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Abstract

We analyze the computer vision task of pixel-level background subtraction. We present recursive equations that are used to constantly
update the parameters of a Gaussian mixture model and to simultaneously select the appropriate number of components for each pixel.
We also present a simple non-parametric adaptive density estimation method. The two methods are compared with each other and with
some previously proposed algorithms.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A static camera observing a scene is a common case of
a surveillance system. Detecting intruding objects is an
essential step in analyzing the scene. An usually applicable
assumption is that the images of the scene without the
intruding objects exhibit some regular behavior that can
be well described by a statistical model. If we have a statis-
tical model of the scene, an intruding object can be detected
by spotting the parts of the image that do not fit the model.
This process is usually known as ‘‘background subtrac-
tion’’.

In the case of common pixel-level background subtrac-
tion the scene model has a probability density function
for each pixel separately. A pixel from a new image is con-
sidered to be a background pixel if its new value is well
described by its density function. For a static scene the sim-
plest model could be just an image of the scene without the
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intruding objects. The next step would be, for example, to
estimate appropriate values for the variances of the pixel
intensity levels from the image since the variances can vary
from pixel to pixel. This single Gaussian model was used in
(Wren et al., 1997). However, pixel values often have com-
plex distributions and more elaborate models are needed.

A Gaussian mixture model (GMM) was proposed for
the background subtraction in (Friedman and Russell,
1997) and efficient update equations are given in (Stauffer
and Grimson, 1999). In (Power and Schoonees, 2002) the
GMM is extended with a hysteresis threshold. In (Hayman
and Eklundh, 2003) the GMM approach was applied to
pan-tilt cameras. The standard GMM update equations
are extended in (KaewTraKulPong and Bowden, 2001;
Lee, 2005) to improve the speed of adaptation of the
model. All these GMMs use a fixed number of compo-
nents. In (Stenger et al., 2001) the topology and the number
of components of a hidden Markov model was selected in
an off-line training procedure. The first contribution of this
paper is an improved GMM algorithm based on the recent
results from Zivkovic and van der Heijden (2004). We
show, from a Bayesian perspective, how to use a model
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selection criterion to choose the right number of compo-
nents for each pixel on-line and in this way automatically
fully adapt to the scene.

The non-parametric density estimates also lead to flexi-
ble models. The kernel density estimate was proposed for
background-subtraction in (Elgammal et al., 2000). A
problem with the kernel estimates is the choice of the fixed
kernel size. This problem can be addressed using the vari-
able-size kernels (Wand and Jones, 1995). Two simple
approaches are: the ‘‘balloon estimator’’ adapts the kernel
size at each estimation point; and the ‘‘sample-point esti-
mator’’ adapts the kernel size for each data point. In (Mit-
tal and Paragios, 2004) an elaborate hybrid scheme is used.
As the second contribution of the paper, we use here the
balloon variable-size kernel approach. We use uniform ker-
nels for simplicity. The balloon approach leads to a very
efficient implementation that is equivalent to using a fixed
uniform kernel (see Section 4). Finally, as the third contri-
bution, we analyze and compare the standard algorithms
(Stauffer and Grimson, 1999; Elgammal et al., 2000) and
the newly proposed algorithms.

The paper is organized as follows. In the next section,
we state the problem of the pixel-based background sub-
traction. In Section 3, we review the GMM approach from
Stauffer and Grimson (1999) and present how the number
of components can be selected on-line to improve the algo-
rithm. In Section 4, we review the non-parametric kernel-
based approach from Elgammal et al. (2000) and propose
a simplification that leads to better experimental results.
In Section 5, we give the experimental results and analyze
them.

2. Problem definition

The value of a pixel at time t in RGB is denoted by~xðtÞ.
Some other color space or some local features could also be
used. For example, in (Mittal and Paragios, 2004) normal-
ized colors and optical flow estimates were used. The pixel-
based background subtraction involves decision if the pixel
belongs to the background (BG) or some foreground object
(FG). The pixel is more likely to belong to the background
if

pðBGj~xðtÞÞ
pðFGj~xðtÞÞ

¼ pð~xðtÞjBGÞpðBGÞ
pð~xðtÞjFGÞpðFGÞ

; ð1Þ

is larger then 1 and vice versa. The results from the back-
ground subtraction are usually propagated to some higher
level modules, for example, the detected objects are often
tracked. While tracking an object we could obtain some
knowledge about the appearance of the tracked object
and this knowledge could be used to improve the back-
ground subtraction. This is discussed, for example, in (Har-
ville, 2002; Withagen et al., 2002). In the general case we do
not know anything about the foreground objects that can
be seen nor when and how often they will be present.
Therefore we assume a uniform distribution for the appear-
ance of the foreground objects pð~xðtÞjFGÞ. The decision that
a pixel belongs to the background is made if

pð~xðtÞjBGÞ > cthrð¼ pð~xðtÞjFGÞpðFGÞ=pðBGÞÞ; ð2Þ

where cthr is a threshold value. We will refer to pð~xjBGÞ as
the background model. The background model is estimated
from a training set X. The estimated model is denoted by
p̂ð~xjX;BGÞ and depends on the training set as denoted
explicitly. In practice, the illumination in the scene could
change gradually (daytime or weather conditions in an
outdoor scene) or suddenly (switching the light off or on
in an indoor scene). A new object could be brought into
the scene or a present object removed from it. In order to
adapt to these changes we can update the training set by
adding new samples and discarding the old ones. We
assume that the samples are independent and the main
problem is how to efficiently estimate the density function
on-line. There are models in the literature that consider
the time aspect of an image sequence and then the decision
depends also on the previous pixel values from the se-
quence. For example, in (Toyama et al., 1999; Monnet
et al., 2003) the pixel value distribution over time is mod-
elled as an autoregressive process. In (Stenger et al.,
2001; Kato et al., 2002) hidden Markov models are used.
However, these methods are usually much slower and
adaptation to changes of the scene is difficult.

The pixel-wise approaches assume that the adjacent pix-
els are uncorrelated. Markov random field can be used to
model the correlation between the adjacent pixel values
(Kato et al., 2002) but leads to slow and complex algo-
rithms. Some additional filtering of the segmented images
often improves the results since it imposes some correlation
(Elgammal et al., 2000; Cemgil et al., 2005). Another
related subject is the shadow detection. The intruding
object can cast shadows on the background. Usually, we
are interested only in the object and the pixels correspond-
ing to the shadow should be detected (Prati et al., 2003). In
this paper, we analyze the pure pixel-based background
subtraction. For the various applications some of the men-
tioned additional aspects and maybe some postprocessing
steps might be important and could lead to improvements
but this is out of the scope of this paper.

3. Gaussian mixture model

In order to adapt to possible changes the training set
should be updated. We choose a reasonable time adapta-
tion period T. At time t we have XT ¼ fxðtÞ; . . . ; xðt�T Þg.
For each new sample we update the training data set XT

and reestimate the density. These samples might contain
values that belong to the foreground objects. Therefore,
we should denote the estimated density as p̂ð~xðtÞjXT ;BGþ
FGÞ. We use a GMM with M components:

p̂ð~xjXT ;BGþ FGÞ ¼
XM

m¼1

p̂mNð~x;~̂lm; r̂
2
mIÞ; ð3Þ
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where ~̂l1; . . . ;~̂lM are the estimates of the means and
r̂2

1; . . . ; r̂2
M are the estimates of the variances that describe

the Gaussian components. For computational reasons the
covariance matrices are kept isotropic. The identity matrix
I has proper dimensions. The estimated mixing weights
denoted by p̂m are non-negative and add up to one.

3.1. Update equations

Given a new data sample ~xðtÞ at time t the recursive
update equations are (Titterington, 1984):

p̂m  p̂m þ aðoðtÞm � p̂mÞ; ð4Þ
~̂lm  ~̂lm þ oðtÞm ða=p̂mÞ~dm; ð5Þ

r̂2
m  r̂2

m þ oðtÞm ða=p̂mÞð~d
T

m
~dm � r̂2

mÞ; ð6Þ

where ~dm ¼~xðtÞ � ~̂lm. Instead of the time interval T that
was mentioned above, here the constant a defines an expo-
nentially decaying envelope that is used to limit the influ-
ence of the old data. We keep the same notation having
in mind that effectively a = 1/T. For a new sample the own-
ership oðtÞm is set to 1 for the ‘‘close’’ component with largest
p̂m and the others are set to zero. We define that a sample is
‘‘close’’ to a component if the Mahalanobis distance from
the component is, for example, less than three. The squared
distance from the mth component is calculated as:

D2
mð~x

ðtÞÞ ¼~d
T

m
~dm=r̂

2
m. If there are no ‘‘close’’ components a

new component is generated with p̂Mþ1 ¼ a; ~̂lMþ1 ¼~xðtÞ
and r̂Mþ1 ¼ r0 where r0 is some appropriate initial vari-
ance. If the maximum number of components is reached
we discard the component with smallest p̂m.

The presented algorithm presents an on-line clustering
algorithm. Usually, the intruding foreground objects will
be represented by some additional clusters with small
weights p̂m. Therefore, we can approximate the background
model by the first B largest clusters:

p̂ð~xjXT ;BGÞ �
XB

m¼1

p̂mNð~x;~̂lm; r
2
mIÞ. ð7Þ

If the components are sorted to have descending weights
(slightly different ordering is originally used in (Stauffer
and Grimson, 1999)) p̂m, we have

B ¼ arg min
b

Xb

m¼1

p̂m > ð1� cfÞ
 !

; ð8Þ

where cf is a measure of the maximum portion of the data
that can belong to foreground objects without influencing
the background model. For example, if a new object comes
into a scene and remains static for some time it will be tem-
porally presented as an additional cluster. Since the old
background is occluded the weight pB+1 of the new cluster
will be constantly increasing. If the object remains static
long enough, its weight becomes larger than cf and it can
be considered to be part of the background. If we look at
(4), we can conclude that the object should be static for
approximately log(1 � cf)/log(1 � a) frames. For example,
for cf = 0.1 and a = 0.001 we get 105 frames.

3.2. Selecting the number of components

The weight pm is the fraction of the data that belongs to
the mth component of the GMM. It can be regarded as the
probability that a sample comes from the mth component
and in this way the pm-s define an underlying multinomial
distribution. Let us assume that we have t data samples
and each of them belongs to one of the components of the
GMM. Let us also assume that the number of samples that
belong to the mth component is nm ¼

Pt
i¼1oðiÞm where oðiÞm -s

are defined in the previous section. The assumed multi-
nomial distribution for nm-s gives a likelihood function
L ¼

QM
m¼1p

nm
m . The mixing weights are constrained to sum

up to one. We take this into account by introducing the
Lagrange multiplier k. The Maximum Likelihood (ML)
estimate follows from: o

op̂m
logLþ kð

PM
m¼1p̂m � 1Þ

� �
¼ 0.

After getting rid of k, we get

p̂ðtÞm ¼
nm

t
¼ 1

t

Xt

i¼1

oðiÞm . ð9Þ

The estimate from t samples is denoted as p̂ðtÞm and it can be
rewritten in a recursive form as a function of the estimate
p̂ðt�1Þ

m for t � 1 samples and the ownership oðtÞm of the last
sample:

p̂ðtÞm ¼ p̂ðt�1Þ
m þ 1

t
ðoðtÞm � p̂ðt�1Þ

m Þ. ð10Þ

If we now fix the influence of the new samples by fixing 1/t
to a = 1/T we get the update Eq. (4). This fixed influence of
the new samples means that we rely more on the new sam-
ples and the contribution from the old samples is down-
weighted in an exponentially decaying manner as
mentioned before.

Prior knowledge for multinomial distribution can be
introduced by using its conjugate prior, the Dirichlet prior
P ¼

QM
m¼1p

cm
m . The coefficients cm have a meaningful inter-

pretation. For the multinomial distribution, the cm presents
the prior evidence (in the maximum a posteriori (MAP)
sense) for the class m—the number of samples that belong
to that class a priori. As in (Zivkovic and van der Heijden,
2004), we use negative coefficients cm = �c. Negative prior
evidence means that we will accept that the class m exists
only if there is enough evidence from the data for the exis-
tence of this class. This type of prior is also related to the
Minimum Message Length criterion that is used for select-
ing proper models for given data (Zivkovic and van der
Heijden, 2004). The MAP solution that includes the
mentioned prior follows from o

op̂m
logLþ logPþð

kð
PM

m¼1p̂m � 1ÞÞ ¼ 0, where P ¼
PM

m¼1p
�c
m . We get

p̂ðtÞm ¼
1

K

Xt

i¼1

oðiÞm � c

 !
; ð11Þ
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where K ¼
PM

m¼1ð
Pt

i¼1oðtÞm � cÞ ¼ t �Mc. We rewrite (11)
as

p̂ðtÞm ¼
P̂m � c=t
1�Mc=t

; ð12Þ

where P̂m ¼ 1
t

Pt
i¼1oðtÞm is the ML estimate from (9) and the

bias from the prior is introduced through c/t. The bias de-
creases for larger data sets (larger t). However, if a small
bias is acceptable we can keep it constant by fixing c/t to
cT = c/T with some large T. This means that the bias will
always be the same as if it would have been for a data
set with T samples. It is easy to show that the recursive
version of (11) with fixed c/t = cT is given by

p̂ðtÞm ¼ p̂ðt�1Þ
m þ 1=t

oðtÞm

1�McT
� p̂ðt�1Þ

m

� �
� 1=t

cT

1�McT
. ð13Þ

Since we usually expect only a few components M and cT

is small we assume 1 �McT � 1. As mentioned we set 1/t
to a and get the final modified adaptive update equation

p̂m  p̂m þ aðoðtÞm � p̂mÞ � acT . ð14Þ
This equation is used instead of (4). After each update we
need to normalize pm-s so that they add up to one. We start
with a GMM with one component centered on the first
sample and new components are added as mentioned in
the previous section. The Dirichlet prior with negative
weights will suppress the components that are not sup-
ported by the data and we discard the component m when
its weight pm becomes negative. This also ensures that the
mixing weights stay non-negative. For a chosen a = 1/T,
we could require that at least c = 0.01 * T samples support
a component and we get cT = 0.01.

Note that the direct recursive version of (11) given by
p̂ðtÞm ¼ p̂ðt�1Þ

m þ ðt �McÞ�1ðoðtÞm ð~x
ðtÞÞ � p̂ðt�1Þ

m Þ is not very use-
ful. We could start with a larger value for t to avoid nega-
tive update for small t but then we cancel out the influence
of the prior. This motivates the important choice we made
to fix the influence of the prior.

4. Non-parametric methods

4.1. Kernel density estimation

Density estimation using a uniform kernel starts by
counting the number of samples k from the data set XT

that lie within the volume V of the kernel. The volume V

is a hypersphere with diameter D. The density estimate is
given by

p̂non-parametricð~xjXT ;BGþ FGÞ

¼ 1

TV

Xt

m¼t�T

K
k~xðmÞ �~xk

D

 !
¼ k

TV
; ð15Þ

where the kernel function KðuÞ ¼ 1 if u < 1/2 and 0 other-
wise. The volume V of the kernel is proportional to Dd

where d is the dimensionality of the data. Other smoother
kernel functions K are often used. For example, a Gaus-
sian profile is used in (Elgammal et al., 2000). In practice
the kernel form K has little influence but the choice of D

is critical (Wand and Jones, 1995). In (Elgammal et al.,
2000) the median med is calculated for the absolute differ-
ences k~xðtÞ �~xðt�1Þk of the samples from XT and a simple
robust estimate of the standard deviation is used D ¼
med=ð0:68

ffiffiffi
2
p
Þ.

4.2. Simple balloon variable kernel density estimation

The kernel estimation is using one fixed kernel size D for
the whole density function which might not be the best
choice (Wand and Jones, 1995). The so called ‘‘balloon
estimator’’ adapts the kernel size at each estimation point
~x. Instead of trying to find the globally optimal D, we could
increase the width D of the kernel for each new point ~x
until a fixed amount of data k is covered. In this way we
get large kernels in the areas with a small number of sam-
ples and smaller kernels in the densely populated areas.
This estimate is not a proper density estimate since the inte-
gral of the estimate is not equal to 1. There are many other
more elaborate approaches (Hall et al., 1995). Still the bal-
loon estimate is often used for classification problems since
it is related to the k-NN classification (see Bishop, 1995,
p. 56). One nearest neighbor is common but to be more
robust to outliers we use k = [0.1T] where [ Æ ] is the
‘‘round-to-integer’’ operator.

The balloon approach leads to an efficient implementa-
tion that is equivalent to using a fixed uniform kernel. Only
the choice for the threshold cthr from (2) is different. For
both the fixed kernel and the balloon estimate the decision
that a new sample~x fits the model is made if there are more
than k points within the volume V (15). The kernel based
approach has V fixed and k is the variable parameter that
can be used as the threshold cthr � k from (2). For the
uniform kernel k is discrete and we get discontinuous
estimates. The balloon variable kernel approach in this
paper has the k fixed and the volume V is the variable
parameter cthr � 1/V � 1/Dd. The problems with the dis-
continuities do not occur. An additional advantage is that
we do not estimate the sensitive kernel size parameter as in
(Elgammal et al., 2000).

4.3. Practical issues

In practice T is large and keeping all the samples in XT

would require too much memory and calculating (15)
would be too slow. It is reasonable to choose a fixed num-
ber of samples K� T and randomly select a sample from
each subinterval T/K. This might give too sparse sampling
of the interval T. In (Elgammal et al., 2000) the model is
split into a ‘‘short-term’’ model that has Kshort samples
form Tshort period and a ‘‘long-term’’ model with Klong

samples form Tlong. The ‘‘short-term’’ model contains a
denser sampling of the recent history. We use a similar
‘‘short-term–long-term’’ strategy as in (Elgammal et al.,
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2000). We would like to compare the non-parametric
approaches to the GMM approach. Without a proof of
optimality we select Kshort = Klong = K/2. The exponen-
tially decaying envelope defined by the parameter a = 1/T
is used to limit the influence of the old data in the GMM
approach. The ‘short-term’ and ‘‘long-term’’ models can
be seen as a step-like approximation of the envelope. We
choose the ‘‘short-term’’ model to approximate the first
30% of the information under the envelope and we get
Tshort = [log(0.7)/log(1 � a)].

The XT contains also samples from the foreground.
Therefore, for automatic learning we keep also a set of
corresponding indicators b(1), . . . , b(T). The indicator b(m)

has a value 0 if the sample is assigned to the foreground.
The background model considers only the samples with
b(m) = 1 that were classified to belong to the background:

p̂non-parametricð~xjXT ;BGÞ � 1

TV

Xt

m¼t�T

bðmÞK
k~xðmÞ �~xk

D

 !
.

ð16Þ

If this value is greater than the threshold cthr the pixel is
classified as background. Eq. (15), which considers all the
samples regardless of the b(m) � s, is used to determine
b(m) for the new sample. If the object remains static than
the new samples are expected to be close to each other.
For T = 1000 (a = 0.001), we could expect that (15) be-
comes greater than the cthr (we use the same threshold)
after approximately k = [0.1T] = 100 video frames. The
samples from the object then start being included into
the background model (b(m)-s set to 1). This is similar to
the automatic learning for the GMM method. Note that
this is slightly different from the strategy from (Elgammal
et al., 2000) where they proposed to use only the ‘‘long-
term’’ model to decide when the samples regarded as fore-
ground can be considered as background samples.

5. Experiments

A brief summary of the two algorithms is given in
Table 1. To analyze the performance of the algorithms
we used three dynamic scenes (Fig. 1). The ‘‘Traffic’’ scene
sequence has 1000 frames and it was taken with a high-
quality camera but under poor light conditions. The
‘‘Lab’’ sequence has 845 frames and it is more dynamic.
It has a monitor with rolling interference bars in the scene.
Table 1
A brief summary of the GMM and the non-parametric background subtractio

General steps GMM

Classify the new sample~xðtÞpð~xðtÞjXT ;BGÞ > cthr Use (7)
Update pð~xjXT ;BGþ FGÞ Use (14), (5) and (6), see

for some practical issues
Update pð~xjXT ;BGÞ Use (8) to select the com

GMM that belong to the

These steps are repeated for each new video frame.
The plant from the scene was swaying because of the wind.
This sequence is taken by a low-quality web-camera. The
highly dynamic sequence ‘‘Trees’’ is taken from (Elgam-
mal et al., 2000). This sequence has 857 frames. We will
analyze only the steady state performance and the perfor-
mance with slow gradual changes. Therefore, the first 500
frames of the sequences were not used for evaluation and
the rest of the frames were manually segmented to
generate the ground truth. Some experiments considering
adaptation to the sudden changes and the initialization
problems can be found in (Toyama et al., 1999, 2001,
2005). For both algorithms and for different threshold val-
ues (cthr from (2)), we measured the true positives—per-
centage of the pixels that belong to the intruding objects
that are correctly assigned to the foreground and the false
positives—percentage of the background pixels that are
incorrectly classified as the foreground. These are results
are plotted as the receiver operating characteristic (ROC)
curves (Egan, 1975) that are used for evaluation and
comparison (Zhang, 1996). For both algorithms, we use
a = 0.001.

5.1. Improved GMM

We compare the improved GMM algorithm with the
original algorithm (Stauffer and Grimson, 1999) with a
fixed number of components M = 4. In Fig. 1, we demon-
strate the improvement in the segmentation results (the
ROC curves) and in the processing time. The reported pro-
cessing time is for 320 · 240 images and measured on a
2 GHz PC. In the second column of Fig. 1, we also illus-
trate how the new algorithm adapts to the scene. The gray
values in the images indicate the selected number of com-
ponents per pixel. Black stands for one Gaussian per pixel
and a pixel is white if a maximum of 4 components is used.
For example, the scene from the ‘‘Lab’’ sequence has a
monitor with rolling interference bars and the waving
plant. We see that the dynamic areas are modelled using
more components. Consequently, the processing time also
depends on the complexity of the scene. For the highly
dynamic ‘‘Trees’’ sequence the processing time is close to
that of the original algorithm (Stauffer and Grimson,
1999). Intruding objects introduce generation of new com-
ponents that are removed after some time (see the ‘‘Traffic’’
sequence). This also influences the processing speed. For
simple scenes like the ‘‘Traffic’’ often a single Gaussian
n algorithms

Non-parametric

Use (16)
Section 3 Add the new sample to XT and remove the

oldest one, see Section 4.3 for some practical issues
ponents of the
background

If (15) > cthr use the new sample for pð~xjXT ;BGÞ
(set bm = 1 for the sample)



Fig. 1. Comparison of the new proposed methods to the previous methods. The ROC curves are presented for the GMMs and the non-parametric (NP)
models. For the new GMM model we also present the selected number of mixture components using the new algorithm. We also report the average
processing times in the second column of the table.
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per pixel is enough and the processing time is greatly
reduced. For complex scenes like ‘‘Trees’’ the segmentation
improvement seems to be the greatest. This could be
explained by the fact that because of the prior the new
GMM is more aggressive in discarding the unimportant
components and therefore better in finding the important
modes of the GMM.

5.2. Improved non-parametric method

We compare the balloon variable kernel method to the
kernel-based method from Elgammal et al. (2000). The
ROC curves are reported in the last column of Fig. 1.
We used Gaussian kernels for the kernel-based method
and uniform for the balloon method. The much simpler
new method was constantly giving better segmentation.
Again we observe the largest improvements for the com-
plex scene ‘‘Trees’’. This is due to the fact that the small
number of samples is widely spread in such cases and the
choice of the kernel width D becomes more important.
For both methods we used K = 20 samples. This choice
was made here because the average processing time for this
number of samples was similar to the average processing
time of the GMM method. Also for other reasonable
choices of the number of samples the new method was
always performing better. Implementation of the new
method is straightforward but for implementing (Elgam-
mal et al., 2000) there are still many choices to be made.
Therefore we do not compare the average processing times.
However, even without estimating the kernel width in
(Elgammal et al., 2000), the new method is much faster
since we can use the uniform kernels and still get smooth
results for different thresholds (see Section 4.2). Using uni-
form kernels in (Elgammal et al., 2000) would lead to a
very coarse estimate of the density especially in the areas
with a small number of samples.
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5.3. Comparison

In order to better understand the performance of the
algorithms we show the estimated decision boundary for
the background models for a pixel in Fig. 2a. The pixel
comes from the image area where there was a plant waving
because of the wind. This leads to a complex distribution.
The GMM tries to cover the data with two isotropic Gaus-
sians. The non-parametric model is more flexible and cap-
tures the presented complex distribution more closely.
Therefore the nonparametric method usually outperforms
the GMM method in complex situations as we can clearly
observe in Fig. 2b where we compare the ROC curves of
the two new algorithms. However, for a simple scene as
the ‘‘Traffic’’ scene the GMM presents also a good model.
An advantage of the new GMM is that gives a compact
model which might be useful for some further postprocess-
Fig. 2. Comparison of the new GMM algorithm and the new non-parametr
estimated models are presented for a certain threshold for the frame 840 of the ‘
the waving plant above the monitor, see Fig. 1), (b) ROC curves for comparison
performance of the algorithms for different parameter choices.
ing like shadow-detection, etc. Isotropic Gaussians leads
to crude models as mentioned. Updating full covariance
matrices (Zivkovic and van der Heijden, 2004) might give
some improvements but this is computationally expensive.

An important parameter that has influence on the per-
formance of the non-parametric method is the number of
samples K we use. With more samples we should get better
results but the processing time will be increased. For each
number of samples (K from 3 to 60) and for each threshold
we measure the true positives, false positives and the aver-
age processing time. We interpolate this results to get a sur-
face in this 3D fitness-cost space. This surface is presents
the best achievable results in the terms of the true positives,
false positives and the processing time and it can be
regarded as a generalization of the ROC curves. In litera-
ture this is a standard way to perform a parameter-free
comparison. This surface is called ‘‘Pareto front’’ (Pareto,
ic (NP) method: (a) an illustration of how the models fit the data. The
‘Laboratory’’ sequence and for the pixel (283,53) (the pixel is in the area of
, (c) the convex hull surfaces (Pareto front) that represent the best possible
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1971; Everingham et al., 2002). Since the new GMM has no
such parameters we present the best achievable results of
the GMM as a cylindrical surface constructed from the
ROC curve and cut it off at the average processing time.
The Pareto front comparison is presented in Fig. 2c. We
observe that if we use more samples the processing time
of the non-parametric method is increased and the segmen-
tation is improved as mentioned. However, for the simple
‘‘Traffic’’ sequence the generalization properties of the
GMM are still better even when a larger number of sam-
ples is used for the non-parametric model. Another con-
clusion is that we could get a very fast nonparametric
algorithm with slightly worse performance if we reduce
the number of samples K. This will also reduce the memory
requirements for the non-parametric approach.

6. Conclusions

We improved the two common background subtraction
schemes presented in (Stauffer and Grimson, 1999; Elgam-
mal et al., 2000). The new GMM algorithm can automati-
cally select the needed number of components per pixel. In
this way it can fully adapt to the observed scene. The new
kernel method is much simpler than the previously used
kernel-based approach. In both cases the processing time
is reduced and the segmentation is improved. We also
compared the new algorithms. The GMM gives a compact
representation which is suitable for further processing. It
also seems to be a better model for simple static scenes.
The non-parametric approach is very simple to implement
and it is a better model for complex dynamic scenes.
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