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Abstract

Given the actual needs for detecting multiple features of butterflies in natural

ecosystems, this paper proposes a model of weakly-supervised butterfly detec-

tion based on a saliency map (WBD-SM) to enhance the accuracy of butterfly

detection in the ecological environment as well as to overcome the difficulty

of fine annotation. Our proposed model first extracts the features of different

scales using the VGG16 without the fully connected layers as the backbone net-

work. Next, the saliency maps of butterfly images are extracted using the deep

supervision network with shortcut connections (DSS) used for the butterfly tar-

get location. The class activation maps of butterfly images are derived via the

adversarial complementary learning (ACoL) network for butterfly target recog-

nition. Then, the saliency and class activation maps are post-processed with

conditional random fields, thereby obtaining the refined saliency maps of but-

∗Corresponding author
Email addresses: zhangtingbjut@foxmail.com (Ting Zhang),

engr.waqas2079@gmail.com (Muhammad Waqas), 2656933963@qq.com (Yu Fang),
zhaoying.liu@bjut.edu.cn (Zhaoying Liu), zahid.halim@giki.edu.pk (Zahid Halim),
liyujian@bjut.edu.cn (Yujian Li), sqc@ecs.soton.ac.uk (Sheng Chen)

Preprint submitted to Journal of LATEX Templates January 12, 2023



terfly objects. Finally, the locations of the butterflies are acquired based on the

saliency maps. Experimental results on the 20 categories of butterfly dataset

collected in this paper indicate that the WBD-SM achieves a higher recogni-

tion accuracy than that of the VGG16 under different division ratios. At the

same time, when the training set and test set are 8:2, our WBD-SM attains a

95.67% localization accuracy, which is 9.37% and 11.87% higher than the re-

sults of the DSS and ACoL, respectively. Compared with three state-of-the-art

fully-supervised object detection networks, RefineDet, YOLOv3 and single-shot

detection (SSD), the detection performance of our WBD-SM is better than Re-

fineDet, and YOLOv3, and is almost the same as SSD.

Keywords: Butterfly detection, saliency map, class activation map,

weakly-supervised object detection.

1. Introduction

The long-term survival and development of human society are critically af-

fected by biodiversity. With the development of human society, however, the

biodiversity decline has become increasingly severe, which is now one of the

top ten environmental problems worldwide [1]. Reliable species detection is an5

essential procedure in carrying out relevant biological research and is a pre-

requisite for studying biological evolutionary and developmental processes [2].

Insects are the most abundant form of animal life. At present, there are over

1.5 million kinds of insects that have been discovered around the world. Butter-

flies, which are lepidopteran insects with scales on their wings and liquid-sucking10

proboscis, are among the most diverse insects. There are more than 18,000 but-

terflies worldwide, of which approximately 1,200 types are found in China [3].

Butterflies play a crucial role in the research of speciation, community ecology,

biogeography, climate change, and plant-insect relationships. The challenging

problem is that the detection of butterfly species is quite tricky. The shape,15

color, texture, and pattern of wings vary among butterflies of different types.

Manual recognition and classification of butterfly species require professionally
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trained recognition specialists with prolonged experience. Moreover, the process

of manual identification is exceptionally time-consuming and inefficient.

With the development and application of machine learning, favorable con-20

ditions have been created for the fast, accurate automatic detection and recog-

nition of butterfly objects. In general, machine learning-based methods first

characterize the butterfly specimen images by manually extracting the image

features (color, texture, edges and shape) and then implement automatic detec-

tion of butterfly images by integrating statistical learning method [4]. In the real25

world, the primary demand for butterfly detection is ecological butterfly image

detection in natural scenes. Due to the complex environmental background of

ecological butterfly images and the various postures and self-protective mimicry

of butterflies, significant challenges exist in automatic butterfly specimen detec-

tion.30

In response to the above problems, we propose a weakly-supervised butterfly

object detection model based on a saliency map (WBD-SM) along with class

activation map. We collect a butterfly dataset with 20 categories of butterfly

and use it to demonstrate the effectiveness of our proposed WBD-SM. Our ex-

perimental results indicate that the WBD-SM achieves a recognition accuracy35

of 89.40%, which represents an improvement by 2.60% over the performance

achieved by the VGG16 [5]. The WBD-SM also attains a localization accu-

racy of 95.67%, which is 9.37% and 11.87% higher than those achieved by the

deep supervision network with shortcut connections (DSS) [6] and adversarial

complementary learning (ACoL) [7], respectively. Furthermore, compared with40

state-of-the-art fully-supervised object detection networks, including RefineDet

[8], YOLOv3 [9], and single-shot detection (SSD) [10], our WBD-SM is supe-

rior over RefineDet and YOLOv3, in terms of detection performance, while its

detection performance is almost the same as the SSD. To sum up, the main

contributions of our work are as follows.45

1. We propose a weakly-supervised butterfly detection method based on a

saliency map.
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2. We explore to modify the saliency map with the class activation map and

then generate the bounding box with the finer saliency map.

3. Experimental results show the proposed method outperforms state-of-the-50

art fully-supervised methods.

The rest of this paper is organized as follows: Section 2 reviews the related

work on object detection, while Section 3 details the structure and learning

algorithm of our proposed WBD-SM. Section 4 demonstrates the initial experi-

mental results and analysis. Our conclusions are given in Section 5, where future55

research directions are also suggested.

2. Related Work

Object detection aims to recognize and localize substantial objects of prede-

fined categories from the images accurately and efficiently. Since 2012, due to the

excellent performance achieved by deep convolutional neural networks (CNNs)60

in classification tasks, researchers have increasingly attracted to study the ob-

ject detection algorithms based on deep learning. Depending on the presence

or absence of a candidate box generation stage, the deep learning-based object

detection algorithms can be classified into two-phase and one-phase algorithms

[11]. The pioneer algorithm of two-phase object detection is the regions-CNN65

(R-CNN) based on proposal regions, which combines AlexNet with selective

search [12, 13]. It utilizes a search algorithm to initially extract about 2,000

proposal regions, each of which is then normalized and inputted into the CNN

one by one for feature extraction. Finally, the features are subjected to support

vector machine classification and regional regression. R-CNN has brought a70

qualitative change to the accuracy of object detection. It represents a milestone

in applying deep learning to object detection, which also lays the foundation for

deep learning-based two-phase object detection. Subsequently, researchers have

proposed models like Fast R-CNN [14], Faster R-CNN [15], and Mask R-CNN

[16] in succession based on R-CNN.75
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With two-phase object detection algorithms, the candidate boxes are ex-

tracted from the images initially. Then secondary correction is performed based

on the proposal regions to yield the detection results. These algorithms achieve

high detection accuracy, but their detection speed is quite low. Some researchers

have put forward one-phase object detection algorithms to address the ineffi-80

ciency of two-phase object detection algorithms. Such type of algorithms does

not require the branching of proposal regions. For a given input image, the

candidate boxes and categories of objects are regressed directly at multiple po-

sitions. These algorithms mainly include the you only look once (YOLO) series

[17, 18] and SSD series [19].85

By discarding the candidate box extraction branches, YOLOv1 [17] directly

implements feature extraction, candidate box classification, and regression in

the same branchless deep CNN. It simplifies the network structure and slightly

improves the detection speed, thus enabling the deep learning-based object de-

tection algorithm to meet the needs of real-time monitoring tasks with the90

computing power constraint. Later, in response to its insufficient localization

accuracy, Redmon and Farhadi proposed YOLOv2 [18], and YOLOv3 [9] succes-

sively. The authors utilized the operations batch normalization, high-resolution

classifier, direct target box location detection, and multi-scale training to en-

hance the model detection accuracy.95

Based on the regression idea, SSD [10] effectively applies the concept of

multi-scale detection to extract multiple feature maps of different scales for

detection. Furthermore, it also borrows the anchor mechanism from the faster

R-CNN to preset a fixed number of default boxes with different levels and aspect

ratios at each location of the extracted feature maps. The network performs100

dense sampling directly on the feature maps to obtain candidate boxes for pre-

diction. The authors of [19] adopt a feature fusion technique for the extracted

features of different scales. Since the features in each scale have information

related to other scales, the fusion adds the connections between feature maps

in various layers.105

The two-phase and one-phase class object detection approaches have their
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distinct advantages. The existing models combine these two classes of algo-

rithms to get better performance. For example, RefineDet [8] combines the

advantages of the two-phase model with the one-phase model. It consists of

two inter-connected modules, i.e., the anchor refinement module and the object110

detection module. Specifically, the first module filters out the negative anchors

to reduce the search space of the classifier and coarsely adjusts the positions

of anchors to provide better initialization for the second module. The second

module then refines the anchors generated by the first module to improve the

prediction accuracy for multi-class labels further.115

As aforementioned, the two categories of deep learning-based object detec-

tion algorithms have achieved particular successes in dealing separately with

detection accuracy and efficiency. Nevertheless, both types of algorithms re-

quire manual labeling of the object locations, and they all belong to the fully

supervised object detection. With the development of deep learning, demand-120

ing requirements have been placed on the quantity and quality of labeled data.

Manual labeling increasingly becomes unable to meet this demand, as manual

labeling suffers from the unavoidable drawbacks of subjectivity and high cost.

To address this problem, weakly-supervised object detection based on image-

level annotation has become a hot research topic. The methods of weakly-125

supervised object detection can be divided into three classes, i.e., the segmentation-

based methods [20], the multiple instance learning (MIL)-based methods [21],

and the convolutional feature-based methods [22]. Among them, the convolu-

tional feature-based weakly-supervised object detection is regarded as the main-

stream method. Zhou et al. [23] replaced the fully connected layer of CNN with130

global average pooling (GAP), where the localization capability of the convo-

lution unit was retained through class activation mapping, thereby generating

class activation maps (CAMs). Subsequently, in response to the mere emphasis

on local regions with the standard CAM methods, several researchers adopted a

variety of means to obtain more holistic CAMs, which ultimately yielded better135

results of object detection. However, CAM generally is a detection bottleneck,

owning to the limitation of the network classification capability and the lack of
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boundary recognition ability.

Saliency detection, aiming at highlighting visually salient objects or regions

in an image, is widely applied as a pre-processing procedure in various computer140

vision tasks, such as object detection, image segmentation, and visual tracking.

Saliency detection approaches can be roughly divided into two groups, i.e., the

bottom-up/top-down network and the side-fusion network [24]. The bottom-

up/top-down network first generates hierarchical features layer by layer and then

detects the salient objects with the final features, with the examples including145

SFCN [25], DHSNet and AFNet [26]. The side-fusion network aggregates the

multi-layer features of the backbone network, and forms a multi-scale feature

for detection, with the representatives of OSVOS [27], NLDF [28], and DSS [6].

Compared with the bottom-up/top-down network, the side-fusion network can

achieve higher performance gain in saliency detection.150

This paper combines the side-fusion based saliency detection and CAM

method to build the WBD-SM. Targeting weakly-supervised detection of but-

terfly objects, we adopt the saliency detection based on the CAM method to

enhance the model’s attention to butterfly edge information for attaining more

accurate detection. The network only needs to detect the saliency maps (SMs)155

of butterflies, and fuses the SMs and CAMs. Here, the CAMs have two roles.

One is to provide the label information for the saliency map. The other is to dis-

tinguish the butterfly from the whole image, helping the saliency map to remove

non-butterfly regions. Finally, we can get a more accurate and finer saliency

map. Although the WBD-SM accomplishes object localization with two sub-160

tasks jointly, no additional annotation is made in either of them. Hence, the

proposed model is weakly-supervised. More specifically, we generate the SMs of

butterfly images with the trained DSSNet [29], which are used as rough labels

containing noise to replace the truth labels of the saliency detection subtask.

Thus, in the saliency detection subtask, no annotation of images is performed165

except for the categorical annotation. At the same time, it is only necessary to

provide the class labels in the classification task [30].
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Figure 1: The Structure of WBD-SM.

3. Weakly Supervised Detection Network Based on Saliency Map

3.1. The Overall Architecture

Figure 1 depicts the proposed WBD-SM network, which is a fully convolu-170

tional network consisting of the backbone network as well as the target location

and recognition networks. The backbone network is the VGG16 [5] without the

fully connected layers, while the saliency detection part uses the deep super-

vision with short connections (DSS) [6] and the recognition part exploits the

adversarial complementary learning (ACoL) [7]. Hence, the proposed network175
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offers two types of SMs. One is the general SMs detected by the DSS, and the

other is the specific CAMs detected by ACoL.

As shown in Figure 1, the backbone network, i.e., the VGG16 without the

fully connected layers, initially extracts the features of the input images. Then,

for each layer in the VGG16, the butterflies’ locations are identified with the180

target location network. Furthermore, the types of butterflies are recognized

by the target recognition network using the conv5 3 layer of the VGG16 as its

input. Finally, the SMs and CAMs are used as the inputs of the conditional

random fields (CRFs) to generate the final segmentation maps of butterfly ob-

jects, thereby updating the saliency annotation and generating the bounding185

box.

Specifically, for the backbone network, it is the VGG16 without the fully con-

nected layers, with 13 convolutional layers and 5 pooling layers. It is structured

with five blocks of convolutional layers. The first two blocks respectively contain

2 convolutional layers, and the last three blocks include 3 convoliutional layers190

each. The pooling layer is performed with max-pooling to reduce the size of

feature maps, and it has no parameters to learn. Tab. 1 describes the structure

of the backbone network in detail.

There are two reasons for selecting VGG16. First, our task is butterfly

object detection. It is a task about pixel-level, paying more attention to low-195

level features. VGG16 has 16 layers and has some low-level features, which are

suitable for our task. Second, our dataset has about 2,000 butterfly images, and

VGG16 is enough for dealing with this dataset. There is no need to use a more

extensive backbone network, such as Inception, Resnet50, and Densenet121.

Besides, for this task, we pay more attention to the detection accuracy than200

the detection time. Therefore, we don’t use MobileNet128 [31] as the backbone

network either.

There are two reasons to combine the saliency map with the class activation

map. One is that saliency detection aims to detect the whole saliency region of

the input image, not a specific class of objects. Although it gives nearly accurate205

boundary information, the saliency map lacks category information, and usually,
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Table 1: The Structure of the backbone network.

No. Layer input conv output

1 conv1 1 224×224×3 64, 3×3 224×224×64

2 conv1 2 224×224×64 64,3×3 224×224×64

3 pooling2 224×224×64 2×2 112×112×64

4 conv2 1 112×112×64 128,3×3 112×112×128

5 conv2 2 112×112×128 128,3×3 112×112×128

6 pooling2 112×112×128 2×2 56×56×128

7 conv3 1 56×56×128 256,3×3 56×56×256

8 conv3 2 56×56×256 256,3×3 56×56×256

9 conv3 3 56×56×256 256,1×1 56×56×256

10 pooling3 56×56×256 2×2 28×28×256

11 conv4 1 28×28×256 512,3×3 28×28×512

12 conv4 2 28×28×512 512,3×3 28×28×512

13 conv4 3 28×28×512 512,1×1 28×28×512

14 pooling4 28×28×512 2×2 14×14×512

15 conv5 1 14×14×512 512,3×3 14×14×512

16 conv5 2 14×14×512 512,3×3 14×14×512

17 conv5 3 14×14×512 512,1×1 14×14×512

18 pooling5 14×14×512 2×2 7×7×512
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Figure 2: An example of an image and its saliency map.

Figure 3: An example of an image and its class activatin map.

the whole saliency region is more significant than that of the target region.

Figure 2 displays a butterfly image and its saliency map. The other is the class

activation map can locate the general position of the specific target. However,

it cannot identify the boundary information. Figure 3 depicts a butterfly image210

and its class activation map.

3.2. Target Location Network

For a butterfly image, usually, the butterfly is the saliency object. There-

fore, we use a saliency detection network, called holistically-nested edge detector

(HED) to locate it. As shown in Figure 1, the saliency detection network is215

Table 2: The Structure of side output branches.

No. Layer conv1 conv2 conv3

1 conv1 2 128,3× 3 128,3× 3 1,1× 1

2 conv2 2 128,3× 3 128,3× 3 1,1× 1

3 conv3 3 256,5× 5 256,5× 5 1,1× 1

4 conv4 3 256,5× 5 256,5× 5 1,1× 1

5 conv5 3 512,5× 5 512,5× 5 1,1× 1

6 pool5 512,7× 7 512,7× 7 1,1× 1

11
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Figure 4: Illustration of shortcut connection from branch conv3 3 to branch conv2 2.

accomplished primarily by the six side-output branches at the upper part of the

backbone network. Each branch includes three convolutional layers. Tab. 2 de-

tails the structures of these six side-output branches. This part of the network

achieves saliency detection by introducing the shortcut connections into the skip

structure of HED architecture. The architecture implements short connections220

and skips connections from the deeper side to the shallower side. Specifically, be-

tween the conv3 layer and the saliency map, some horizontal dotted lines across

different branches indicate the shortcut connections from the higher branches to

the lower branches. These connections utilize the features of the higher branches

to guide the lower ones to extract the most salient regions based on the cross-225

entropy (CE) loss. Figure 4 illustrates the shortcut connection from the conv3

layer of the branch conv3 3 to the conv3 layer of the branch conv2 2.

3.3. Target Recognition Network

For target recognition, it has two tasks. On the one hand, it must classify

the butterflies as accurately as possible. On the other hand, it needs to provide230

supplementary information for the saliency map generated by the target loca-

tion network to get a finer saliency map. Adversarial complementary learning

network uses two adversarial complementary parallel branches, one is trained

to learn the most distinguish region, and the other is forbidden to learn the

second determined region. By combining these two regions, we can get a class235

activation map of the butterfly image.

In our target recognition network, we use two branches of A and B to recog-
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nize the class labels of a butterfly image to deal with the intra-class variations

and between-class similarities. There are two reasons. First, different butter-

fly images have similar class activation maps, and the most distinguished region240

usually is not covering the whole regions of the butterfly. Second, the second dis-

tinguish region can provide supplementary information for the first distinguish

region. As shown in Figure 5, the recognition of butterfly types is accomplished

mainly by two adversarial complementary parallel branches, A and B, located

at the lower part of the backbone network. Each branch consists of two 3 × 3245

convolutions, a 1 × 1 convolution, a GAP layer, and the softmax layer. The

GAP layer takes the average of each convolutional feature map, and feds to

result vector into the softmax layer. There is no parameters to optimize in the

global average pooling layer, thus avoiding overfitting.

The network completes the recognition task while generating the CAMs.250

Among them, branch A utilizes the original feature maps, which can locate the

most discriminative region. As for branch B, the feature maps after erasing the

most discriminative part (zeroing the corresponding area) are used. Accord-

ingly, the branch is forced to find other features used for classification, which

eventually locates the second discriminative region. Through the adversarial255

learning between branches A and B, the network can identify a more holistic

area.

3.4. Objective Function Design

Let the original input image be X, the corresponding saliency truth label

be Z, and the class label be y. The rest of the details are given in subsequent260

subsections.

3.4.1. Saliency Detection Loss

In the saliency detection, there are a total of six side branches and one fusion

layer. For each side branch and fusion layer, the loss function with truth-value

needs to be calculated. Suppose that after the mth (m = 1, · · · , 6) side pass265
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through the short and skip connections, the activation value of the output layer

is Rm
side. Then, the loss Lm

side of this layer is

Lm
side = h(Z,Rm

side) (1)

where h(·, ·) denotes the CE loss function of dichotomous classification [32],

which is calculated as follows. Let the available data of N samples be given by{
Zi,R

m
side,i

}N
i=1

, where Zi is the ith sample of the saliency truth label Z and270

Rm
side,i is the ith sample of the output of the mth branch Rm

side. Then,

h
(
Z,Rm

side

)
= −

N∑
i=1

Zi logRm
side,i + (1−Zi) log

(
1−Rm

side,i

)
(2)

In both 1 and 2, N is the number of training samples. On the other hand,

the loss Lfuse of the fusion layer is given by

Lfuse = h

(
Z,

6∑
m=1

fmRm
side

)
(3)

where fm are the weights used during the weighted fusion. Ultimately, the total

14



loss LS of the saliency subtask is275

LS = Lfuse +

6∑
m=1

αmL
m
side (4)

in which αm are the weights for the side branch losses. We initialized fm as

0.167, and αm as 1 before training. During training, the fm is constant, and

αm is optimized by gradient descent.

3.4.2. Class Recognition Loss

In the recognition subtask, there are two parallel branches. Suppose that

the activation values for the output layers of these two branches are ya and yb,

respectively. Then, the losses of the two branches are

La = h̄ (y, ya) (5)

and

Lb = h̄ (y, yb) (6)

where h̄(·, ·) denotes the CE loss function of polytomous classification [33].

Hence,

h̄ (y, ya) = −
N∑
i=1

C∑
c=1

yca,i log yci (7)

where yci and yca,i are the cth category of the ith samples of y and ya, respectively,280

while N is the number of training samples and C is the number of categories.

The total loss of class recognition is given by

LC = βaLa + βbLb (8)

where βa and βb denote the weights for the two branch losses. We initialized βa

and βb as 1, and both of them are optimized by gradient descent.

3.4.3. Multi-task Loss285

The network includes two tasks, namely, saliency detection and class recog-

nition. Compared to the saliency detection task, the recognition task is less

15



complicated and easier to train. Thus, if the two subtasks are set with the same

weight, the entire training process will be biased towards the recognition task.

It isn’t easy to balance the two tasks by setting the appropriate weights a priori.290

To achieve a dynamic finding of the appropriate weight ratio for the multi-task

loss, we introduce uncertainty into the loss measurements of different tasks [21].

Specifically, the total loss of the network is defined by

Lfinal =
1

δ2s
LS +

1

δ2c
LC + log δs + log δc (9)

where δs and δc denote the noise parameters, which are learnable loss weights.

Learning of these two noise weights is based on gradient descent [34]. We ini-295

tialized δs and δc as 1, and both of them are optimized by gradient descent.

3.5. Training Process

All of the parameters of WBD-SM were tuned with the backpropagation

algorithm, i.e., the parameters of the backbone networks, and that of both the

target location network and the target recognition network.300

Algorithm 1 displays the algorithm flow of the WBD-SM training process.

In the Algorithm 1, WS and WC denote the weights of saliency detection and

recognition, respectively. In addition, fS represents the output result of the

saliency detection network, fC represents the output result of the recognition

network, and the symbol ‘⊕’ denotes the weighted fusion operation. Further-305

more, NSM is the number of training iterations, and we set NSM = 25 empiri-

cally.

3.6. Conditional Random Field

After obtaining both the saliency map and the class activation map, we can

fuse them to get a finer saliency map. Here, we use the conditional random field310

to modify its edge. The energy function of conditional random field is

E(x) =
∑
p

βp(xp) +
∑
p,q

βpq(xp, xq) (10)

where x stands for the predictive label of a pixel.
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Algorithm 1 WBD-SM training algorithm

Input: Training image X, saliency label M , class label y

1: while the SM is updated less than NSM do

2: if the training converges, then

3: Obtain the predicted SM MS ← fS(WS ,X)

4: Obtain the CAM MC ← fC(WC ,X)

5: Update the saliency label Mupdate = CRF (MS ⊕MC)

6: end if

7: end while

Before inputting to the conditional random field, we modify the fused saliency

map as the following operation.

βp(xp) = − log M̂p

τσ (xp)
(11)

where M̂p is the normalized value of each pixel xp, σ(·) denotes the sigmoid315

activation function, and τ represents a scale factor. The βpq(xp, xq) is defined

as

βpq(xp, xq) = µ (xp, xq)

[
λ1 exp

(
−‖φp − φq‖

2

2σ2
1

− ‖Vp − Vq‖
2

2σ2
2

)
+ λ2 exp

(
−‖φp − φq‖

2

2σ2
3

)]
(12)

where µ(xp, xq) = 0 if xp = xq , otherwise, µ(xp, xq) = 1 . φp and Vp respectively

sands for the position and pixel value of xp. λ1 , λ2 , σ1 , σ2 and σ3 are the

parameters of controlling the importance of the Gaussian kernel. We leverage320

the public tool, PyDenseCRF [35], to implement it. Here, because there are only

two classes to segment, we directly treat the computed posterior probability of

a pixel being the finer saliency map.

3.7. Inferential Process

To attain high model localization accuracy, the generation of a bounding325

box is needed. We input the image into the trained model to generate a fused

17



Saliency 

Map

Heat 

Map

UpSampling 

Same

Size

CRF

0.6

0.4

Input 

image

Finer 

Saliency 

Map

Binary 

Saliency 

Map

Detection 

Result

Figure 6: An example of generating the rectangular box.

SM. Then, a threshold is set to binarize the SM. Here, we choose 80% of the

maximum pixel value as the threshold to segment the SM. In the end, the

bounding box is set as a rectangular box covering the largest connected region.

Figure 6 displays the procedure of generating the rectangular box.330

4. Experimental results

To verify the performance of our proposed WBD-SM in butterfly object

detection, we create an ecological image dataset containing twenty types of

butterflies. Then, the recognition accuracy of our WBD-SM is compared with

that of the VGG16 [5]. Next, we compare the localization accuracy of the335

WBD-SM with those of the DSS [6], and ACoL [7]. Then, to demonstrate that

our weakly-supervised object detection model can achieve a competitive result

with the fully-supervised object detection models, the detection accuracy of

the WBD-SM is compared with those of the RefineDet [8], YOLOv3 [9], and

SSD [10]. Finally, we investigate the effects of the CAM acquisition method340

and threshold erasing on the achievable performance of our WBD-SM. All ex-

periments in this paper are implemented using the open-source, deep learning
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framework PyTorch. The experimental platform is an Nvidia Tesla K40c GPU

server, and the memory size during training is 16 GB. The server CPU model

is Intel R© Xeon R© E5-2643, while the operating system is Windows 7.345

4.1. Dataset

Through field photography and web crawlers, a butterfly object detection

dataset, “Butterfly20”, is created that contains twenty genera of butterflies. In

Figure 3, the example images of these twenty butterfly types are illustrated. For

each genus, the number of images is 101 or 102, and there is a total of 2, 026 but-350

terfly images. The range of the means of twenty classes is from 0.2484±0.4061 to

0.5306±0.4593, and the Pearson correlation coefficient between different classes

is from 0.9501 to 0.9972. The dataset is divided into a training set and a test

set with two ratios for each class: 8:2 and 7:3. For the 8:2 ratio, the training

set contains 1, 621 images, whereas the test set includes 405 images. For the 7:3355

ratio, the training set contains 1, 418 images, whereas the test set includes 608

images.

To perform the saliency detection task, the trained DSS is utilized to gener-

ate the butterfly image’s rough saliency label. The saliency labels are normalized

to within [0, 1] during the network input. To improve the model’s detection360

capability, the training set is augmented during training, which includes the hor-

izontal flip, vertical flip, and random alteration of image brightness, contrast,

and saturation.

4.2. Parameter Setting and Evaluation Indices

The WBD-SM is trained with the training Algorithm 1. Before the training,365

ImageNet [36] is used to pre-train the convolutional part of the initial VGG16.

The input image size is set to 256×256, and each mini-batch contains 16 images.

The learning rate is an exponentially decaying learning rate, whose initial value

is set to 0.0001, with a decay rate of 0.96. The Adam optimizer [37] is used,

and a total of 25 epochs are iterated.370
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(a) Baoris farri (b) Orsotriaena (c) Athyma Westwood (d) Speyeria Scudder

(e) Ariadne Horsfield (f) Aricia (g) Phengaris (h) Melanargia

(i) Stiboges Butler (j) Fabriciana Reuss (k) Moore (l) Erebia

(m) Pyrgus Hubner (n) Plebejus (o) Colias (p) Thymelicus

(q) Castalius (r) Gonepteryx (s) Aphantopus (t) Japonica

Figure 7: Images of the 20 butterflies
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The model performance is evaluated from two perspectives: the recogni-

tion accuracy and the location accuracy. Since our method is weakly supervised

learning, we realized the butterfly detection with only image-level labels. There-

fore, the location accuracy is relatively more important than the recognition

accuracy here.375

For the recognition accuracy, the top1 classification accuracy is adopted,

which is defined as the fraction of the test images for which the top class label

predicted (the one having the highest probability) is the same as the correct

label. On the other hand, the location accuracy (Loc Acc) is evaluated with

the frame per second (FPS) and the intersection over union (IoU). The FPS380

refers to the number of images processed per second. The larger the FPS is,

the faster the model is running. The IoU is the area of intersection between

computationally predicted and labeled bounding boxes divided by the area of

their union.

IoU means the area of intersection between predicted and ground-truth385

bounding boxes divided by the area of their union. It is computed as:

IoU =
area(P ) ∩ area(G)

area(P ) ∪ area(G)
, (13)

where P and G stand for the predicate and ground-truth bounding box, respec-

tively. Figure 8 shows its computing style.

We choose 0.5 as the threshold for several object detection methods, for

example, MDFN [38], Gated CNN [39], and STDnet-ST [40] . If the value390

of IoU is more than 0.5, we treat it to locate accurately; otherwise, locating

inaccurately. If the threshold is less than 0.5, the location accuracy will rise.

However, there will appear some inaccurate locations, even wrong locations. If

the threshold is greater than 0.5, the location accuracy will drop. Similarly, the

location boxes will be more accurate.395

4.3. Comparison of Recognition Results

To verify the effectiveness of the saliency detection in the WBD-SM network,

the WBD-SM recognition results are compared with the VGG16 recognition
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Figure 8: Computing style of the IoU.

(a) 8:2 division ratio (b) 7:3 division ratio

Figure 9: Comparison of the recognition accuracies attained by WBD-SM and VGG16 with

different dividing ratios.

22



results. For a fair comparison, the same optimizer, initial learning rate, decay

rate, and number of iterations are adopted for the two networks. Figure 9400

compares the recognition accuracies attained by the WBD-SM and VGG16 with

different splitting ratios.

As shown in Figure 9, we can get that:

(1) For the 8:2 division ratio, the recognition accuracy of the WBD-SM is always

higher than the VGG16 at the same number of iterations, except for epoch405

17. After convergence, the recognition accuracy of the WBD-SM reaches

89.4%, which is 2.6% higher than 86.8% achieved by the VGG16 on the test

data. Particular noteworthy is that the accuracy of the WBD-SM already

reaches 76.7% after the first epoch, while the accuracy of the VGG16 is a

mere 42.5% after the first epoch.410

(2) For the 7:3 division ratio, the recognition accuracy of WBD-SM shows the

same trend as 8:2 division ratio. After convergence, the recognition accuracy

of WBD-SM achieves 88.16%, which increases by 1.95% than 86.19% got by

VGG16 on the test data.

(3) This suggests that due to the integration of the saliency detection task in the415

WBD-SM, the model can achieve faster localization of areas conducive to

recognition, which also yields a slightly improved final acceptance accuracy.

4.4. Comparison of Target Location Results

To verify the superior localization performance of the WBD-SM, Table 3

compares the butterfly localization accuracy attained by our WBD-SM with420

Table 3: Localization accuracy results of three models with different splitting ratios

Methods Loc Acc(8:2) (%) Loc Acc (7:3) (%)

DSS [6] 86.30 83.78

ACoL [7] 83.89 77.01

WBD-SM 95.67 92.76
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Input Image DSS(7:3) DSS(8:2) ACoL(7:3) ACoL(8:2) WBD-SM(7:3) WBD-SM(8:2)

Figure 10: Comparison of three models’ output results with different dividing ratios.

those achieved by the DSS and ACoL, while Figure 10 illustrates the output

results from the three models.

According to the results of Table 3 and Figure 10, we can draw the following

observations:

(1) For the 8:2 division ratio, the WBD-SM attains a 95.67% localization accu-425

racy, which increases by 9.37% and 11.87% over the DSS (86.30%) and ACoL

(83.89%), respectively. For the 7:3 division ratio, the WBD-SM attains a

92.76% localization accuracy, which increases by 8.98% and 15.75% over

the DSS (83.78%) and ACoL (77.01%), respectively. This demonstrates the

superior localization ability of our proposed WBD-SM over well-established430

models.

(2) The WBD-SM highlights the locations of butterfly objects by fusing the

results of its two component networks. Consequently, unlike the other two

models, it can display butterfly objects but not the rest of the objects that

occupy salient locations.435

Table 4: Comparison of WBD-SM with fully-supervised detection models

Models Loc Acc (%) Speed (FPS)

RefineDet [8] 94.02 7.300

SSD [10] 95.69 8.403

YOLOv3 [9] 91.10 9.132

WBD-SM 95.67 14.345
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4.5. Detection Performance Comparison Between WBD-SM and Fully-supervised

Object Detection Networks

To verify the detection performance of the WBD-SM, we further compare

it with the fully-supervised RefineDet, SSD and YOLOv3. In Table 4, the

localization results of these four models under the 8:2 division ratio are com-440

pared. It can be seen that the WBD-SM attains a 95.67% localization accuracy,

which is 1.65% and 4.57% higher than the results obtained by the RefineDet

and YOLOv3, respectively, while it is only 0.02% lower than the result of the

SSD. Besides, our model got the speed of 14.345 FPS, higher than that all

of other models. This indicates that by combining SMs with adversarial eras-445

ing, the weakly supervised WBD-SM can yield a competitive result with fully

supervised state-of-the-art object detection models.

4.6. Effect of CAM Acquisition Method on the Localization Performance

To obtain accurate CAMs, the efficiency of CAMs generated by the top 5

prediction classes is first analyzed. In Figure 11, the CAMs generated by the top450

5 prediction classes under the 8:2 division ratio are compared are presented. It

is clear that the CAM generated by the higher-ranking prediction class displays

the target location better and is more reliable. Although the top1 CAM has the

highest reliability, the CAMs generated by other prediction classes may discover

the parts that the top1 CAM misses. Hence, they can serve as a supplement to455

the top1 CAM.

Next, we investigate the effects of various CAM acquisition methods on the

localization results by utilizing only CAM localization. In Table 4, four types

of CAM acquisition methods are compared, where ‘top1’ represents the CAM

generated by the first prediction class only, and ‘top5(0.5)’ represents the mean460

fusion of the CAMs generated by the top 5 prediction classes, while ‘top3(0.3)’

represents the mean fusion of the CAMs generated by the top 3 prediction

classes, and ‘top3(3:2:1)’ represents the weighted fusion of the top 3 classes

according to a weight ratio of 3:2:1 (0.57:0.28:0.14). From Table 5, we can draw

the following observations.465
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Input image top1 top2 top3 top4 top5

Figure 11: Top1 to top5 class activation maps

(1) As suggested by the results of Experiments 1 and 2, the fusion with too low-

rank CAMs leads to the reduction in localization accuracy. This is because

the lower the prediction class’s ranking, the less its reliability. Low-rank

CAMs leads to the reduction in localization accuracy. This is because the

low-rank CAMs stand for the wrong class label of the butterfly image, and470

therefore its CAM is wrong, focusing on different areas. This will provide

the wrong information for the saliency map, leading to the reduction in

localization accuracy.

(2) Comparison between Experiments 1 and 3 reveals that the fusion of the

CAMs up to the top 3 classes helps to enhance the localization accuracy.475

This is because apart from the best top1 class, the effective localization

regions are also found in the CAMs of top2 and top3 classes.

(3) Experiment 4 attains the highest localization accuracy by fusing the top 3

classes with higher-rank class principles having higher weight. The weight

ratio 3:2:1 (0.57:0.28:0.14) is found empirically.480

4.7. Effect of Erasing Threshold on the Localization Performance

During the generation of CAMs, the two adversarial branches, A and B,

learn different regions of interest. Branch A learns the most discriminative

area, whereas branch B learns the second discriminative region. The most dis-

criminative region is determined by the threshold ρ. A minimal threshold value485
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Table 5: Localization accuracy of different CAMs

Experiment number CAMs Location accuracy (%)

1 top1 78.13

2 top5 (0.5) 75.00

3 top3 (0.3) 83.89

4 top3 (3:2:1) 87.26

Input image ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9

Figure 12: Effect of erasing threshold ρ on class activation maps

makes the network discover additional regions, thereby bringing in noise. By

contrast, an overly large threshold prevents the network from learning sufficient

regions. Therefore, an appropriate threshold is essential for the two branches to

jointly learn a proper range of regions.

In Figure 12, the efficiencies of the generated CAMs are displayed at various490

thresholds under the 8:2 division ratio. As can be seen, when ρ = 0.5, the red

area also covers the regions other than the butterflies, which presents discon-

nected sites. With the increase of ρ, the red area is more connected, but its

coverage area decreases.

In Table 6, the effects of various erasing thresholds on the localization accu-495

racy are investigated. In Experiments 5-9, the SMs are obtained by fusing the

CAMs with the SMs after three iterations (SMP3). In Experiments 10-14, the

SMs are accepted only from the CAMs. Both sets of experiments demonstrate

that the highest localization accuracy is attainable at the threshold value of

ρ = 0.8. At thresholds lower or higher than this value, the localization accuracy500
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Table 6: Effect of Erasing Threshold on Localization Accuracy

Experiment number ρ Saliency Map Location accuracy (%)

5 0.5 CAMs+SMP3 94.47

6 0.6 CAMs+SMP3 94.71

7 0.7 CAMs+SMP3 95.43

8 0.8 CAMs+SMP3 95.67

9 0.9 CAMs+SMP3 94.47

10 0.5 CAMs 56.85

11 0.6 CAMs 68.99

12 0.7 CAMs 78.13

13 0.8 CAMs 87.98

14 0.9 CAMs 84.13

Table 7: Results of WBD-SM with different backbone networks

Models Location accuracy(%) Speed(FPS)

WBD-SM-Inception 92.60 9.132

WBD-SM-ResNet50 93.65 9.674

WBD-SM-DenseNet121 94.40 7.641

WBD-SM-MobileNet128 95.21 10.239

WBD-SM-VGG16 95.67 14.345
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all degrades to some extents. These findings are consistent with the results

visualized in Figure 7.

4.8. Effect of Backbone Networks on the Localization Performance

To investigate the backbone network on the performance of WBD-SM, the

location accuracy and speed are obtained from WBD-SM with different back-505

bone networks are analyzed. We equipped our model with different backbone

networks. They are Inception, ResNet50, DenseNet121, and MobileNet28 [? ],

and the corresponding models are represented as WBD-SM-Inception, WBD-

SM-ResNet50, WBD-SM-DenseNet121, WBD-SM-MobileNet128, and WBD-

SM-VGG16, respectively. Table 7 gives their results.510

From Table 7, we can get that WBD-SM-VGG16 gets the 95.67% location

accuracy, higher than that of all the other models. This indicates that VGG16

as the backbone network can combine the abstract and low-level features to

provide suitable information for the saliency map. Additionally, we can obtain

the speed of 14.345 FPS, faster than that all of the other models.515

4.9. Comparison on Alternate Dataset

To validate our method on other datasets, we compared our method with

RefinDet, SSD and YOLOv3 on the Oxford-IIIT Pet Dataset, which is avail-

able online, i.e., [www.robots.ox.ac.uk/ vgg/data/pets/]. The Oxford-IIIT Pet

dataset has 37 categories with roughly 200 images for each class. The images520

Table 8: Results of four models on the Oxford-IIIT Pet dataset.

Models Location Accuracy (%) Speed (FPS)

RefineDet 90.90 4.493

SSD 90.80 6.190

YOLOv3 94.80 7.857

WBD-SM 93.88 5.213
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have significant variations in scale, pose and lighting. All images have an as-

sociated ground truth annotation of bread, head ROI, and pixel-level trimap

segmentation. Table 8 listed the results of these four models on this dataset.

From Table 8, we can get that WBD-SM achieves the location accuracy of

93.88%, higher than that of both RefineDet and SSD models. Specifically, it525

improves by 2.78% and 3.08%, respectively. When comparing with YOLOv3,

it is lower by 0.92% than that of YOLOv3. Secondly, the speed of WBD-SM

is 5.213 FPS, faster than both RefineDet and SSD, while slower than that of

YOLOv3. This demonstrates that our WBD-SM model can achieve competi-

tive results of both location accuracy and speed on a larger dataset than fully530

supervised models.

5. Conclusions and Future Research

This paper has proposed a weakly supervised butterfly detection based on a

saliency map (WBD-SM). Our WBD-SM uses VGG16 without fully connected

layers to extract features of different scales, which serves as the backbone net-535

work. DSS is utilized to remove the SMs of butterfly images, and the CAMs

of butterfly images are derived via the ACoL network. Afterwards, the SMs

and CAMs are post-processed with conditional random fields, thereby obtain-

ing the refined SMs of butterfly objects. Finally, the locations of the butterflies

are acquired based on the SMs. The experimental results involving a butterfly540

dataset with 20 categories of butterfly have demonstrated that the proposed

WBD-SM considerably outperforms DSS and ACoL, in terms of localization ac-

curacy, while our WBD-SM achieves a higher recognition accuracy than that of

VGG16. The experiments have also shown that our weakly-supervised WBD-

SM yields competitive results with fully supervised state-of-the-art object de-545

tection models, including RefineDet, YOLOv3 and SSD, in terms of detection

performance.

Although the WBD-SM has achieved favourable results, many aspects of this

novel model require further studied. Given the inability of saliency detection
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to implement semantic and instance discrimination, the detection network pro-550

posed in the WBD-SM can only detect a single butterfly object in the images.

It is incapable of achieving a simultaneous distinction between multiple butter-

fly objects. Although this paper has obtained excellent localization results by

fusing SMs with CAMs, multiple repeated steps are needed to yield accurate

results. Additionally, the two subtasks remain highly independent of each other,555

and they are not integrated deeply during network training. In future research,

the network needs to be made adaptable to various scenarios. The association

between the two tasks should be explored further to develop a better way of

integrating them. There is also a need to collect bigger and comprehensive

butterfly datasets.560
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