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Abstract

Cluster validation is a major issue in cluster analysis. Many existing validity indices
do not perform well when clusters overlap or there is significant variation in their
covariance structure. The contribution of this paper is twofold. First, we propose a
new validity index for fuzzy clustering. Second, we present a new approach for the
objective evaluation of validity indices and clustering algorithms. Our validity index
makes use of the covariance structure of clusters, while the evaluation approach
utilizes a new concept of overlap rate that gives a formal measure of the difficulty
of distinguishing between overlapping clusters. We have carried out experimental
studies using data sets containing clusters of different shapes and densities and
various overlap rates, in order to show how validity indices behave when clusters
become less and less separable. Finally, the effectiveness of the new validity index
is also demonstrated on a number of real-life data sets.

Key words: Fuzzy clustering, Validity index, Overlapping clusters, Overlap rate,
Truthed data set.

1 Introduction

The aim of clustering techniques is to partition a given set of data or objects
into groups such that elements drawn from the same group are as similar to
each other as possible, while those assigned to different groups are dissimilar.
There are many methods and algorithms for clustering based on crisp (Duda
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et al., 2001), fuzzy (Bezdek, 1981; Hoppner et al., 1999), probabilistic (Titter-
ington et al., 1985), and possibilistic approaches (Krishnapuram and Keller,
1993). The clustering process considered in this paper is fuzzy clustering,
in particular the Fuzzy Maximum Likelihood Estimation algorithm (FMLE)
(Gath and Geva, 1989), because of its efficiency in dealing with variation in
cluster shapes and densities.

In practical applications of clustering algorithms, several problems must be
solved, including determination of the number of clusters and evaluation of
the quality of the partitions. To address these problems, many functions called
cluster validity indices have been proposed in the literature (Pal and Biswas,
1997; Rezae et al., 1998; Geva et al., 2000; Maulik and Bandyopadhyay, 2002;
Sun et al., 2004). A validity index provides an objective measurement of a
clustering result and its optimal value is often used to indicate the best pos-
sible choice for the values of parameters in the clustering algorithm (e.g., the
number of clusters).

The performance of validity indices is often assessed based on how well they
deal with situations in which clusters overlap or there are significant variations
in cluster shape, density and orientation. Such cases arise often in practical
applications. For instance, in color image segmentation, a "region” may corre-
spond to a cluster of pixels with similar spectral properties (a cluster of similar
pixels may also encompass several regions). Two similar regions correspond to
two overlapping clusters. Whether and how such overlapped clusters are sep-
arated has a direct impact on the results of segmentation. Due to the lack of
understanding of component overlapping in a mixture, most researchers eval-
uate the results of validity indices using ad hoc data sets. There is a need for a
more systematic approach to the comparison of validity indices, based on for-
mal data distribution model. This need motivated our efforts to present a new
method for generating test data sets with different degrees of overlap between
clusters. The generated data sets allow a precise account of the dependence of
an index’s performance on the separation between clusters.

It is important to note that the Gaussian mixture is a fundamental hypothe-
sis that many partition-based clustering algorithms make regarding the data
distribution model. Aitnouri et al. (2000), explicitly defined the concept of
overlap rate in the 1-dimensional case and developed algorithms for generating
data sets with overlapped clusters. In (Sun and Wang, 2003), we established
a general theory of the degree of overlap between a pair of components of
a Gaussian mixture for the multi-dimensional case. The theory in (Sun and
Wang, 2003) is important in that it provides a physical measure of the com-
plexity of a data set and lays down a foundation for controlling the degree of
overlap between clusters as a function of the parameter values of each compo-
nent. Consequently, it allows the generation of truthed data sets of different
levels of difficulty that can be used to compare the performance of clustering



algorithms and validity indices. By "truthed data set”, we mean that the gen-
erated data set contains distinguishable clusters according to the measure of
overlap rate (OLR) presented in Section 4.

This paper is organized as follows. In Section 2, we introduce the fuzzy c-means
(FCM) and FMLE algorithms. We also discuss an implementation strategy for
determining the number of clusters using these algorithms. In Section 3, we
present our new validity index, following a description of several major ex-
isting validity indices. In Section 4, the theory regarding the overlap rate is
introduced. We show how this theory can be used to generate truthed data
sets as well as to measure the overlap rate of a given data set. In Section 5,
we present several generated Gaussian-mixture data sets with different over-
lap rates and report experimental studies comparing the performance of the
validity indices. The performance of the proposed index is also tested on a
number of real-world data sets. Section 6 presents our conclusions.

2 Clustering Algorithms

In this section, we briefly introduce the FCM algorithm and describe the clus-
tering process based on the FMLE algorithm. We also provide some arguments
justifying our choice of the FMLE algorithm for this work.

2.1 FCM algorithm

The FCM algorithm, introduced by Dunn (1973) and generalized by Bezdek
(1981), is the fuzzy clustering algorithm most widely used in practice. It is
based on an iterative optimization of a fuzzy objective function:

Minimize J,(U,V) = >3 ult|lz, — v, (1)

k=1i=1

where n is the total number of data vectors in a given data set and c is the
number of clusters; X = {zy,29,--,2,} C R4 and V = {v1, vy, -+, v.} C R?
are the feature data and cluster centers; and U = (ug;)nx. is a fuzzy partition
matrix composed of the membership of each feature vector z; in each cluster
i, where uy,; satisfies Y5 jup; = 1 for k = {1,2,---,n} and ug; > 0 for all
i =41,2,---,c} and k = {1,2,---,n}. The exponent m > 1 in Eq.(1) is a
parameter, usually called a fuzzifier.

The distance measure used is the Euclidean distance between a datum and
a prototype (cluster center). Consequently, the resulting fuzzy c-means algo-



rithm recognizes only circular and spherical clusters. By replacing the Eu-
clidean distance in FCM by another metric derived from a positive, definite,
symmetric matrix, ellipsoidal clusters can also be recognized. FMLE is such
an efficient algorithm, which performs well in situations where the variability
of cluster shapes and densities is great.

2.2 FMLE algorithm

Gath and Geva (1989) proposed the Fuzzy Maximum Likelihood Estimation
algorithm (FMLE). FMLE extends FCM by the computation of a fuzzy co-
variance matrix for each cluster, thereby allowing the recognition of elliptical
clusters. For this purpose an exponential distance measure is defined based on
maximum likelihood estimation (Bezdek and Dunn, 1975).

The target data sets of the FMLE algorithm are those that follow the distri-
bution of a general mixture of Gaussians. This is the main reason why the
algorithm has been selected for this study. However, it is helpful to initial-
ize the FMLE algorithm with the membership matrix generated by the FCM
algorithm in order to reduce the number of iteration steps.

2.3 Determination of the number of clusters

The algorithm below follows from the general model selection approach to
searching for the optimal c-partition of a data set X, given the minimal and
maximal number of clusters Cy;, and Chhae (Chuin and Cig, are predefined).
Vi(c) in the algorithm is the value of the validity function to be optimized.

Algorithm 1: FMLE-based model selection algorithm

1) Choose Ciin and Chax-
2) For ¢ = Cpiy 1o Crax:
(a) Apply the FCM algorithm as an initialization of the FMLE algo-

rithm.
(b) Apply the FMLE algorithm.
(c) Compute a validity value Vy(c).
(3) Compute ¢ such that Vy(cy) is optimal.
(4) End.



3 Cluster Validity

Validity indices are extremely important for automatically determining the
number of clusters. Various validity indices have been proposed in the past. In
the following subsection, we present a number of existing indices and discuss
the main ideas underlying them. A new validity index is then introduced.

3.1 Validity indices for fuzzy clustering

In general, validity indices can be grouped into three main categories. Those in
the first category use only the property of fuzzy membership degree to evaluate
a partition. Those in the second group combine the property of membership
degree and the geometric structure of the data set, while those in the third
make use of the concepts of hypervolume and density. Some of the indices
most frequently referred to in the literature are described below.

The partition coefficient Vpe (to be maximized) and the partition entropy
VpE (to be minimized), described by Bezdek et al. (1999), are examples of
the first category. Both indices are computed using only the elements of the
membership matrix. Their main disadvantage is their lack of direct connection
to the geometrical properties of the data and their monotonic dependency on
the number of clusters (Hoppner et al., 1999). For our experiments we have
chosen Vpe.

A well-known index from the second category of validity indices is the Fakuyama
and Sugeno validity Vpg (Pal and Bezdek, 1995), which measures the discrep-
ancy between compactness and separation of clusters. The number of clusters
that minimizes Vrg is taken as the optimal number of clusters.

Xie and Beni (1991) proposed another well-known validity index, Vx g, which
measures overall average compactness against separation of the c-partition.
The main disadvantage of this index is that it tends to decrease monotonically
when c is very large (Xie and Beni, 1991). Smaller Vx;z means a more compact
and well-separated c-partition.

Zahid et al. (1999) proposed the validity index Vg, based on a combination
of two functions, each of which is given by a fuzzy separation-compactness
ratio. The first function calculates this ratio by considering the geometrical
properties and membership degrees of the data. The second evaluates it using
only the property of membership degree. The maximum of Vg, as a function
of the number of clusters ¢, is sought for a well-defined c-partition.

Geva et al. (2000) introduce a number of scattering criteria derived from the



scatter matrices used in discriminant analysis (Fukunaga, 1990). For purposes
of comparison, we have chosen the normalized invariant criterion Vy jnv .
This index measures the trace of the product matrix between the inverse
of the within-cluster scatter matrix and the between-cluster scatter matrix
normalized by the number of clusters ¢?, as presented in Table 1. The cluster
number that maximizes Vi_ryyv is considered to be the optimal value for the
number of clusters present in the data.

Xie et al. (2002) proposed an index Vy gz based on the separation-compactness
ratio. The maximum of Vxgz, as a function of the number of clusters ¢, is
sought for a well-defined c-partition. Sun et al. (2004) proposed an index
Viwss that measures the separation between clusters and the cohesion within
clusters. This index is based on a linear combination of the average within-
cluster scattering (inversely related to compactness) and between-cluster dis-
tance (separation). A cluster number which minimizes Viyg; corresponds to
the best clustering.

The last indices covered here, from the third category, are those of Gath and
Geva (1989), who introduce three validity indices based on the concepts of
hypervolume and density. For our experiments we have chosen two of these.
The first one is the fuzzy hypervolume, Viy, which considers the sum of all
cluster sizes. A good partition should yield a low fuzzy hypervolume. The
second one is the average partition density, V4pp, in which the fuzzy density
is calculated for each cluster and then averaged over all clusters. The cluster
number that maximizes Vpp is considered to be the optimal value for the
number of clusters present in the data. Table 1 lists all of these validity indices.

3.2 A new validity index

In this subsection, we propose a new validity index based on the general prin-
ciple of optimizing a combined function of compactness and separation. This
principle has been followed by most of researchers in their efforts to develop
validity indices. Similar to several recently proposed indices, the new index
presented here makes use of existing or slightly modified definitions for the
concepts of separation and compactness. We believe that its judicious com-
bination of all of the relevant factors has made the new index particularly
efficient in various situations, as shown by the experiments reported in Sec-
tion 5. Although there is no formal way to prove the efficiency of a validity
index (which is our reason for proposing a new method for generating test
data sets in this paper), we will try to provide some insights that justify the
proposed index.
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Nine validity indices for the Fuzzy Clustering.
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The new validity index is defined as follows:

Vs (U, V, X) = Sep(c)/ Comp(c) (2)

In this formula, Sep(c) is the fuzzy separation of fuzzy clusters given by:

Sep(c) = trace(Sp) (3)

where Sp is the between-cluster fuzzy scatter matrix, defined as:

S = 33w (v — 5)(w: — o) ()

i=1 k=1

Here, Sp is defined in the same way as in the index Viy_;ny (listed in Table
1). A large value of Sep(c) indicates that the fuzzy c-partition is characterized
by well-separated fuzzy clusters.

Comp(c), the total compactness of the fuzzy c-partition, is given by:

Comp(c Z trace(X (5)

where ¥; is the fuzzy covariance matrix, defined as:

(Zum Tk — ;) )/ Zukz (6)

In the above definition, the individual compactness of each cluster is measured
by the trace of its covariance matrix (see Eq.(5)). The numerator on the right
side of Eq.(6) is the conventional compactness matrix (Pal and Bezdek, 1995;
Duda et al., 2001). The use of the covariance matrix, which is obtained by nor-

malization of this compactness matrix by Z upy, makes Comp(c) more sensi-
k=

tive to the variation of the covariance structure of each cluster and avoids the

monotony problem, as remarked by Geva et al. (2000). Because of the linearity

of the trace operation, Comp(c) can be written as Comp(c) = trace(Sy) if
C

we define our within-cluster scatter matrix by Sy, = > ;. A small value of
i=1

Comp(c) indicates a compact partition. So a compact and separate c-partition
corresponds to a large value of Vge. In other words, Vse is to be maximized.

Apart from their respective definitions, the way in which compactness and sep-
aration are combined also plays a critical role in the performance of the new



index. In fact, two formula based on the well-known Fisher separability crite-
rion (Fukunaga, 1990) are J; = trace(Sg)/trace(Sy-) and J, = trace(Sy)Sg).
We have adopted J; for our index (rather than Js as is the case of Viy_rnv),
for two reasons. One is computational simplicity since .J; is obviously easier to
compute than J,. The main reason for our choice, however, is that the ratio ap-
proach measures separation and compactness independently before combining
them. This is important because in Jy, certain parameters such as individual
cluster orientations may interact with each other and thus, when they change
from one data set to another, variations in J; may result even though the vari-
ation of these parameters does not have any significant impact on separation
and compactness. A theoretical explanation of this phenomenon is an open
question, although it is possible to provide a formal analysis of some simple
cases. For the sake of this paper’s focus, we only illustrate the phenomenon
by examples.

We generate a group of ten Gaussian mixture data sets (X7, ..., Xj9). Each
data set contains three well-separated elliptical clusters in ®3. The first data
set X7 is illustrated in Fig. 1. The data sets Xs, ..., Xig are, in turn, obtained
by pivoting each of the clusters 2 and 3 by 10 degrees around the x-axis. We
assume that cluster centers are perfectly localized in this experiment (they are
known by virtue of the data generation procedure). The values of uy; used by
Sp and Sy are obtained by the same formula in the FMLE algorithm. Fig.
2 illustrates the variation of J; and Jy as a function of Xj,..., Xjy. Clearly
the function J; remains almost constant while J5 is unstable for the group of
data sets.

Fig. 1. Data set X7; the other sets are obtained by pivoting cluster 2 and 3
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Fig. 2. Variation of J; and Js

This example suggests that, compared to J, J; is more directly dependent
on the separation and compactness values of individual clusters while J; can
be more easily affected by parameters whose value changes may not have
significant impact on the two basic measures for cluster analysis. Here, we
believe that the formula based on the definition of J; should result in an
index more resistant to the variation of some factors (e.g. orientation) relating
to the distribution of clusters than an index based on the definition of Jy. The
suitability of the proposed index, Vs, was tested on number of difficult data
sets in Section 5. The "difficulty” here means overlap between clusters and
will be formally introduced in the following section.

4 Measuring Cluster Overlap

4.1 Theoretical framework

There cannot be a mathematical proof that one index is better than another.
The only way to demonstrate the performance of a validity index is to test it
on concrete data sets. That is why it is extremely important to have truthed
data sets (i.e., sets for which the number of clusters and the values of the clus-
ter parameters are known) and a formal measure of data complexity (how well
clusters are separated from each other). In practice, all of the existing indices
work well on data sets containing only well-separated spherical clusters, but
many of them fail if the data set contains overlapping clusters. The ability
to deal with overlapping clusters is considered to be one of the main advan-
tages distinguishing one index from another. Despite this importance, almost
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all of the reported work is based on an intuitive account of the overlapping
phenomenon.

Given a data set whose distribution corresponds to a mixture of Gaussians, the
degree of overlap between components affects the number of clusters perceived
by a human operator or detected by a validity index. In other words, there
may be a significant difference between intuitively defined clusters and the
true clusters corresponding to the components in the mixture. The component
overlapping phenomenon is illustrated in Fig. 3.

005

0o4

oo3

ilie
oot

Fig. 3. Two components that are well separated, partially overlapping and strongly
overlapping.

In general, one expects a clustering algorithm and validity index to be able
to distinguish between partially overlapping clusters. In order to precisely
measure the overlap rate as well as to generate truthed data sets containing
overlapping clusters with prescribed overlap rates, we have proposed a the-
oretical framework for the Gaussian mixture model (Sun and Wang, 2003).
The theory is based on a novel ridge curve concept and establishes a series of
theorems characterizing the overlap phenomenon as a function of parameters
of the mixture.

In its simplest form, the pdf (probability density function) of a mixture of two
Gaussian components in the d-dimensional space is given by:

P(x) = Z a;Gi(r, pwg, X)), © = (1, 29,...,24) (7)

i=1,2

with the restriction a; > 0, where q; is the mixing coefficient and 7, o; = 1.
Note that u; and ¥; denote, respectively, the mean and the covariance matrix
for the ith distribution G;.

G is the ith component, given by:

G, i, Zi) = (20)7% 5|2 exp(—;@ — i) "8 (@ — ) (8)

To study the overlap phenomenon, we consider the case of two components
in a mixture. For a mixture with multiple components, one would need to
measure the degree of overlap between each pair of components.

11



The overlap rate (OLR) implements the following principle: 1) OLR decreases
(— 0) as the two components become more widely separated; 2) OLR increases
(— 1) as the two components become more strongly overlapped.

Definition 1 The overlap rate between two components of the mixture, G,
and Gg, is determined by the ratio between the values of the peak and saddle

of the pdf.

1 pdf has one peak
OLR(Gy,G3) = { P(sqddie)

) pdf has two peaks

P(xlowerpeak

OLR provides a formal measure of the difficulty in distinguishing between two
components. It depends not only on the distance between the two component
means but also on the shape, orientation and density of each of the compo-
nents. Computation of OLR is simplified thanks to the concept of the ridge
curve. The ridge curve in the 2-D case is defined as:

Ay By, — Au, By, =0 (10)
where

Ay = (=5 = )5 o = ) (1)

B = (=3 = )55 (0 — ) (12)

In the general multi-dimensional case (supposing that d is the number of
dimensions), the ridge curve is defined by a system of d-1 equations of the
same type as Eq. (10). The ridge curve concept makes it possible to search
for the peak and saddle points along a curve rather than in a region of the
original space. The following theorems give the properties of the ridge curve.

Theorem 1 The ridge curve is a hyperbola or a line.

Theorem 2 The means of the two components and the stationary points (peak
points and saddle points) of the pdf are on the ridge curve.

Theorem 3 The stationary points of the pdf fall on the segment between the
two means of the components of the ridge curve.

12



4.2 Algorithm for calculating OLR

Using the previous theorems, we can calculate OLR based on a linear search.
The main idea of the algorithm is to search the curve defined in Eq.(10)
between the means of the two components. A local maximum point is a peak
of the pdf, and the minimum point is a saddle point. Algorithm 2 below
computes the overlap rate of two mixture components, defined in Eq.(7).

Algorithm 2: OLR between two components

(1) Compute the parameters of two distributions: the means (p1, o), the
covariance matrices (3;,%) and the prior probability of each cluster
(0[1, Oég).

(2) Compute the ridge curve using Eq.(10).

(3) Move from p; to ps on the ridge curve, finding the maximum and mini-
mum points of P(z).

(4) Compute OLR for the two components using Eq.(9).

(5) End.

On the other hand, since OLR is a function of the parameters of the Gaussian
mixture model, varying these parameters (including the mixing coefficient
and the distance between the two means and the two covariance matrices)
will affect the theoretical value of OLR. Many parameters can be modified to
generate a variety of truthed data sets containing overlapping clusters with
different covariance structures. In order to illustrate this phenomenon, we
generate a number of truthed data sets in Section 5.

To close this section, it is worth pointing out that the (Gaussian) classifi-
cation error might have been used here as a measure of overlap between
two clusters. We prefer OLR because it is computationally more efficient
and corresponds better to a geometrical interpretation of the overlapping
phenomenon. The latter point is illustrated by the following example. Let
us consider two Gaussian mixtures G(z,y) = 0.5G(z,y) + 0.5G2(x,y) and
Gz, y) = 0.7G(z,y) + 0.3Gs(z,y), with Gy (z,y) = wexp(—1(z?* +y?)) and
Ga(z,y) = s-eap(—((x —2.7)2+y?)). OLR in G(z,y) is 0.781 and in Gz, y)
is 1, while the classification error rate between the two components in G(z,y)
is 0.085 and in G(m, y) is 0.0786. These results mean that in the graphic plot
of the two mixtures, there is a saddle point in G(z,y) lower than either of the
peaks near the component centers (theoretically, the peak is not at the center
of a component); whereas in G(:E,y), there is only one peak. These features
are reflected in the respective OLR values, but not in the classification errors.
Quite the opposite: the classification error gives a smaller value for G than for
G. Thus, this example shows that the proposed OLR and the classification
error may evolve in opposite directions when the value of some parameter

13



(the mixing coefficient in this case) is changed. A more extensive comparison
between the two measures is beyond the scope of this paper.

5 Objective Evaluation of Validity Indices

In this section, we present a comparative evaluation of all the validity indices
discussed in Section 3, to illustrate their effectiveness in finding an optimal
cluster scheme in the presence of overlapping clusters that differ in density,
shape and orientation. We first describe the different data sets used in our
experiments and then present the results. For all experiments, we have chosen
m =2, Cpin =2 and C,,q, = 10.

5.1 Data sets

In order to provide a variety of data types, we generated four different groups
of artificial data sets with controlled OLR between clusters, based on the
theory discussed in Section 4. Each data set is represented by X, , with g
varying from 1 to 4 and s from 1 to 10, i.e., there are 10 data sets in each
group. The first group is a collection of 2-dimensional data sets, the second is
a collection of 3-dimensional data sets, while the third and fourth groups are
in 4- and 5-dimensional space, respectively.

All data sets in a group are generated from a common mixture with slightly
different values of the mixture parameters. Specifically, the parameter val-
ues for a set X, ; are obtained by modifying the parameter values for the
set X, 1. The modification is carried out in such a way that the maximum
OLR between any two clusters in a set varies from 0.06 to 0.9 for each group
(Xya,...,Xy.10). We have chosen OLR values within [0.06, 0.9] in order to
perform a fair evaluation of the validity indices. The case in which OLR = 0.06
corresponds to data sets with only well-separated clusters, whereas the case in
which OLR = 0.9 corresponds to data sets with strongly overlapped clusters.

Each set in group X; has four clusters with a total of 2000 points. Clusters
1 and 3 have a spherical shape, while the two others have an elliptical shape.
Each Xj g, (s > 1) is obtained by successively changing both axes of the second
cluster and the orientation of the fourth cluster. Figures 4, 5 and 6 show
the data sets X 1, X7 ¢ and X; 19, for which the maximum OLR between
cluster 2, cluster 3 and cluster 4 is 0.06, 0.5 and 0.9 respectively. The main
characteristic of the data sets in this group is the continuous change in the
covariance structure of clusters, i.e., the shape of the second cluster and the
orientation of the fourth cluster. The overlap here is between three clusters,

14



while we keep the first cluster well separated.

Fig. 5. Data set X;_g; the maximum OLR is 0.5
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Fig. 6. Data set X7 _19; the maximum OLR is 0.9

Each set in group X5 has five ellipsoidal clusters with a total of 1650 points.
The number of data points in each cluster varies. In addition to this, the
structure of the clusters differs. Cluster 1 is small and dense, while clusters 2
and 3 are large. Cluster 4 is sparse while cluster 5 is small. Each X5 ;, (s > 1)
is obtained by successively approaching cluster 1 to cluster 2 and cluster 4
to cluster 5, and by changing the orientation of cluster 3 with respect to the
x-axis. Figures 7, 8 and 9 illustrate X5 1, X5 ¢ and X5 19, respectively. The
maximum OLR for X5 1, X5 g and X5 1 is 0.06, 0.5 and 0.9, respectively. The
main characteristic of the data sets in this group is the presence of elliptical
clusters with different size and density.

Fig. 7. Data set Xo_1; the maximum OLR is 0.06
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Fig. 9. Data set Xs_19; the maximum OLR is 0.9
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Each set in the third group X3 contains six hyper-spherical clusters with a
total of 1600 points. There is a significant difference in density between the
clusters. Fach X3 ,, (s > 1) is obtained by successively moving clusters 1, 2
and 3 towards each other. We perform the same operation for clusters 4, 5
and 6. The main characteristic of the data sets in this group is the presence
of spherical clusters with different density. The overlap here is between three
clusters at a time.

In each set of the last group, X4, there are four clusters with different shapes.
Two of them (clusters 1 and 4) are hyper-ellipsoidal and the two others (clus-
ters 2 and 3) are hyper-spherical (the total number of data points in each set
is 200). There are some significant differences in geometric shape between the
two ellipsoidal clusters. Cluster 1 is sparse, while cluster 4 is long and nar-
row. Each X, ¢, (s > 1) is obtained by successively moving cluster 1 towards
cluster 2 and cluster 3 towards cluster 4. The main characteristic of the data
sets in this group is the presence of large clusters with different shape and low
density.

5.2 FExperimental results

The tables below summarize the results of all of the validity indices introduced
in Section 3 in conjunction with the FMLE algorithm, for the four groups of
data sets Xi, X, X3 and X}.

Table 2
The optimal number of clusters using FMLE for X

Data Set OLR Vpc Vrs Vxie Vzie Vn.anv Vxrz Vwss Vew Vapp Vsc

X1 0.06 2 4 3 2 2 3 4 4 4 4
X190 0.10 2 4 3 2 2 3 4 4 4 4
X13 0.20 2 4 2 2 2 2 4 4 4 4
Xi4 0.30 2 4 2 2 2 2 4 4 4 4
Xi5 0.40 2 4 2 2 2 2 4 4 4 4
Xi6 0.50 2 4 2 2 2 2 4 4 3 4
X1z 0.60 2 4 2 2 2 2 4 3 3 4
X8 0.70 2 4 2 2 2 2 4 3 2 4
X1 0.80 2 4 2 2 2 2 4 3 2 4
X110 0.90 2 4 2 2 2 2 3 2 2 4
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Table 3

The optimal number of clusters using FMLE for X,

Data Set OLR Vpc Vrs Vxie Vzie Vnanv Vxrz Vwss Vrw  Vapp Vsc
Xo1 0.06 2 7 4 2 3 5 5 5 5 5
Xao. 2 0.10 2 7 4 2 3 5 5 5 5 5
Xo.5 0.20 2 6 4 2 2 5 5 5 5 5
Xo_4 0.30 2 7 4 2 2 5 5 5 5 5
Xo5 0.40 2 7 4 2 2 5 5 5 4 5
X2 6 0.50 2 5 2 4 2 4 5 3 4 5
Xo 7 0.60 2 7 4 2 2 4 4 3 4 5
Xa2.8 0.70 2 7 2 2 2 4 4 3 4 5
Xa 9 0.80 2 7 2 2 2 3 7 3 4 5
X2_10 0.90 2 5 2 2 2 3 4 3 4 5

Table 4
The optimal number of clusters using FMLE for X3

DataSet OLR Vpc Vrs Vxie Vzre Vn.anv Vxrz Vwss Vem Vapp Vsc
X351 0.06 2 6 2 6 6 6 6 6 6 6
X3 2 0.10 2 6 2 6 6 6 6 6 6 6
X33 0.20 2 6 2 6 6 6 6 6 6 6
X34 0.30 2 6 2 5 6 4 6 6 6 6
X35 0.40 2 6 2 6 6 2 4 6 6 6
X3.6 0.50 2 6 2 6 6 2 2 6 6 6
X3_7 0.60 2 6 2 6 6 2 2 6 6 6
X35 070 2 6 2 2 6 2 2 2 6 6
X3.9 080 2 6 2 2 6 2 2 2 6 6
X310  0.90 2 6 2 2 5 2 2 2 6 6

Table 5
The optimal number of clusters using FMLE for Xy

Data Set OLR Vpc Vrs Vxie Vzie Vnanv Vxerz Vwss Vee Vapp Vsc
Xa 0.06 4 4 4 4 2 4 4 10 9 4
X4 010 2 4 4 4 2 4 4 10 9 4
Xu3 020 2 4 2 2 2 4 4 10 5 4
Xaa 0.30 2 4 2 2 2 2 4 10 8 4
Xas 0.40 2 4 2 2 2 2 3 10 4 4
X46 0.50 2 8 2 2 2 2 4 10 5 4
Xa v 0.60 2 9 2 2 2 2 4 10 10 4
X4.8 0.70 2 8 2 2 2 2 2 10 10 4
X490 0.80 2 8 2 2 2 2 2 10 8 3
X4_10 0.90 2 10 2 2 2 2 3 10 5 2

The values in the tables above invite several comments.

(1) In all of the experiments, our new validity index, Vg, demonstrates the
stability to provide the correct number of clusters for different values of
OLR.
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(2) The behavior of the partition coefficient is almost the same in all cases.
It tends to fail even when OLR is low. In general, we can say that Vpc
is very sensitive to overlapping clusters. It performs well only with well-
separated spherical clusters.

(3) The behavior of Vg is special in that it reacts differently from all the
other indices tested to increasing OLR. It tends to favor a larger number
of smaller clusters (Tables 3 and 5). Although it performs very well with
X, and X3 (Tables 2 and 4), it fails completely with X, (Table 3). Over-
all, the experiments reported here seem to suggest that, in general, Vgg
provides good results with data sets that include overlapping clusters.

(4) From the experiments on the four generated groups of data sets, we can
see that Vxrg yields acceptable results when OLR is low. When OLR
increases, it tends to favor smaller numbers of clusters. Moreover, the
experiments show that this index fails even for data sets with very small
OLR values (0.06 and 0.1). It appears that elongated cluster shape and
sparse density have a negative impact on the results yielded by Vx;g.

(5) Vzre and Viy_rny perform very well with X3, whereas they fail completely
with X7, X5 and Xj. From the results of the experiments on the four
groups, we can say that Vg and Vy_jyy perform well in situations
involving overlapping clusters with spherical shape. However, it would
appear that wide variations in cluster covariance structure can greatly
influence the results yielded by these indices.

(6) In general, with small values of OLR, Vxprz yields good results. How-
ever, as OLR increases, Vxgrz gradually loses its ability to distinguish
between overlapping clusters. In addition to this, we remark that this
index fails with X;. We conclude that wide variation in cluster structure
has a negative influence on the results of Vxpry.

(7) From the experiments on the first three groups of data sets, we remark
that Vg and Vipp are able to find the true number of clusters when
OLR < 0.6. However, with higher values of OLR these indices encounter
difficulties. In addition to this, Vrg and Vpp fail completely with the
last group, X4. We believe that the presence of large clusters with low
density adversely affects the results of Vry and Vapp.

(8) From the experiments on the four generated groups of data sets, we can
see that Viysy provides good results when OLR < 0.6. However, higher
values of OLR can influence the performance of this index.

5.3  Fxperiments on real-world data sets

The suitability of the validity indices was also tested on three real-world
data sets containing separate and overlapping clusters. The first data set is
Haberman’s survival data (Haberman), which contains 306 data points with
3 features, from two well-separated clusters. The second is the Iris data set
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(Iris), widely used for testing validity indices. It consists of three clusters,
each of which contains 50 observations. Of these three clusters, two are over-
lapped. These first two data sets are from the UCI machine learning repository
(http://www.ics.uci.edu/mlearn/MLSummary.html). The last data set is the
Crude Oil data set (Oil) (Johson and Wichern, 1998). Crude oil samples were
analyzed from three zones of sandstone: Wilhelm, Sub-Mulinia, and Upper.
This data set contains 56 data points with 5 features, from three overlapping
clusters. The numbers of clusters yielded by all the validity indices for the
three real-world data sets are given in Table 6.

Table 6
The optimal number of clusters for three real-world data sets

Data Set Vee Ves Vxie Vzre Vn.nv Vxrz Vwss Ve Vapp Vsc

Haberman 2 2 2 2 2 2 2 2 2 2
Iris 2 3 2 2 2 2 3 3 2 3
Oil 2 4 2 2 2 2 3 10 10 3

As can be seen from the table, all the validity indices perform well with the
Haberman data. The good reliability of all the validity indices is due to the
fact that the Haberman data set is composed of two well-separated spherical
clusters. However, if a data set contains overlapping clusters, some validity
indices encounter difficulties. In the case of the Iris data, Vrs, Vivss, Vrn
and Vse yield the correct number of clusters, while the other validity indices
fail to do so. In the case of Oil, which is a small data set containing three
overlapping clusters, only Viys; and Vg are able to find the true number of
clusters. Vpy and Vypp favor a large number of small clusters. We believe that
the low density in each of the three clusters influences the results yielded by
these indices. Due to the overlap between the three clusters in the Oil data
set, Vpc, VXIEa VZLE, VNJNV and VXRZ yield two Clusters, while VFS yields
four clusters. Similar behavior was observed for Vg in the generated data sets
(see comment 3 in Section 5.2)

6 Conclusion

We have proposed a new validity index for fuzzy clustering and a novel method
for performing comparison and evaluation of validity indices in relation to
cluster overlap. The effectiveness of our new index in coping with cluster over-
lap and shape and density variation was demonstrated experimentally for a
number of generated data sets. The reliability of the proposed index was also
verified on three real-world data sets.

In order to compare the capacity of cluster validity indices to distinguish
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between overlapping clusters, an extensive evaluation was carried out with
truthed data sets generated on the basis of the theory of overlap developed by
Sun and Wang (2003). The study reveals that although all the indices work well
with well-separated spherical clusters, only a few perform well with overlapped
clusters. These indices should receive more consideration if separating partially
overlapped clusters is one of the essential features of a clustering system.
The concept of overlap rate provides a unified and objective measure of the
difficulty of separating clusters in a data set. It serves as a good indicator of
the performance of clustering algorithms and validity indices.
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