II-BR(l), FALT(l) and SALT, only

on the first four text multi-label classification datasets in Table 1, and evaluate

PA-I-BR(k), PA-II-BR(k) and FALT(k) on the other datasets.

6.4. Sensitivity analysis

We first analyze the hyperparameter sensitivity of our FALT(l) and SALT.

Except the intrinsic hyperparameters of each algorithm, we also examine whether
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multiple learning on each example can significantly improve various performance

metrics. Thus, an additional hyperparameter M that defines the maximum

number of learning times on each example at each online round is considered.

Fig. 1 displays how various metrics attained by FALT(l) vary with different

step-size η and the learning times M on Rcv1v2(topics), where different colors

represent different metric values that are obtained by ten-fold cross validation

on the training set. Similarly, Fig. 2 also reports metric values attained by

SALT on Rcv1v2(topics) using different η and M when δ = 1 and the metric

values using different δ and M when η = 1.
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Figure 1: Performance metrics achieved by FALT(l) using different η and M .

Due to the space constraint, we cannot display the results on the other

datasets. However, we reach similar conclusions from all results:

1. The optimal hyperparameter regions for different metrics are possibly dif-

ferent. If these optimal regions share a common sub region, a set of good

hyperparameters can be found to optimize all metrics. Otherwise, one

has to make a compromise when searching for the optimal set of hyper-

17



2-5 20 25

 

6  

13 

25 

51 

101

202

404

M

Precision (Rcv1v2(topics))

0.4

0.5

0.6

0.7

0.8

(a)

2-5 20 25

 

6  

13 

25 

51 

101

202

404

M

MacroF1 (Rcv1v2(topics))

0.2

0.3

0.4

0.5

0.6

(b)

2-5 20 25

 

6  

13 

25 

51 

101

202

404

M

Hammingloss (Rcv1v2(topics))

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(c)

2-5 20 25

 

6  

13 

25 

51 

101

202

404

M

F1-measure (Rcv1v2(topics))

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(d)

2-5 20 25

 

6  

13 

25 

51 

101

202

404

M

MicroF1 (Rcv1v2(topics))

0.5

0.55

0.6

0.65

0.7

0.75

0.8

(e)

2-5 20 25

 

6  

13 

25 

51 

101

202

404

M

Rankingloss (Rcv1v2(topics))

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(f)

2-5 20 25

 

6  

13 

25 

51 

101

202

404

M

Precision (Rcv1v2(topics))

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(g)

2-5 20 25

 

6  

13 

25 

51 

101

202

404

M

MacroF1 (Rcv1v2(topics))

0.2

0.3

0.4

0.5

0.6

(h)

2-5 20 25

 

6  

13 

25 

51 

101

202

404

M

Hammingloss (Rcv1v2(topics))

0.015

0.02

0.025

0.03

0.035

0.04

(i)

2-5 20 25

 

6  

13 

25 

51 

101

202

404

M

F1-measure (Rcv1v2(topics))

0.6

0.65

0.7

0.75

0.8

0.85

(j)

2-5 20 25

 

6  

13 

25 

51 

101

202

404

M

MicroF1 (Rcv1v2(topics))

0.55

0.6

0.65

0.7

0.75

0.8

(k)

2-5 20 25

 

6  

13 

25 

51 

101

202

404

M

Rankingloss (Rcv1v2(topics))

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

(l)

Figure 2: Performance metrics achieved by SALT using different η and M when δ = 1 (the

first six subfigures) and performance metrics by SALT using different δ and M when η = 1

(the last six subfigures).
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parameters for all metrics. Therefore, in our hyperparameter optimiza-

tion procedure, if a set of hyperparameters achieves better results than

the other set of hyperparameters in some of all performance metrics, but

worse results in the other metrics, then the set of hyperparameters that

gets better results in more metrics will be kept.

2. Smaller M leads to worse results in many metrics. As M increases, the

hyperparameter ranges that can attain good metric values grow large.

This observation applies to FALT(l) and SALT. Thus, in our comparative

experiments, we allow to take a large value of M for our algorithms.

3. When M is fixed, η in FALT(l) and SALT should be neither too large nor

too small. This observation is consistent with their regret bounds. In the

regret bound (7) of FALT, when η is too large, the term proportional to η

dominates, which leads to high regret and deteriorates the performance;

conversely, when η is too small, another term proportional to 1/η domi-

nates, which also leads to high regret. The analysis holds for SALT. Thus,

we suggest searching the optimal η around 1 for both algorithms.

4. Lastly, when η is fixed, δ in SALT should also be searched around 1. This

can be explained according to the regret bound (9) of SALT. On the one

hand, too large δ leads to large δ
2η‖U∗‖

2
F , which leads to high regret. On

the other hand, too small δ leads to large (H
(i)
T )−1, which produces large

w
(i)
t and further large Q in (9).

6.5. Performance comparisons

We run all the compared algorithms on the training datasets in table 1 and

evaluate the obtained model on the corresponding testing dataset. The model

for evaluation is obtained after a single pass through the training data.

For OSML-ELM and ELM-OMLL, the top 20% examples in each training

set is used for network initialization and the number of hidden layer neurons is

chosen from [100, 1000]. The label threshold for OSML-ELM is set to 0 [17]. The
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regularization factor for ELM-OMLL is chosen from [2−10, 210]. The aggressive-

ness coefficient for PA-I-BR(l) and PA-II-BR(l) is searched from [2−15, 210]. For

FALT(l) and SALT, the step-size η is chosen from [2−10, 210] and the learning

times M is from [2−3, 22] · L. For SALT, δ is chosen from [2−10, 210]. For PA-

I-BR(k), PA-II-BR(k) and FALT(k), an additional kernel hyperparameter δ2 is

searched from [2−10, 210]. Hyperparameter optimization is done by performing

ten-fold cross validation on each training set, in which, only one pass over the

training splits is allowed. Each algorithm is run and evaluated 20 times on each

dataset, each time with a different permutation of examples in the training set.

Performance metrics achieved by each algorithm on each testing set are averaged

over 20 runs, and reported in Table 2, where the best result in each metric and

its comparable ones are displayed in bold, according to paired t-tests at 95%

confidence level. Moreover, the average training and testing time in seconds for

each algorithm is reported in Table 3.

From Table 2, on the first four datasets, we observe that FALT(l) and SALT

outperform the other algorithms in terms of most performance metrics, which

shows that they can well address the problem of online label thresholding. We

also observe that SALT is slightly better than or at least comparable to FALT(l)

in most metrics. Two ELM-based methods perform particularly poorly on the

three Rcv1v2 datasets, which is due to the conflict that the datasets are highly

feature-sparse but the sample complexity for reaching their peak performance is

high. On the remaining five datasets, we further observe that FALT(k) defeats

the other algorithms in most metrics, and it always achieves the best results in

F1-measure, MacroF1, MicroF1 and Ranking loss. Especially, the differences in

some metrics between FALT(k) and the second best algorithm are above 3%.

The promising results demonstrate the great benefit by equipping FALT with

the RBF kernel.

According to Table 3, in terms of training time, two BR-based methods run

the fastest, then it comes our proposed algorithms, FALT(l), SALT or FALT(k),

and two ELM-based methods run the slowest. FALT(l) runs faster than SALT.

In terms of testing time, our algorithms and two BR-based methods take similar
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Table 2: Testing performance metrics [%] and standard derivation (in brackets) achieved by

all compared algorithms
Dataset Algorithm Psn Rcal F1 MacroF1 MicroF1 Hl Rl

OSML-ELM 57.22 (0.06) 56.93 (0.04) 57.08 (0.05) 0.34 (0.02) 2.91 (0.18) 0.22 (0.00) 4.13 (0.04)
ELM-OMLL 63.72 (0.16) 61.77 (0.15) 62.73 (0.15) 8.24 (0.09) 34.91 (0.22) 0.21 (0.00) 4.13 (0.04)

Rcv1v2 PA-I-BR(l) 69.21 (0.25) 67.47 (0.23) 68.33 (0.24) 20.13 (0.33) 42.28 (0.72) 0.18 (0.00) 2.54 (0.05)
(industries) PA-II-BR(l) 69.21 (0.25) 67.46 (0.23) 68.33 (0.24) 20.12 (0.33) 42.28 (0.72) 0.18 (0.00) 2.53 (0.05)

FALT(l) 71.10 (0.19) 70.61 (0.40) 70.85 (0.27) 23.32 (0.57) 47.74 (0.62) 0.19 (0.00) 1.97 (0.02)
SALT 71.22 (0.13)70.68 (0.29)70.95 (0.19)23.38 (0.47)48.08 (0.55) 0.19 (0.00) 2.00 (0.02)

OSML-ELM 50.07 (0.33) 46.87 (0.31) 48.42 (0.32) 9.25 (0.09) 54.93 (0.31) 0.37 (0.00) 1.23 (0.03)
ELM-OMLL 70.86 (0.22) 84.68 (0.15) 77.16 (0.16) 28.65 (0.11) 70.74 (0.16) 0.37 (0.00) 1.23 (0.03)

Rcv1v2 PA-I-BR(l) 89.25 (0.20) 86.50 (0.48) 87.85 (0.33) 47.06 (0.32) 85.02 (0.13) 0.16 (0.00) 0.35 (0.02)
(regions) PA-II-BR(l) 89.24 (0.20) 86.49 (0.48) 87.85 (0.32) 47.05 (0.32) 85.02 (0.13) 0.16 (0.00) 0.35 (0.02)

FALT(l) 89.94 (0.33) 90.11 (0.63)90.02 (0.22)49.84 (0.94) 85.53 (0.29) 0.16 (0.01) 0.23 (0.01)
SALT 89.99 (0.30) 90.00 (0.61) 89.99 (0.24) 49.70 (0.86) 85.58 (0.24) 0.16 (0.00) 0.24 (0.01)

OSML-ELM 83.57 (0.22) 54.95 (0.22) 66.31 (0.20) 19.22 (0.15) 64.06 (0.20) 1.79 (0.01) 2.94 (0.03)
ELM-OMLL 76.52 (0.19) 71.88 (0.18) 74.13 (0.12) 30.91 (0.17) 70.80 (0.13) 1.77 (0.01) 2.94 (0.03)

Rcv1v2 PA-I-BR(l) 88.23 (0.30) 78.95 (0.47) 83.33 (0.18) 53.77 (0.27) 79.83 (0.12) 1.20 (0.01) 1.30 (0.03)
(topics) PA-II-BR(l)88.72 (0.27) 78.72 (0.43) 83.42 (0.16) 53.13 (0.30) 79.94 (0.13) 1.19 (0.01) 1.15 (0.02)

FALT(l) 84.69 (1.03) 83.63 (0.98) 84.14 (0.11) 56.56 (0.58) 79.73 (0.27) 1.29 (0.04) 0.79 (0.01)
SALT 84.86 (0.69) 84.10 (0.59)84.47 (0.09)56.69 (0.54)80.29 (0.18) 1.26 (0.02) 0.86 (0.01)

Bibtex

OSML-ELM 34.92 (0.34) 20.21 (0.22) 25.60 (0.26) 7.05 (0.20) 26.89 (0.27) 1.31 (0.00) 11.73 (0.23)
ELM-OMLL44.34 (0.44) 43.30 (0.27) 43.81 (0.32) 28.23 (0.45) 43.15 (0.32) 1.59 (0.01) 11.79 (0.24)
PA-I-BR(l) 44.53 (1.45) 37.36 (1.31) 40.61 (0.97) 26.73 (0.86) 40.05 (0.77) 1.53 (0.06) 9.26 (0.26)
PA-II-BR(l)44.71 (1.30) 37.22 (1.32) 40.60 (0.95) 26.71 (0.92) 40.18 (0.83) 1.51 (0.05) 9.30 (0.27)

FALT(l) 45.27 (2.34) 43.69 (4.20) 44.25 (1.21) 30.13 (2.23) 41.78 (0.97) 1.67 (0.22) 6.47 (0.19)
SALT 45.42 (2.23)47.57 (2.87)46.35 (0.78)32.26 (1.16) 42.54 (0.92) 1.78 (0.18) 6.61 (0.15)

Birds

OSML-ELM 64.22 (1.33) 59.20 (1.15) 61.61 (1.17) 23.69 (2.09) 38.96 (2.00) 4.46 (0.12) 9.53 (0.61)
ELM-OMLL 64.24 (0.92) 64.66 (0.84) 64.45 (0.84) 33.51 (1.40) 44.05 (0.91) 5.81 (0.13) 10.16 (0.41)
PA-I-BR(k) 64.60 (0.00) 64.34 (0.00) 64.47 (0.00) 36.95 (0.00) 46.18 (0.00) 5.17 (0.00) 10.42 (0.32)
PA-II-BR(k) 64.60 (0.00) 64.34 (0.00) 64.47 (0.00) 37.04 (0.02) 46.33 (0.02) 5.13 (0.00) 10.81 (0.34)

FALT(k) 65.19 (0.00)71.42 (0.00)68.16 (0.00)41.43 (0.02)50.01 (0.03) 5.70 (0.01) 9.36 (0.09)

Scene

OSML-ELM 61.27 (0.93) 61.57 (0.94) 61.42 (0.93) 68.65 (0.79) 68.13 (0.76) 10.20 (0.22) 9.96 (0.34)
ELM-OMLL 64.79 (0.87) 71.94 (0.93) 68.18 (0.85) 69.65 (0.72) 68.57 (0.71) 11.72 (0.28) 10.69 (0.41)
PA-I-BR(k) 70.57 (1.75) 70.44 (2.43) 70.50 (2.05) 74.16 (1.57) 73.96 (1.43) 8.77 (0.46) 7.39 (0.45)
PA-II-BR(k) 70.43 (1.73) 70.42 (2.43) 70.43 (2.04) 74.07 (1.52) 73.83 (1.41) 8.83 (0.48) 7.47 (0.50)

FALT(k) 73.12 (0.92)75.25 (1.45)74.17 (1.07)75.83 (0.68)75.24 (0.77) 8.77 (0.35) 7.18 (0.19)

Emotions

OSML-ELM 66.00 (1.70) 60.64 (1.39) 63.20 (1.41) 64.29 (1.27) 65.66 (1.14) 20.91 (0.64) 17.57 (0.90)
ELM-OMLL 67.31 (1.03) 72.85 (1.00) 69.97 (0.95) 69.48 (0.78) 70.12 (0.76) 20.57 (0.48) 16.38 (0.42)
PA-I-BR(k) 67.56 (2.19) 64.74 (2.54) 66.11 (2.14) 67.26 (1.94) 68.78 (1.52) 19.59 (0.75)15.53 (0.91)
PA-II-BR(k) 66.91 (1.97) 64.25 (1.93) 65.55 (1.77) 66.86 (1.68) 68.47 (1.26) 19.73 (0.63)15.63 (0.86)

FALT(k) 69.64 (0.67)73.52 (0.96)71.52 (0.53)70.19 (0.49)71.30 (0.39)19.50 (0.27)15.54 (0.16)

Yeast

OSML-ELM 69.20 (0.48) 57.74 (0.53) 62.95 (0.47) 35.39 (0.47) 62.85 (0.48) 20.44 (0.23) 18.34 (0.16)
ELM-OMLL 68.58 (0.36) 62.37 (0.38) 65.33 (0.32) 39.86 (0.36) 65.10 (0.27) 20.01 (0.14) 17.76 (0.14)
PA-I-BR(k) 71.59 (0.71) 58.97 (1.62) 64.65 (0.89) 40.30 (0.61) 64.85 (0.62) 19.22 (0.17) 16.24 (0.16)
PA-II-BR(k)71.73 (0.86) 58.91 (1.78) 64.67 (0.93) 39.66 (0.76) 64.84 (0.67) 19.20 (0.20) 16.29 (0.17)

FALT(k) 68.63 (0.80) 67.86 (1.25)68.23 (0.29)42.60 (0.80)67.57 (0.23) 19.48 (0.25) 16.03 (0.20)

Mediamill

OSML-ELM75.89 (0.19) 48.14 (0.11) 58.91 (0.13) 7.27 (0.09) 56.49 (0.11) 2.98 (0.01) 6.18 (0.08)
ELM-OMLL 69.20 (0.06) 53.28 (0.06) 60.20 (0.05) 6.29 (0.02) 57.94 (0.04) 3.16 (0.00) 5.14 (0.01)
PA-I-BR(k) 72.58 (0.13) 52.87 (0.13) 61.17 (0.07) 23.71 (0.21) 58.78 (0.09) 3.01 (0.00) 5.80 (0.05)
PA-II-BR(k) 72.50 (0.14) 52.89 (0.13) 61.16 (0.07) 23.82 (0.20) 58.77 (0.09) 3.02 (0.00) 5.83 (0.05)

FALT(k) 70.63 (0.12) 54.78 (0.09)61.70 (0.05)23.90 (0.17)59.43 (0.05) 3.04 (0.00) 4.76 (0.01)
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Table 3: Training and testing time spent by all algorithms

Algorithm
Rcv1v2(industries) Rcv1v2(regions) Rcv1v2(topics) Bibtex
Train[s] Test[s] Train[s] Test[s] Train[s] Test[s] Train[s] Test[s]

OSML-ELM 4903.34 656.04 4832.96 643.34 4861.00 640.60 94.43 0.13
ELM-OMLL 4750.08 641.78 4866.87 642.53 4934.48 644.90 100.42 0.14
PA-I-BR(l) 3.84 110.97 2.54 88.53 0.94 51.08 0.09 0.11
PA-II-BR(l) 3.85 109.80 2.70 90.20 0.92 47.31 0.10 0.11
FALT(l) 6.36 105.75 3.80 86.15 1.68 48.22 0.32 0.11
SALT 14.17 113.58 7.80 88.93 3.99 48.94 0.71 0.12

Algorithm
Birds Scene Emotions Yeast Mediamill

Train[s] Test[s] Train[s] Test[s] Train[s] Test[s] Train[s] Test[s] Train[s] Test[s]

OSML-ELM 2.84 0.01 13.14 0.02 0.67 0.00 0.60 0.01 284.13 0.30
ELM-OMLL 1.73 0.01 2.24 0.01 0.96 0.00 15.18 0.02 306.78 0.30
PA-I-BR(k) 0.01 0.01 0.02 0.04 0.01 0.00 0.03 0.03 131.91 10.27
PA-II-BR(k) 0.01 0.01 0.02 0.04 0.01 0.00 0.03 0.03 139.04 10.05
FALT(k) 0.05 0.01 0.03 0.04 0.01 0.00 0.07 0.04 160.73 10.16

time. They predict faster than two ELM-based methods in the linear version,

but slower in the kernelized version when the number of support vectors they

kept is larger, such as on Mediamill.

In summary, in terms of comprehensive performance, our proposed algo-

rithms outperform the other ones, since they achieve the most competitive re-

sults in terms of most metrics, meanwhile spend relatively less time.

7. Conclusion

In this paper, a novel algorithmic framework of adaptive label threshold-

ing is proposed for handling the online label thresholding problem. Based on

this framework, we proposed two algorithms, namely, FALT and SALT. Both

algorithms exploit a novel multi-label classification loss function to measure to

what an extent the multi-label classifier can separate relevant labels from ir-

relevant ones for an incoming instance. FALT updates its multi-label classifier

with online gradient descent method, while SALT with adaptive mirror descend

method. Both FALT and SALT are proved to enjoy a sub-linear regret. FALT

has been generalized to the nonlinear multi-label prediction tasks using the ker-

nel trick. We have shown the superiority of the linear FALT and SALT and

the nonlinear FALT with RBF kernel, in terms of various performance met-

rics, on nine open multi-label classification datasets. When FALT is equipped
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with Mercer kernels, it is susceptible to curse of kernelization [45], just like in

the single-label case. Therefore, we plan to extend the kernelized FALT in the

resource-limited constraint.
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Appendix A. Proof of Theorem 1

Proof. According to Eq. (6), we have that

||Wt −U∗||2F − ||Wt+1 −U∗||2F

=

L+1∑
i=1

(
||w(i)

t − u
(i)
∗ ||2 − ||w(i)

t − η∇
(i)
t − u

(i)
∗ ||2

)
=− η2

L+1∑
i=1

||∇(i)
t ||2 + 2η

L+1∑
i=1

(∇(i)
t )>(w

(i)
t − u

(i)
∗ )

≥− η2
L+1∑
i=1

||∇(i)
t ||2 + 2η

(
ft(Wt)− ft(U∗)

)
(A.1)

where the last inequality is due to the convexity of ft(W ). Next we start to

bound
∑L+1
i=1 ||∇

(i)
t ||2. Three cases are checked on:

1. When |Yt| ≥ 1 and |Ȳt| ≥ 1, by plugging into the expression of ∇(i)
t , we

can get

L+1∑
i=1

||∇(i)
t ||2 =

[
at
|Yt|2

+
bt
|Ȳt|2

+
( at
|Yt|
− bt
|Ȳt|

)2] ||xt||2
≤
[
at
|Yt|

+
bt
|Ȳt|

+ | at
|Yt|
− bt
|Ȳt|
|
]
||xt||2

≤ 2||xt||2
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2. When |Yt| = 0 and |Ȳt| ≥ 1, we have

L+1∑
i=1

||∇(i)
t ||2 =

[
bt
|Ȳt|2

+
( bt
|Ȳt|

)2] ||xt||2
≤
[
bt
|Ȳt|

+
bt
|Ȳt|

]
||xt||2 ≤ 2||xt||2

3. When |Ȳt| = 0 and |Yt| ≥ 1, we can similarly get the same conclusion.

In summary, we get
∑L+1
i=1 ||∇

(i)
t ||2 ≤ 2||xt||2 ≤ 2R2. Plugging the inequality

back into (A.1) and re-arranging these terms, we get that

ft(Wt)−ft(U∗)≤
1

2η
(||Wt−U∗||2F−||Wt+1−U∗||2F )+ηR2.

Summing the above inequality over t = 1 to T , we get that

T∑
t=1

ft(Wt)−ft(U∗)

≤ 1

2η

T∑
t=1

(||Wt −U∗||2F − ||Wt+1 −U∗||2F ) + ηR2T

=
1

2η
(||W1 −U∗||2F − ||WT+1 −U∗||2F ) + ηR2T

≤ 1

2η
||U∗||2F + ηR2T.

Appendix B. Proof of Theorem 2

Proof. The optimality of Wt+1 for the problem at Step 8 in Algorithm 3 implies

that for any U∗ = [u
(1)
∗ , · · · ,u(L+1)

∗ ] ∈ Rd×(L+1), we have

L+1∑
i=1

(1

η
H

(i)
t (w

(i)
t+1 −w

(i)
t ) +∇(i)

t

)>
(u

(i)
∗ −w(i)

t+1) ≥ 0.

24



By application of the inequality, we can get
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i=1
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(i)
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where the last inequality follows by application of Fenchel-Yong’s inequality to

the conjugate functions 1
2‖ · ‖

2
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(i)
t
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2‖ · ‖

2

(H
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:

(∇(i)
t )>(w

(i)
t −w

(i)
t+1)

≤ 1

2
‖√η∇(i)

t ‖2(H(i)
t )−1

+
1

2
‖ 1
√
η

(w
(i)
t −w

(i)
t+1)‖2

H
(i)
t

=
η

2
‖∇(i)

t ‖2(H(i)
t )−1

+
1

2η
‖w(i)

t −w
(i)
t+1‖2H(i)

t

.

According to the convexity of ft(W ), we can get

ft(Wt)− ft(U∗) ≤
L+1∑
i=1

(∇(i)
t )>(w

(i)
t − u

(i)
∗ ).

By combining this with the above equation, we can get

ft(Wt)−ft(U∗) ≤
1

2η

L+1∑
i=1

{
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.
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Summing the inequality over t = 1, · · · , T , we get

T∑
t=1

(ft(Wt)−ft(U∗))

≤ 1

2η

T∑
t=1
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i=1

{
‖w(i)

t −u
(i)
∗ ‖2H(i)

t

−‖w(i)
t+1−u

(i)
∗ ‖2H(i)

t

}
+
η

2

T∑
t=1

L+1∑
i=1

‖∇(i)
t ‖2(H(i)

t )−1
. (B.1)

We first bound the first term in the right-hand side of (B.1):
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Next we start to bound the second term in the right-hand side of (B.1).
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where ≤1 is owing to Lemma 4 in [44].
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Plugging the above two equation into (B.1), we can get
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1:T,j‖2 concludes the proof.
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fication via calibrated label ranking, Mach. Learn. 73 (2) (2008) 133–153.
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