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Abstract

The previous study of fuzzy support vector machines (FSVMs) provides a method to classify data with noises or

outliers by manually associating each data point with a fuzzy membership that can reflect their relative degrees as

meaningful data. In this paper, we introduce two factors in training data points, the confident factor and the trashy

factor, and automatically generate fuzzy memberships of training data points from a heuristic strategy by using these

two factors and a mapping function. We investigate and compare two strategies in the experiments and the results show

that the generalization error of FSVMs is comparable to other methods on benchmark datasets. The proposed ap-

proach for automatic setting of fuzzy memberships makes the FSVMs more applicable in reducing the effects of noises

or outliers.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The theory of support vector machines (SVMs),

which is based on the idea of structural risk min-

imization (SRM), is a new classification technique

and has drawn much attention on this topic in
recent years (Burges, 1998; Cortes and Vapnik,

1995; Vapnik, 1995, 1998). The good generaliza-
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tion ability of SVMs is achieved by finding a large

margin between two classes (Bartlett and Shawe-

Taylor, 1998; Shawe-Taylor and Bartlett, 1998). In

many applications, the theory of SVMs has been

shown to provide higher performance than tradi-

tional learning machines (Burges, 1998) and has
been introduced as powerful tools for solving

classification problems.

Since the optimal hyperplane obtained by the

SVM depends on only a small part of the data

points, it may become sensitive to noises or out-

liers in the training set (Boser et al., 1992; Zhang,

1999). To solve this problem, one approach is to

do some preprocessing on training data to remove
noises or outliers, and then use the remaining set
ed.

mail to: genelin@hpc.ee.ntu.edu.tw


1648 C.-f. Lin, S.-d. Wang / Pattern Recognition Letters 25 (2004) 1647–1656
to learn the decision function (Cao et al., 2003).

This method is hard to implement if we do not

have enough knowledge about noises or outliers.

In many real world applications, we are given a set

of training data without knowledge about noises

or outliers. There are some risks to remove the
meaningful data points as noises or outliers.

There are many discussions in this topic and

some of them show good performance. The theory

of leave-one-out SVMs (Weston, 1999) (LOO-

SVMs) is a modified version of SVMs. This ap-

proach differs from classical SVMs in that it is

based on the maximization of the margin, but

minimizes the expression given by the bound in an
attempt to minimize the leave-one-out error. No

free parameter makes this algorithm easy to use,

but it lacks the flexibility of tuning the relative

degree of outliers as meaningful data points. Its

generalization, the theory of adaptive margin

SVMs (AM-SVMs) (Weston and Herbrich, 2000),

uses a parameter k to adjust the margin for a given

learning problem. It improves the flexibility of
LOO-SVMs and shows better performance. The

experiments in both of them show the robustness

against outliers.

FSVMs solve this kind of problems by intro-

ducing the fuzzy memberships of data points. The

main advantage of FSVMs is that we can associate

a fuzzy membership to each data point such that

different data points can have different effects in
the learning of the separating hyperplane. We can

treat the noises or outliers as less importance and

let these points have lower fuzzy membership. It is

also based on the maximization of the margin like

the classical SVMs, but uses fuzzy memberships to

prevent noisy data points from making narrower

margin. This equips FSVMs with the ability to

train data with noises or outliers by setting lower
fuzzy memberships to the data points that are

considered as noises or outliers with higher prob-

ability.

The previous work of FSVMs (Lin and Wang,

2002) did not address the issue of automatic set-

ting of the fuzzy membership from the data points.

We need to assume a noise model of the training

data points, and then try and tune the fuzzy
membership of each data point in the training.

Without any knowledge of the distribution of data
points, it is hard to associate the fuzzy membership

to the data point.

In this paper, we design a noise model that

introduces two factors in training data points, the

confident factor and the trashy factor, and auto-

matically generates fuzzy memberships of training
data points from a heuristic strategy by using these

two factors and a mapping function. This model

is used to estimate the probability that the data

point is considered as noisy information and use

this probability to tune the fuzzy membership in

FSVMs. This simplifies the use of FSVMs in the

training of data points with noises or outliers. The

experiments show that the generalization error of
FSVMs is comparable to other methods on

benchmark datasets.

The rest of this paper is organized as follows. A

brief review of the architectures of SVMs and

FSVMs will be described in Section 2. In Section 3,

the detail training procedures and the noisy dis-

tribution model are explained. Two heuristic

strategies are also introduced in this section. The
experiments setup and results are presented in

Section 4. Some concluding remarks are given in

Section 5.
2. Fuzzy support vector machines

In this section, we describe SVMs and FSVMs
for the classification problems, and show the dif-

ference between SVMs and FSVMs.

2.1. Architecture of SVMs

Suppose we are given a set S of labeled training

points

ðy1; x1Þ; . . . ; ðyl; xlÞ: ð1Þ

Each training point xi 2 RN belongs to either of

two classes and is given a label yi 2 f�1; 1g for

i ¼ 1; . . . ; l. In most cases, the searching of a

suitable hyperplane in an input space is too

restrictive to be of practical use. A solution to this
situation is mapping the input space into a higher

dimension feature space and searching the optimal

hyperplane in this feature space. Let z ¼ uðxÞ de-
note the corresponding feature space vector with a
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mapping u from RN to a feature spaceZ. We wish

to find the hyperplane

w � zþ b ¼ 0; ð2Þ
defined by the pair ðw; bÞ, such that the inequality

yiðw � zi þ bÞP 1� ni; i ¼ 1; . . . ; l ð3Þ
holds, where ni P 0 is the slack variable for the

data point that cannot be fitted in the optimal

hyperplane.

The optimal hyperplane problem is then re-
graded as the solution to the problem

minimize
1

2
w � wþ C

Xl
i¼1

ni

subject to yiðw � zi þ bÞP 1� ni; i ¼ 1; . . . ; l;

ni P 0; i ¼ 1; . . . ; l;

ð4Þ
where C is a constant. The parameter C can be

regarded as a regularization parameter. This is the
only free parameter in the SVM formulation.

Tuning this parameter can make balance between

margin maximization and classification violation.

Detail discussions can be found in (Vapnik, 1998;

Pontil and Verri, 1997).

Searching the optimal hyperplane in (4) is a

quadratic programming (QP) problem, that can be

solved by constructing a Lagrangian and trans-
formed into the dual

maximize W ðaÞ ¼
Xl
i¼1

ai

� 1

2

Xl
i¼1

Xl
j¼1

aiajyiyjKðxi; xjÞ

subject to
Xl
i¼1

yiai ¼ 0;

06 ai 6C; i ¼ 1; . . . ; l;

ð5Þ
where a ¼ ða1; . . . ; alÞ is the vector of non-negative
Lagrange multipliers associated with the con-

straints (3), and Kð�; �Þ is called kernel that can
compute the dot product of the data points in

feature space Z, that is

Kðxi; xjÞ ¼ uðxiÞ � uðxjÞ ¼ zi � zj: ð6Þ
The Kuhn–Tucker theorem plays an important

role in the theory of SVM. According to this theo-

rem, the solution �ai of problem (5) satisfies the

equality

�aiðyið�w � zi þ �bÞ � 1þ �niÞ ¼ 0; i ¼ 1; . . . ; l; ð7Þ

ðC � �aiÞ�ni ¼ 0; i ¼ 1; . . . ; l: ð8Þ

From this equality it comes that the only non-zero
values �ai in Eq. (7) are those for that the con-

straints (3) are satisfied with the equality sign. The

point xi corresponding with �ai > 0 is called support

vector.

To construct the optimal hyperplane �w � zþ �b, it
follows that

�w ¼
Xl
i¼1

�aiyizi ð9Þ

and the scalar �b can be determined from the

Kuhn–Tucker conditions (7). Thus the optimal

hyperplane can be reformulated as

fHðxÞ ¼ w � zþ b ¼
Xl
i¼1

aiyiKðxi; xÞ þ b ð10Þ

and the decision function is

fDðxÞ ¼ signðfHðxÞÞ

¼ sign
Xl
i¼1

aiyiKðxi; xÞ
 

þ b

!
: ð11Þ
2.2. Architecture of FSVMs

In the previous study, we can easily check that

each training data point is considered as the same

before the optimizing process in SVMs. For the

purpose of tuning the importance of training data
points, we can assign a fuzzy membership to each

data point. Suppose we are given a set S of labeled

training points with associated fuzzy memberships

ðy1; x1; s1Þ; . . . ; ðyl; xl; slÞ: ð12Þ
Each training point xi 2 RN is given a label

yi 2 f�1; 1g and a fuzzy membership r6 si 6 1
with i ¼ 1; . . . ; l, and sufficient small r > 0, since

the data point with si ¼ 0 means nothing and can
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be just removed from training set without affecting

the result of optimization.

Since the fuzzy membership si is the attitude of

the corresponding point xi toward one class and

the parameter ni can be viewed as a measure of
error in the SVM, the term sini is then a measure of

error with different weighting. The optimal

hyperplane problem is then regraded as the solu-

tion to

minimize
1

2
w � wþ C

Xl
i¼1

sini

subject to yiðw � zi þ bÞP 1� ni; i ¼ 1; . . . ; l;

ni P 0; i ¼ 1; . . . ; l;

ð13Þ
where C is a constant. It is noted that a smaller si
reduces the effect of the parameter ni in problem

(13) such that the corresponding point xi is treated

as less important.

The problem (13) can be transformed into

maximize W ðaÞ ¼
Xl
i¼1

ai

� 1

2

Xl
i¼1

Xl
j¼1

aiajyiyjKðxi; xjÞ

subject to
Xl
i¼1

yiai ¼ 0;

06 ai 6 siC; i ¼ 1; . . . ; l

ð14Þ

and the Kuhn–Tucker conditions are defined as

�aiðyið�w � zi þ �bÞ � 1þ �niÞ ¼ 0; i ¼ 1; . . . ; l; ð15Þ

ðsiC � �aiÞ�ni ¼ 0; i ¼ 1; . . . ; l: ð16Þ
The only free parameter C in SVMs controls the

trade-off between the maximization of margin and

the amount of misclassifications. A larger C makes

the training of SVMs less misclassifications and

narrower margin. The decrease of C makes SVMs

ignore more training points and get a wider mar-
gin.

In FSVMs, we can set C to be a sufficient large

value. It is the same as SVMs that the system will

get narrower margin and allow less misclassifica-
tions if we set all si ¼ 1. With different value of

si, we can control the trade-off of the respective

training point xi in the system. A smaller value of

si makes the corresponding point xi less important

in the training. There is only one free parameter in

SVMs while the number of free parameters in
FSVMs is equivalent to the number of training

points.
3. Training algorithm for FSVMs

For efficient computation, the SVMs select the

least absolute value to estimate the error function,

that is
Pl

i¼1 ni, and use a regularization parameter

C to balance between the minimization of the error

function and the maximization of the margin of

the optimal hyperplane. There are still some
methods to estimate this error function. The LS-

SVMs (Suykens and Vandewalle, 1999; Chua,

2003) select the least square value and show the

differences in the constraints and optimization

processes. In the situations that the underlying

error probability distribution can be estimated, we

can use the maximum likelihood method to esti-

mate the error function. Let ni be i.i.d. with
probability density function peðnÞ, peðnÞ ¼ 0 if

n < 0. The optimal hyperplane problem (4) is then

modified as the solution to the problem

minimize
1

2
w � wþ C

Xl
i¼1

/ðniÞ

subject to yiðw � zi þ bÞP 1� ni; i ¼ 1; . . . ; l;

ni P 0; i ¼ 1; . . . ; l;

ð17Þ

where /ðnÞ ¼ � ln peðnÞ. Clearly, /ðnÞ / n when

peðnÞ / e�n, that reduces the problem (17) to (4).

Thus, with the different knowledge of the error

probability model, a variety of error functions can

be choosed and different optimal problems can be

generated.

However, there are some critical issues in this

kind of application. First, it is hard to implement
the training program since solving the optimal

hyperplane problem (17) is in general NP-complete

(Cortes and Vapnik, 1995). Second, the error
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estimator ni is related to the optimal hyperplane

(10) by

ni ¼
0; if fHðxiÞP 1;
1� fHðxiÞ; otherwise:

�
ð18Þ

Therefore, one needs to use the correct error

model in the optimization process, but one needs

to know the underlying function to estimate the
error model. In practice it is impossible to estimate

the error distribution reliably without a good

estimation of the underlying function. This is so

called a ‘‘catch 22’’ situation (Chen and Jain,

1994). Even though the probability density func-

tion peðnÞ is unknown for almost all applications.

In contrast, in cases that it is given the noise

distribution model of the data set. Let pxðxÞ be the
probability density function of the data point x
that is not a noise. For the data point xi with

higher value of pxðxiÞ, which means that this data

point has higher probability to be a real data, such

that we wish to get lower value of ni in the training

process. To achieve this purpose, we can modify

the error function as

Xl
i¼1

pxðxiÞni: ð19Þ

Hence, the optimal hyperplane problem (4) is then

modified as the solution to the problem

minimize
1

2
w � wþ C

Xl
i¼1

pxðxiÞni

subject to yiðw � zi þ bÞP 1� ni; i ¼ 1; . . . ; l;

ni P 0; i ¼ 1; . . . ; l:

ð20Þ

When the probability density function pxðxÞ in

problem (20) can be viewed as some kind of fuzzy

membership, we can simply replace si ¼ pxðxiÞ in
problem (13), such that we can solve problem (20)

by using the algorithm of FSVMs.
Fig. 1. The mapping between the probability density function

pxðxÞ and the heuristic function hðxÞ.
3.1. The noisy distribution model

There are many methods to training data using

FSVMs, depending on how much information

contains in the data set. If the data points are al-

ready associated with the fuzzy memberships, we
can just use this information in training FSVMs. If

it is given a noise distribution model of the data

set, we can set the fuzzy membership as the

probability of the data point that is not a noise, or

as a function of it. In other words, let pi be the

probability of the data point xi that is not a noise.
If there exists this kind of information in the

training data, we can just assign the value si ¼ pi
or si ¼ fpðpiÞ as the fuzzy membership of each data

point, and use these information to get the optimal

hyperplane in the training of FSVMs. Since almost

all applications lack this information, we need

some other methods to predict this probability.

Suppose we are given a heuristic function hðxÞ
that is highly relevant to the probability density

function pxðxÞ. For this assumption, we can build a

relationship between the probability density func-

tion pxðxÞ and the heuristic function hðxÞ, that is
defined as

pxðxÞ ¼

1; if hðxiÞ> hC;
r; if hðxiÞ< hT;

rþ ð1� rÞ hðxÞ � hT
hC � hT

� �d

; otherwise;

8>><
>>:

ð21Þ
where hC is the confident factor and hT is the tra-

shy factor. These two factors control the mapping

region between pxðxÞ and hðxÞ, and d is the
parameter that controls the degree of mapping

function as shown in Fig. 1.

The training points are divided into three re-

gions by the confident factor hC and trashy factor
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hT. If the data point, whose heuristic value hðxÞ is
bigger than the confident factor hC, lies in the

region of hðxÞ > hC, it can be viewed as valid

examples with high confidence and the fuzzy

membership is equal to 1. In contract, if the data

point, whose heuristic value hðxÞ is lower than the
trashy factor hT, lies in the region of hðxÞ < hT, it
can be highly thought as noisy data and the fuzzy

membership is assigned to lowest value r. The data
points in rest region are considered as noise with

different probabilities and can make different dis-

tributions in the training process. There is no

enough knowledge to choose proper function of

this mapping. For simplicity, the polynomial
function is selected in this mapping and the

parameter d is used to control the degree of

mapping.

Fig. 2. The value fKðx1; y1Þ is lower than fKðx2; y2Þ in the RBF

kernel.

3.2. The heuristic function

As for steps, discriminating between noises and

data, we propose two strategies: one is based on
kernel-target alignment and the other is using k-
NN.
3.2.1. Strategy of using kernel-target alignment

The idea of kernel-target alignment is intro-

duced in (Cristianini et al., 2002). Let fKðxi; yiÞ ¼Pl
j¼1 yiyjKðxi; xjÞ. The kernel-target alignment is

defined as

AKT ¼
Pl

i¼1 fKðxi; yiÞ

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl

i;j¼1 K
2ðxi; xjÞ

q : ð22Þ

This definition provides a method for selecting

kernel parameters and the experimental results
show that adapting the kernel to improve align-

ment on the training data enhances the alignment

on the test data, thus improved classification

accuracy.

In order to discover some relation between the

noise distribution and the data point, we simply

focus on the value fKðxi; yiÞ. Suppose Kðxi; xjÞ is a
kind of distance measure between data points xi

and xj in feature space F. For example, by using

the RBF kernel Kðxi; xjÞ ¼ e�ckxi�xjk2 , the data

points live on the surface of a hypersphere in
feature space F as shown in Fig. 2. Then

Kðxi; xjÞ ¼ uðxiÞ � uðxjÞ is the cosine of the angle

between uðxiÞ and uðxjÞ. For the outlier uðx1Þ and
the representative uðx2Þ, we have

fKðx1; y1Þ ¼
X
yi¼y1

Kðx1; xiÞ �
X
yi 6¼y1

Kðx1; xiÞ;

fKðx2; y2Þ ¼
X
yi¼y2

Kðx2; xiÞ �
X
yi 6¼y2

Kðx2; xiÞ:
ð23Þ

We can easily check the followingsX
yi¼y1

Kðx1; xiÞ <
X
yi¼y2

Kðx2; xiÞ;
X
yi 6¼y1

Kðx1; xiÞ >
X
yi 6¼y2

Kðx2; xiÞ;
ð24Þ

such that the value fKðx1; y1Þ is lower than
fKðx2; y2Þ.

We observe this situation and assume that the

data point xi with lower value of fKðxi; yiÞ can be

considered as outlier and should make less contri-

bution of the classification accuracy. Hence, we can

use the function fKðx; yÞ as a heuristic function hðxÞ.
This heuristic function assumes that a data

point will be considered as noise with high prob-
ability if this data point is more closer to the other

class than its class. For a more theoretic discus-

sion, let D�ðxÞ be the mean distance between the
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data point x and data points xi with yi ¼ �1,

which is defined as

D�ðxÞ ¼
1

l�

X
yi¼�1

kx� xik2; ð25Þ

where l� is the number of data points with yi ¼
�1, respectively. Then the value ykðDþðxkÞ�
D�ðxkÞÞ can be considered as an indication of

noise. For the same case in feature space, D�ðxÞ is
reformulated as

D�ðxÞ ¼
1

l�

X
yi¼�1

kuðxÞ � uðxiÞk2

¼ 1

l�

X
yi¼�1

ðKðx; xÞ � 2Kðx; xiÞ þ Kðxi; xiÞÞ

¼ Kðx; xÞ þ 1

l�

X
yi¼�1

ðKðxi; xiÞ � 2Kðx; xiÞÞ:

ð26Þ

Assume that lþ ’ l�, we can replace l� by l=2, and
the value of Kðx; xÞ is 1 for the RBF kernel. Then

ykðDþðxkÞ � D�ðxkÞÞ ¼ yk
2

l

X
yi¼1

ð1
 

� 2Kðxk; xiÞÞ

� 2

l

X
yi¼�1

ð1� 2Kðxk; xiÞÞ
!

¼ 4yk
l

X
i

�yiKðxk; xiÞ

¼ � 4

l
fKðxk; ykÞ; ð27Þ

which is reduced to the heuristic function

fKðxk; ykÞ.

3.2.2. Strategy of using k-NN

For each data point xi, we can find a set Sk
i that

consists of k nearest neighbors of xi. Let ni be the

number of data points in the set Sk
i that the class

label is the same as the class label of data point xi.

It is reasonable to assume that the data point with

lower value of ni is more probable as noisy data. It
is trivial to select the heuristic function hðxiÞ ¼ ni.
But for the data points that are near the margin of

two classes, the value ni of these points may be

lower. It will get poor performance if we set these

data points with lower fuzzy memberships. In
order to avoid this situation, the confident factor

hC, which controls the threshold of which data

point needs to reduce its fuzzy membership, will be

carefully chosen.

3.3. The overall procedure

There is no explicit way to solve the problem of

choosing parameters for SVMs. The use of a gra-

dient descent algorithm over the set of parameters

by minimizing some estimates of the generalization

error of SVMs is discussed in (Chapelle et al.,

2002). On the other way, the exhaustive search is

the popular method to choose the parameters, but
it becomes intractable in this application as num-

ber of parameters is growing.

In order to select parameters in this kind of

problem, we divide the training procedure into two

main parts and propose the following procedures:

(1) Use the original algorithm of SVMs to get the

optimal kernel parameters and the regulariza-
tion parameter C.

(2) Fix the kernel parameters and the regulariza-

tion parameter C, that are got in the previous

procedure, and find the other parameters in

FSVMs.

(a) Define the heuristic function hðxÞ.
(b) Use exhaustive search to choose the confi-

dent factor hC, the trashy factor hT, the
mapping degree d, and the fuzzy member-

ship lower bound r.
4. Experiments

In these simulations, we use the RBF kernel as

Kðxi; xjÞ ¼ e�ckxi�xjk2 : ð28Þ
We conducted computer simulations of SVMs and

FSVMs using the same data sets as in (R€atsch
et al., 2001). Each data set is split into 100 sample

sets of training and test sets. 1 For each sample set,

http://ida.first.gmd.de/~raetsch/data/benchmarks.htm
http://ida.first.gmd.de/~raetsch/data/benchmarks.htm
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the test set is independent of training set. For each

data set, we train and test the first 5 sample sets

iteratively to find the parameters of the best

average test error. Then we use these parameters to

train and test the whole sample sets iteratively and
get the average test error. Since there are more

parameters than the original algorithm of SVMs,

we use two procedures to find the parameters as

described in the previous section. In the first pro-

cedure, we search the kernel parameters and C
using the original algorithm of SVMs. In the sec-

ond procedure, we fix the kernel parameters and C
that are found in the first stage, and search the
parameters of the fuzzy membership mapping

function.

To find the parameters of strategy using kernel-

target alignment, we first fix hC ¼ maxi fKðxi; yiÞ
and hT ¼ mini fKðxi; yiÞ, and perform a two-

dimensional search of parameters r and d. The

value of r is chosen from 0.1 to 0.9 step by 0.1. For

some case, we also compare the result of r ¼ 0:01.
The value of d is chosen from 2�8 to 28 multiply by

2. Then, we fix r and d, and perform a two-

dimensional search of parameters hC and hT. The
value of hC is chosen such that 0%, 10%, 20%,

30%, 40%, and 50% of data points have the value

of fuzzy membership as 1. The value of hT is

chosen such that 0%, 10%, 20%, 30%, 40%, and

50% of data points have the value of fuzzy mem-
bership as r.
Table 1

The parameters used in SVMs, FSVMs using strategy of kernel-target

13 datasets

SVMs KT

C c r d

Banana 316.2 1 0.01 64

B. Cancer 15.19 0.02 0.5 8

Diabetes 1 0.05 0.7 8

German 3.162 0.01818 0.6 8

Heart 3.162 0.00833 0.3 16

Image 500 0.03333 0.3 2�3

Ringnorm 1e+9 0.1 – –

F. Solar 1.023 0.03333 0.5 2�4

Splice 1000 0.14286 – –

Thyroid 10 0.33333 0.7 2�6

Titanic 100,000 0.5 0.5 32

Twonorm 3.162 0.025 0.01 128

Waveform 1 0.05 0.01 2�8
To find the parameters of strategy using k-NN,

we just perform a two-dimensional search of

parameters r and k. We fix the value hC ¼ k=2,
hT ¼ 0, and d ¼ 1, since we do not find much

gain or loss when we choose other values of these

two parameters such that we skip searching for
saving time. The value of r is chosen from 0.1 to

0.9 stepped by 0.1. For some case, we also com-

pare the result of r ¼ 0:01. The value of k is

chosen from 21 to 28 multiplied by 2. Table 1 lists

the parameters after our optimization in the

simulations. For some data sets, we cannot find

any parameters that can improve the perfor-

mance of SVMs such that we left blank in this
table.

Table 2 shows the results of our simulations.

For comparison with SVMs, FSVMs with kernel-

target alignment perform better in 9 data sets, and

FSVMs with k-NN perform better in 5 data sets.

By checking the average training error of SVMs in

each data set, we find that FSVMs perform well in

the data set when the average training error is
high. These results show that our algorithm can

improve the performance of SVMs when the data

set contains noisy data.

We also list in Table 3 the other results for

single RBF classifier (RBF), AdaBoost (AB), and

regularized AdaBoost (ABR), that are obtained

from R€atsch et al. (2001), and the results for LOO-

SVM, that are obtained from Weston and Herb-
alignment (KT), and FSVMs using strategy of k-NN (k-NN) on

k-NN

UB (%) LB (%) r k

10 0 0.1 32

20 0 0.01 64

10 0 0.6 4

20 30 0.8 4

30 30 0.2 32

10 0 – –

– – – –

20 0 0.3 256

– – – –

0 0 – –

30 0 0.2 128

10 0 0.01 128

50 0 – –



Table 3

Comparison of test error of Single RBF classifier, AdaBoost (AB), regularized AdaBoost (ABR), SVMs, LOO-SVMs (LOOS), FSVMs

using strategy of kernel-target alignment (KT), and FSVMs using strategy of k-NN (k-NN) on 13 datasets

RBF AB ABR SVMs LOOS KT k-NN

Banana 10.8 12.3 10.9 11.5 10.6 10.4 11.4

B. Cancer 27.6 30.4 26.5 26.0 26.3 25.3 25.2

Diabetes 24.3 26.5 23.8 23.5 23.4 23.3 23.5

German 24.7 27.5 24.3 23.6 N/A 23.3 23.6

Heart 17.6 20.3 16.5 16.0 16.1 15.2 15.5

Image 3.3 2.7 2.7 3.0 N/A 2.9 –

Ringnorm 1.7 1.9 1.6 1.7 N/A – –

F. Solar 34.4 35.7 34.2 32.4 N/A 32.4 32.4

Splice 10.0 10.1 9.5 10.9 N/A – –

Thyroid 4.5 4.4 4.6 4.8 5.0 4.7 –

Titanic 23.3 22.6 22.6 22.4 22.7 22.3 22.3

Twonorm 2.9 3.0 2.7 3.0 N/A 2.4 2.9

Waveform 10.7 10.8 9.8 9.9 N/A 9.9 –

Table 2

The average training error of SVMs (TR), and the test error of SVMs, FSVMs using strategy of kernel-target alignment (KT), and

FSVMs using strategy of k-NN (k-NN) on 13 datasets

TR SVMs KT k-NN

Banana 6.7 11.5± 0.7 10.4± 0.5 11.4± 0.6

B. Cancer 18.3 26.0± 4.7 25.3± 4.4 25.2± 4.1

Diabetes 19.4 23.5± 1.7 23.3± 1.7 23.5± 1.7

German 16.2 23.6± 2.1 23.3± 2.3 23.6± 2.1

Heart 12.8 16.0± 3.3 15.2± 3.1 15.5± 3.4

Image 1.3 3.0 ± 0.6 2.9± 0.7 –

Ringnorm 0.0 1.7 ± 0.1 – –

F. Solar 32.6 32.4± 1.8 32.4± 1.8 32.4± 1.8

Splice 0.0 10.9± 0.7 – –

Thyroid 0.4 4.8 ± 2.2 4.7± 2.3 –

Titanic 19.6 22.4± 1.0 22.3± 0.9 22.3± 1.1

Twonorm 0.4 3.0 ± 0.2 2.4± 0.1 2.9± 0.2

Waveform 3.5 9.9± 0.4 9.9± 0.4 –
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rich (2000). We can easily check that FSVMs
perform better in the data set with noises.
5. Conclusions

In this paper, we propose training procedures

for FSVMs, and describe two strategies for setting

fuzzy membership in FSVMs. It makes FSVMs
more feasible in the application of reducing the

effects of noises or outliers. The experiments show

that the performance is better in the applications

with the noisy data.

We also compare the two strategies for setting

the fuzzy membership in FSVMs. The usage of
FSVMs with kernel-target alignment is more
complicated since there exist many parameters. It

costs more time to find the optimal parameters in

the training process but the performance is better.

FSVMs with k-NN is more simple to use and the

results are close to the previous strategy. How to

select a strategy for FSVMs is just like how to

select a good kernel for SVMs. We still have not

enough information to show that in which case a
special strategy works.

The training time of FSVMs is more than the

original SVMs due to the extra parameters. For

the most cases, we do more effort to search the

kernel parameters and C, which are needed for any

SVMs, for the best result, but we spend less time to
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find the extra parameters of FSVMs in order to

improve the previous result.
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