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Matching two clusters of points extracted from satellite images

Patrice Navy *, Vincent Page, Enguerran Grandchamp, Jacky Desachy

GRIMAAG—Universite´ des Antilles et de la Guyane, Campus de Fouillole, B.P. 592, 97157 Pointe `a Pitre Cedex, French West Indies, France 
Image matching is a stage one performs as soon as one has two images of the same scene, taken from two different points of view.
Matching these images aims at finding the mathematical transformation that enables passing from any point of the first one to the cor-
responding point in the other. As this study is related to satellite images, we show that the geometrical transformation can be approx-
imated by a homography. Furthermore we want to match two clusters of points with no information of radiometry. Therefore, we have
to guess the right parameters for this homography, by minimizing an appropriate cost function we define here. Then, the topography of
the cost function is our main concern for the minimisation process. If looking for the right mathematical parameters seems the most
natural way, we show that in this case the cost function has ‘‘chaotic’’ variations, so we need a complex technique for the minimization.
To avoid this, we suggest guessing the parameters determining the conditions of the snapshot. Thus, we give the expression of the homo-
graphy from these ‘‘physical parameters’’ and show that the topography of the cost function gets smoother. Thus the minimization
process gets simpler.

Keywords: Clusters of points; Homography; Image matching
1. Introduction

As we would like to match satellite images captured un-
der different conditions, we have to say something about
these differences. They concern parameters such as the
camera angle, the resolution of each image, the position
of the satellites, the center of each scene, but also the nature
of the sensors.

These considerations lead us to search a new approach
to match these images, as the majority of existing works
consists of extracting characteristic points in each image
and finding automatically or not a corresponding point
in the second image, as for example in (Groth, 1986; Kahl
et al., 1980; Ranade and Rosenfeld, 1980), but which does
not take account of the projective deformations. In others
examples, Schmid and Mohr (1997), Lowe (1999), Linde-
berg (1998), Tuytelaars and Gool (1999), base the corre-
spondence on the color of the points. Here the different
* Corresponding author. Fax: +33 5 9093 8698.
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nature of the sensors implies that a point may have two dif-
ferent colors in each image. Thus the problem is to match
two clusters of points with no knowledge of the correspon-
dence between a point in one cluster and a point in the
other. This makes the matching harder than those of tradi-
tional approaches, thus we will use the two following
hypotheses. The first is that the scene viewed from the sa-
tellite can be approximated by a planar scene. The second
hypothesis is that the sensor catch the scene with a pinhole
model. So, it can be shown that there is an application link-
ing the two views of a scene taken under two different
angles (Pritchett and Zisserman, 1998; Chasles, 1852). Such
an application is a homography (and depends upon nine
parameters).

Let us consider a cluster of the same characteristic
points in each image. We then look for the homography
that transforms the first cluster of points into the second.
In other words, we have to guess the right homography.
This can be achieved by minimizing a cost function that
represents the quality of the matching between the two
clusters.
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Section 2 deals with the definition of the homography
and proposes a cost function adapted to our search. In Sec-
tion 3, we will study the topography of the cost function as
these nine parameters vary. As this topography appears to
be ‘‘chaotic’’, one might choose to use a minimisation pro-
cess able to find the global minimum of the cost function.
However, we would like to find a solution in a low compu-
tational time.

Thus, the idea is the following: let us suppose we know
the exact physical parameters of the capture of both
images. We should be able to guess the right homography
from these parameters. Moreover, let us imagine that we
move one of the satellites slightly. The image taken from
this satellite will be very close to the original. Therefore
the value of the cost function should be close to those ob-
tained with the original image. In other words, the topo-
graphy of the cost function should be smooth at least
around the solution. This will simplify the minimization
of the cost function. Another reason advocated for the
use of these physical parameters: satellite images are sold
with a lot of information about the capture of the image
and many of the physical parameters can be deduced from
this information. Even if these pieces of information are
not error-free, they constitute a good starting point for
the minimization process.

Section 4 specifies the definition of these physical
parameters, and shows how to calculate the homography
from these parameters. In Section 5, we show that, as
claimed before, the topography of the cost function is
smoother than in the straight method. Finally Section 6
shows an example of a minimization process. We conclude
in Section 7.
2. Homography and cost function

As our images are captured from satellites of high alti-
tude, we can make the approximation that these scenes
could have a planar geometry. Moreover, even if the satel-
lite sensor catches an image line after line, while it ad-
vances, we work here under the hypothesis of a pinhole
model. An interesting extension of this work would be to
use a more appropriate model (and working line by line).
Thus, the two images are the projection of a planar ground
scene from different angles and, following Chasles (1852),
we claim that the application transforming the ground
scene to an image is a homography. As the inverse trans-
formation (from an image to the scene) in a projective
space is a homography, it can be shown that the transfor-
mation between the two images is also a planar homo-
graphy. A planar homography is a function expressed
as follows:

x0

y0

� �
¼ hðx; yÞ

¼ h11 � xþ h12 � y þ h13
h31 � xþ h32 � y þ h33

;
h21 � xþ h22 � y þ h23
h31 � xþ h32 � y þ h33

� �
; ð1Þ
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where x, y give the position of a point P in the first image,
x 0, y 0 give the position of P 0, the image of P through the
homography h characterized by the coefficients hij. hij are
real coefficients.

As we do not want our matching process to be sensor-
dependant, we will suppose here that we have been able
to extract the same structural informations (points, lines,
regions) within each image. In this article, we will focus
on characteristic points. The automatic extraction of these
points is currently investigated and for further information
one might refer to existing works as Schmid and Mohr
(1997), Harris and Stephens (1988) and Dufournaud
et al. (2000). Then our problem is to find the correct h that
will transform a cluster of geometrical points into another.

Let us find a cost function to define a ‘‘correct homo-
graphy’’: If h is the solution we are looking for, for each
Pi in cluster C, there is a point P 0

j in cluster C 0 which verifies
P 0
j ¼ hðP iÞ. Thus the cost function for h should be zero. For

another homography, close to the solution, the image of Pi

should be close to P 0
j. Thus we can guess that each Pi is

transformed into its nearest neighbor in cluster C 0. The
ability for a homography to transform C into C 0 might
be given by the following cost function:

CðhÞ ¼
X
i

min
j

dðhðP iÞ; P 0
jÞ; ð2Þ

where Pi and P 0
j are the points in the first and the second

clusters, h is the homography and d is a distance function.
Here we will consider an Euclidean distance.

Nevertheless, the main drawback of this cost function is
that a homography projecting all the points of the first
cluster close to a single point in the second cluster appears
to have a very low cost. Hence, we will modify our cost
function to obtain a more symmetrical behavior. More-
over, we normalize this cost function by the number of
points in each cluster so that the cost function is defined by

CðhÞ ¼ 1

N

XN
i

min
j

dðhðP iÞ; P 0
jÞ
!

þ 1

N 0

XN 0

j

min
i

dðh�1ðP 0
jÞ; P iÞ

!
. ð3Þ

One can interpret the value of the cost function as the aver-
age error (in pixels) made on each point when trying to
match it with its correspondent in the other cluster. Note
that the cost function does not depend of the way the
homography is expressed.

The two following sections deal with two expressions of
the homography, that strongly influence the difficulty of
the minimization process.
3. Straight on minimization method

One might think that the best method is to look directly
for the correct parameters of the homography (i.e. the hij).
Let us illustrate this on different examples. At first, let us



define the homography that links the different images. For
convenience reasons, the homography will be the same in
each case and its parameters (1) are defined as follows:

ðhijÞ16i;j63 ¼
0:248587 1:779159 2:327801

�0:917194 �0:090371 6:597157

�0:000009 �0:000023 1:000021

0
B@

1
CA.

ð4Þ
Then, we use a couple of clusters ðC1;C

0
1Þ, such as

C0
1 ¼ hðC1Þ. It is presented in Fig. 1.
Fig. 1. A couple of clusters with 100 points. The left cluster is C1 and the r
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Now, we can study the topography of the cost function
for each cluster around the solution h. In each curve, all the
hij except one (the searched parameter) are equal to those
of the solution. The searched parameter varies linearly
and for each value of this search parameter, the cost func-
tion is computed. The results are presented for the couple
of cluster of Fig. 2. For convenience, we just present the
evolution of the cost as a function of h21, h22, h31.

It appears that the minimization process will face differ-
ent troubles. If the curves for h21 and h22 are smooth (as are
those of h11 and h12 in non-presented tests), the curve for
ight cluster is C0
1. Visually a 90� left rotation helps matching C1 to C0

1.
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Fig. 3. Basis of the ith ground scene ðP i;~i;~j;~kÞ and basis of the ith satellite

ðSi;~i0;~j0; ~k
0Þ.
h31 present many peaks and many local minima. This is
explained by the fact that the last two parameters are in-
volved in divisions in the definition of the homography
(1), thus there are at least as many peaks as there are char-
acteristic points in the clusters.

Moreover we are looking for a solution in a 9-dimen-
sional space of merely mathematical parameters with no
idea of the bounds of this space. As one might note in
(4) the magnitude of the values of each parameter are very
different, thus we have no idea of the accuracy required to
explore the space of the solutions. Another drawback is
that we have no idea of what could be a correct starting
point for the minimization process.

As a conclusion, one homography compared with an-
other, close in the space of the mathematical parameters
will have a very different behavior. In other words, two
neighbors in the space of the mathematical parameters will
have a very different cost when they apply to transform a
cluster into the other. Then, either we choose a complex
minimization process, able to find the global minimum of
the cost function, either we try to express the homography
as a function of parameters that have an influence which
can be more easily explained physically.

4. Physical parameters of the homography

Satellite images are provided with technical data con-
cessing the satellite and the captured scene. We will make
use of these data to express the homography differently.

In stereovision, many researchers use the projective for-
malism and the pinhole model is used to describe the cam-
era behavior (Couapel, 1994; Zhang, 1993, 1996; Longuet-
Higgins, 1981; Hartley, 1995). Even if this model is more
adapted to the camera images than for images captured
from satellite sensors (Hartley, 1997), we will follow them
in this paper to express the homography starting from
the data provided with the satellite images.

For the sake of simplicity, let us focus on the ground im-
age and the first satellite. The data which we will use will be
as follows (cf. Fig. 3):

• S1: the position of the satellite,
• P1: the position of the target point,
• q1: the P1S1 distance,
• a1: the local azimut,
• b1: the elevation,
• c1: an angle orientation.

Our main goal is to explain how a planar scene is turned
into an image to explain these parameters. At first, we will
use two bases of the 3D-space. The first is the ðO;~i;~j;~kÞ
basis of the ground scene. The second is the ðS1;~i0;~j0; ~k

0Þ
basis of the satellite with:

• ~k0 is pointed to P1,
• ~iproj is the normalized vector of the line of the projection

of~i by ~k on the normal plane to ~k0,
4

• ~jproj has such a value that the ð ~iproj; ~jproj;
~k0Þ basis is a

right basis,
• ~i0 is the rotation of ~iproj with c1 angle around the ~k0 axis,

• ~j0 is the rotation of ~jproj with c1 angle around the ~k0 axis.

S1 is located from P1 as follows: Ssol is the orthogonal
projection of S1 on the ground. a1 is the angle between~i
and ~P 1Ssol, b1 is the angle between ~P 1Ssol and ~P 1S1 and q1
is the distance P1S1.

From this data, one can thus deduce N and N�1, the
transition matrix between ðS1;~i0;~j0; ~k

0Þ and ðP 1;~i;~j;~kÞ, and
respectively its inverse. As the ground scene is assimilated
to a plan of equation z = 0 in the ground scene basis, the
coordinates of a point of the ground scene are [x,y, 0]t.
The coordinates [x 0,y 0,z 0]t of the same point in the basis
ðS1;~i0;~j0; ~k

0Þ can be expressed as follows:

x0

y 0

z0

0
B@

1
CA ¼ N�1 �

x

y

0

0
B@

1
CA� N�1

S1x

S1y

S1z

0
B@

1
CA; ð5Þ

where ½S1x ; S1y ; S1z �
t are the coordinates of S1 in the basis

ðP 1;~i;~j;~kÞ.
Then, any point of the scene is projected into the image

using of a projection matrix A. This matrix is called the
calibration matrix, and its form depends on the camera
model. In this article, we use the well-known pinhole model
(Zhang et al., 1994). It can be easily shown that the coor-
dinates of the projection of the ground point in the image
are obtained by (6).

Now let us seek the form of the matrix of calibration A
following Zhang et al. (1994). It depends on the resolution
(the scale between the two bases), on the distance between
the center of the image and the optical center and the shape
of the pixels.

x00

y 00

z00

0
B@

1
CA ¼ A � N�1 �

x

y

0

0
B@

1
CA� N�1

S1x

S1y

S1z

0
B@

1
CA

2
64

3
75. ð6Þ



Fig. 4. Image basis ðO1;~i0;~j0Þ and pixel basis ðC1; ~i00; ~j00Þ.
Let us name, res1 the resolution; a1, the complementary of
the angle between the two sides of a pixel. One should note
that we also need to differentiate O1 (the intersection be-
tween the optical axe and the image) and C1 (center of
the image whose coordinates are ½c1x ; c1y �

t in the basis asso-
ciated with O1) (Fig. 4).

Straight from these considerations, we obtain the form
of the matrix of calibration:

A ¼

q1

res1
� q1 � tanðh1Þ

res1
c1x

0
q1

res1 � cosðh1Þ
c1y

0 0 1

0
BBBB@

1
CCCCA. ð7Þ

The last transform is to go back from the projective
space to the image space (non-linear part of the homogra-
phy) (cf. (8))

x000 ¼ x00

z00
;

y 000 ¼ y00

z00
.

8>><
>>: ð8Þ

At this point, we can calculate the transformation between
the ground scene and a satellite image. Let us give four
points on the ground considering three of these points
are never aligned. Let us give the transformation, in the
first image and in the second image, of these four points.
Generally, in each image, three of the four points are never
aligned. With these eight points, we can calculate the
homography between the two images (cf. Berger, 1978).

We face with two groups of parameters:

• The intrinsic parameters, related to the optical system,
which are the resi resolution, the hi angle formed by
the sides of a pixel and the ðcix ; ciy Þ position of the image
center compared to the optical center.

• The extrinsic parameters, associated with the scene, are
the position of the center of the scenes (the target point)
Pi: ðP ix ; P iy Þ and the position of the satellite, determined
by the ai local azimut; the bi elevation, the qi distance
and a ci angle determining the image orientation.
5

At end, we have for each image four intrinsic parameters
and six extrinsic parameters. If one supposes that the
intrinsic parameters are known, we obtain 12 parameters
for the homography instead of the nine mathematical coef-
ficients. If the intrinsic parameters are unknown, we have
20 parameters that we call the physical parameters of the
homography between the two images.

5. Topography of the cost function in the physical

parameter space

As in Section 3, the clusters used to carry on the exper-
iments are those given in Fig. 1. The homography that
transforms these clusters into their correspondent is the
one of (4). One can note that this homography can be
expressed in terms of the physical parameters described
in the previous section, as follows:

• Conditions of capture for image 1:
– P1 = (0,0) (m); q1 = 800 km;
a1 = 1.57 rad; b1 = 0.55 rad; c1 = 0 rad;
– res1 = 20 m/pixel; h1 = 0.1 rad; C1 = (1,1) (pixel).
• Conditions of capture for image 2:
– P2 = (100,�100) (m); q2 = 800 km;
a2 = 0.8 rad; b2 = 1 rad; c2 = 1.57 rad;
– res2 = 20 m/pixel; h2 = 0.1 rad; C2 = (1,1) (pixel)
As for Fig. 2, all the parameters except one are fixed
to the true value, and the free parameter varies linearly.
For each value of the parameters (i.e. a tested homogra-
phy), a value of the cost function is measured to estimate
the quality of the tested homography. The results are
shown in Fig. 5, respectively for the clusters presented in
Fig. 1.

Many tests have been conducted on the topography of
the cost function when the homography is expressed by
its physical parameters. All these tests show a smooth
topography, that makes us think the minimization process
is no longer a tough problem.

Furthermore, the technical data supplied with satellite
images gives us an estimation of the homography. In other
words, even if these datas are not error-free, it provides us
with a good starting point to find the homography between
the two clusters. During the minimization, we also know
what accuracy is relevant for each parameter as these
parameters have a physical meaning. This is helpful when
trying to explore a big space of solutions (at least a 12-
dimensional space).

Finally, to sum up these conclusions, it appears
that mathematical parameters are the best way (the
shortest) to characterize a homography. Nevertheless,
the minimization process would have to find a path to
the solution, in the space of the mathematical parameters.
Along this path, each tested homography should have a
behavior close to that of the other tested homographies.
This cannot be done by moving linearly the mathemati-
cal parameters. The expression of the homography as a
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function of the physical parameters provides us with this
path. The price to pay is a rise in the number of
parameters.

6. Minimization process

As one can observe in Fig. 2(c), minimizing the cost
function within the mathematical parameters space would
be a computation intensive task, due to the numerous local
minima. In the physical parameter space, the cost function
appears to be smoother (cf. Fig. 5), enabling a simpler min-
imization method such as a gradient minimization. How-
ever, one can note that there are still some local minima
in the cost function topography. For example, as soon as
a homography performs a false matching between two
points, there is obviously a local minimum around this
homography.

To face these local minimas, we chose to use the follow-
ing initialization method: Let us start from an initial
hypothesis for h. At each iteration, we generate a random
deformation of the physical parameters from which we cal-
culate a new expression of h and evaluate its cost. If the
cost decreases, the deformation is accepted and the whole
process is repeated until the cost function reaches an arbi-
trary chosen value of 0.25. As seen in Section 2, this means
Fig. 6. Matching the two clusters. The fullcircle set is C1 and the square set i
minimization process and (b) the same clusters after the minimization process

6

that the average error when matching a point of C1 into
another in C0

1 is 0.25 pixel.
As the random deformation can be restricted to a cer-

tain neighbour (in our case, the deformation is randomly
chosen in a [�1,1] interval for the Px, Py and q parameters
and in a [�p/10,p/10] interval for the angles parameters),
this method enables us to ‘‘jump’’ over the local minima
that subsists in the cost function topography, while keeping
a low computation time.

Let us illustrate the results of this method, applied to the
pair of cluster of Fig. 1. The homography that links these
clusters is still the one determined from the physical para-
meters used in (5).

The starting point of the minimization process is ob-
tained from the following variation of the physical para-
meters P 1x ; P 1y , a1, b1 and c1:

• First target point P1 (in m): (+200,�50).
• Angle a1 (in rad): �0.17.
• Angle b1 (in rad): �0.05.
• Angle c1 (in rad): +0.5.

The starting point of the minimization process performs
the matching presented in Fig. 6(a). The result of the
matching after minimization is presented in Fig. 6(b). We
s the inverse image of the cluster C0
1 by h. (a) The two clusters before the

.
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Fig. 7. Evolution of the cost during the minimization process.
present in Fig. 7 the evolution of the cost as a function of
the number of iterations. As one can observe, the algorithm
converges toward a correct solution.

Indeed, 2900 iterations are sufficient to have a ‘‘solu-
tion’’, and the same method applied to the mathematical
parameters does not give a solution after 10,000 iterations.
One can note that at each iteration, the most intensive com-
putation is that of the cost function which is about O(n2), n
is the number of extracted points.

7. Conclusion

In this article, we were concerned with the matching of
satellite images. More precisely, we presented a method
for matching two clusters of points, with no further infor-
mation about these points than their position in the two
images. Under the approximation of planarity for the
ground scene, the classical approach is to express the
homography that links the two images as a function of nine
mathematical parameters. We then proposed a cost func-
tion to estimate the ability for the homography to match
the two clusters. Nevertheless, the topography of the cost
function appears to be highly chaotic. Thus, we suggested
another expression for the homography, depending on 20
physical parameters. We have shown that the increase
in the number of parameters is counterbalanced by a
smoother topography of the cost function. Moreover, these
parameters are partially known from the data supplied
with the satellite images, and enable a simple minimization
process to estimate the homography.

One can note that the method we presented can be used
in many more applications than the matching of satellite
images. Indeed, it might be used as soon as one has to
match two clusters of geometrical points in two dimen-
7

sions, and the natural extension of these works would be
the matching of clusters in which some points are occulted.
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