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Abstract

Boosting is used to determine the order in which classifiers are aggregated in a
bagging ensemble. Early stopping in the aggregation of the classifiers in the ordered
bagging ensemble allows the identification of subensembles that require less memory
for storage, classify faster and can improve the generalization accuracy of the original
bagging ensemble. In all the classification problems investigated pruned ensembles
with 20 % of the original classifiers show statistically significant improvements over
bagging. In problems where boosting is superior to bagging, these improvements
are not sufficient to reach the accuracy of the corresponding boosting ensembles.
However, ensemble pruning preserves the performance of bagging in noisy classifica-
tion tasks, where boosting often has larger generalization errors. Therefore, pruned
bagging should generally be preferred to complete bagging and, if no information
about the level of noise is available, it is a robust alternative to AdaBoost.

Key words: Machine learning, Decision Trees, Bagging, Boosting, Ensembles,
Ensemble pruning

1 Introduction

Numerous experimental studies show that pooling the decisions of classifiers in
an ensemble usually improves the generalization performance of weak learners
(Breiman (1996a, 1998, 2001); Dietterich (2000); Freund and Schapire (1995);
Martinez-Munoz and Sudrez (2005); Webb (2000)). Important shortcomings
of ensemble methods are the loss of speed in classification with respect to
the base classifier and the growth in storage needs with increasing numbers
of inducers. In order to remedy these drawbacks, one can try to retain only
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those classifiers that are essential to solve the classification task at hand and
eliminate those whose contribution is redundant. Ensemble pruning reduces
the storage needs, speeds up the classification process and has the potential
of improving the classification accuracy of the original ensembles.

Several strategies have been proposed to reduce the number of units in clas-
sifier ensembles. In (Domingos (1997)) the ensemble is replaced by a single
classifier trained to emulate the behavior of the combined classifiers. Other
techniques select a subset of classifiers from the full ensemble (Zhou et al.
(2002); Zhou and Tang (2003); Martinez-Munioz and Sudrez (2004a)). The
problem of selecting the best combination of classifiers from an ensemble has
been shown to be NP-complete (Tamon and Xiang (2000)). In (Zhou et al.
(2002); Zhou and Tang (2003)) the problem of finding a globally optimal subset
of classifiers is solved approximately by means of a genetic algorithm. Using a
different strategy, Prodromidis and Stolfo (2001) construct a tree based on the
outputs of the individual classifiers. This tree is then pruned and the classifiers
whose outputs are no longer considered in the pruned tree are removed from
the ensemble. Demir and Alpaydin (2005) introduce a utility factor that takes
into account the cost of classifying new instances in order select the optimal
subset of classifiers. In the work of Giacinto and Roli (2001) and Bakker and
Heskes (2003), clustering techniques are applied to identify groups of classifiers
in the ensemble that give similar classifications. A pruned ensemble is then
generated by retaining a single representative per cluster. Margineantu and
Dietterich (1997) propose some interesting heuristics based on measures of
diversity and performance for the selection of a small subset of representative
classifiers in AdaBoost ensembles without a severe deterioration of the classi-
fication performance. Some of the heuristics introduced by Margineantu and
Dietterich (1997) are used in (Martinez-Munoz and Sudrez (2004a)), where
ensembles of increasing size are built by incorporating at each step from a
pool of bagging classifiers the one that maximizes a quantity strongly corre-
lated with the generalization error of the ensemble. The final subensemble is
selected by stopping aggregation at a prescribed ensemble size. In (Banfield
et al. (2005)) the original complete ensemble is pruned (or thinned, using the
term proposed by the authors) by sequential backward selection: classifiers
that do not improve the classification performance are progressively removed
from the ensemble. The metrics used to identify the redundant classifiers are
based on ensemble accuracy and ensemble diversity.

Most of the pruning strategies introduced in the literature, and, in particular,
all methods that are used to reduce the size of boosting ensembles, construct
smaller ensembles at the expense of a limited loss in classification accuracy. In
this work we design a procedure to construct pruned bagging ensembles that
outperform full bagging in all classification tasks investigated, and boosting
in noisy classification tasks. The ensemble pruning method designed uses the
weighted training error defined in boosting to determine the order in which



classifiers are aggregated in an initially randomly ordered bagging ensemble.
The algorithm proceeds iteratively by updating the training example weights
as in boosting: the weights of training examples correctly (incorrectly) clas-
sified by the last classifier incorporated into the ensemble are decreased (in-
creased) according the AdaBoost prescription (Freund and Schapire (1995)).
The classifier that minimizes the weighted training error is then incorporated
into the ensemble. Early stopping in the aggregation process allows to select
subensembles that outperform bagging and retain bagging’s resilience to noise
in the class labels of the examples.

Section 2 introduces boosting-based ordered bagging and two heuristics that
determine when to stop aggregating classifiers in the ordered ensemble. The
performance of the pruned ensembles on several UCI (Blake and Merz (1998))
and synthetic datasets is investigated in Section 3. Finally, Section 4 summa-
rizes the results of the present investigation.

2 Boosting-based ordered Bagging

Consider a collection of N labeled examples L = {(x;,v;), i = 1,... N}. Each
example in L is composed of a vector of attributes, x, and a class label y, which
takes discrete values in a finite space ¢ = {1,2,...,Y}. In a classification
problem, the objective is to learn a map from the attribute space to the discrete
space of class labels ¢ by induction from a set of labeled examples (the training
set). The goal is to construct classifiers that perform well in previously unseen
data, using information only from the training set.

Bagging (Breiman (1996a)) is an ensemble method in which different clas-
sifiers of the same type are induced by a bootstrap method. Each classifier
in a bagging ensemble is constructed using the same learning algorithm on
different bootstrap samples of the original training data. A given bootstrap
sample is generated by performing Ny..;, extractions with replacement from
the original training set. The final decision of the ensemble is obtained by a
voting procedure that combines the individual decisions of the inducers that
compose the ensemble with equal weights:

T
C*(xz) = argmaz > 1 (1)

Y t:Ct(x)=y
where T is the number of classifiers of the ensemble and C, is the t** classifier.

Boosting (Freund and Schapire (1995)) is a sequential algorithm in which
each new inducer is built taking into account the performance of the pre-
viously generated classifiers. Figure 1 displays the pseudocode for the Ad-



aBoost algorithm using reweighting. In this ensemble method, classifier ¢ is
induced by using a fixed learning algorithm with different sets of weights
(w = {wy,wy,...,wy,,, }) for the examples in the training set. The first
classifier in a boosting ensemble is built by setting all the weights of the ex-
amples to 1/Ny.qin (i.e. all examples have initially the same importance). At
each iteration a classifier is built with training example weights updated so
that misclassified training examples become more relevant. In this way the
subsequent classifiers focus on examples that are difficult to classify. Thus,
classifiers {Ci11,t =1,2,...,T — 1} are induced using Ly.qin and w, where
the weights are modified by incrementing (decreasing) the weights of the ex-
amples incorrectly (correctly) classified by C;. This procedure is repeated until
T classifiers are generated or until a classifier achieves zero error or an accu-
racy below 50%, in which cases the weight updating rule fails and the boosting
algorithm stops. The final decision of the ensemble is obtained by weighted
voting of its members

T

C*(x) = argmaz Y log(1/53) (2)

Y t:Ct(x)=y
where 3; = ¢;/(1 —¢;) and ¢ is the weighted training error of the t** classifier.

To prevent early stopping when a classifier has € > 0.5 or ¢ = 0, one common
variant of AdaBoost is to replace the original training set by a bootstrap sam-
ple with all weights set to 1/Ny.qin, and then to continue the boosting process
(Bauer and Kohavi (1999)). If € = 0, the classifier is incorporated into the en-
semble with 3 = 107! instead of 8 = 0 which would assign an infinite weight
to the vote of that classifier (Webb (2000)). These modifications allow the
boosting process to always generate the specified number of inducers and, in
general, increase the accuracy of AdaBoost (Bauer and Kohavi (1999); Webb
(2000)). Under these conditions, comparisons with other ensemble methods
that always produce the desired number of classifiers (such as Bagging) are
fairer.

In this work, we propose to modify the aggregation order in a bagging en-
semble. To guide the aggregation process the weighting scheme proposed in
AdaBoost to compute the training error is used. If the aggregation process
is halted before all classifiers generated are incorporated into the ensemble,
one can obtain pruned subensembles, which, while being smaller, show better
classification accuracy than the full bagging ensembles.

Figure 2 presents the pseudocode of the ensemble aggregation ordering algo-
rithm. The first step is to generate a pool of classifiers. In our implementation
a bagging ensemble of size T is constructed from the training set (instruc-
tions 1-5). Instead of bagging, other parallel ensemble building methods can
in principle be used (Breiman (2001); Dietterich (2000); Martinez-Muhoz and



Input:
training set L composed of N examples
number of classifiers T

Output:

C*(x) = arg;nax S t:Cn(a)=y 109 (1/5y)

1. set all instance weights w to 1/N
2. fort=1toT{
3. C} = TrainClassifier(L, w)
4. ¢, = WeightedError(Cy, L, w)
5. if (¢ >0.5) {
6. discard C}
7. break
8. }
9. Br=¢€/(1—¢)
10. for j=1 to N {
11. if (Cy(z;) # y;) then w; = w;/2¢
12. else w; = w;/2(1 — €)
3.}
14. }
15. return C

Fig. 1. Pseudocode for the AdaBoost algorithm

Sudrez (2004b)). The second phase (instructions 6-20) is similar to boosting.
However, instead of generating an inducer from the weighted training dataset
at each iteration, the classifier with the lowest weighted training error is se-
lected from the pool of classifiers generated by bagging (step 8). To avoid early
stopping, if no classifier has a weighted training error below 50%, the weights
of the examples are reset to 1/Ny.qi, and the boosting process continues. In
contrast to regular boosting, when the selected classifier has zero training er-
ror the process continues. Note that bagging rarely generates zero training
error classifiers and that, if they exist, these classifiers would be selected in
the first iterations of the algorithm. The process continues until the desired
number of classifiers is reached (parameter U in Fig. 2). The final decision is



Input:
training set L composed of N examples
number of classifiers T’
number of classifiers to select U
Output:
Ensemble D* of U classifiers:

D*(x) = argmax 3,.p, (z)=y 1
y

for t=1to T {
Ly = BootstrapSample(L)
Cy = TrainClassifier(Ly;)
Add Cy to pool C
}
set all instance weights w to 1/N

for u=1to U {

Ne ok W

//Gets the learner with lowest weighted error
8. D,, = SelectBest(C, L, w)
9. €, = WeightedError(D,, L, w)
0. if (e, > 0.5) {

11. reset all instance weights w to 1/N
12. goto 8
3. }

14. Add D, to pool D
15. Extract D, from pool C
16. for j=1to N {

17. if (Du(a;) # y;) then w; = w;/2e,
18. else w; = w;/2(1 —¢,)

9. )

20. }

21. return D

Fig. 2. Pseudocode for the Boosting-based ordered bagging algorithm



performed by either unweighted (as in bagging) or weighted (as in boosting)
voting among the selected classifiers. If weighted voting is used, the weights
for each classifier are given by the prescription proposed in AdaBoost.

In contrast to the usual versions of bagging or boosting, where the training
error typically decreases as the number of classifiers in the subensemble is in-
creased, the ensembles ordered by the procedure described above have training
error curves that exhibit a minimum for intermediate numbers of classifiers
(see Figs. 3 to 5). More interestingly, the test error curves also have a minimum
for subensembles of intermediate size. In all but the smallest subensembles the
test error lies below the asymptotic bagging error, making it easy to select a
subensemble that outperforms the original bagging ensemble. In all experi-
ments performed, the minimum in the test error curve corresponds to larger
subensembles than the minimum in the train error curve. This poses some
difficulty in the selection of the subensemble that has the best generalization
error. For small ensembles (around 20 trees), Zhou and Tang (2003) report
that the best results are obtained for pruning values that are ~ 60% (i.e. re-
ducing the ensemble to ~ 8 trees). In larger ensembles, the optimum amount
of ensemble pruning seems to be between 70%-85% (Martinez-Munoz and
Sudrez (2004a)). That is, for ensembles of 200 trees 30-60 classifiers should be
selected. Note that the minima in the test error curves are fairly broad, which
means that the improvements in classification accuracy are not very sensi-
tive to the particular pruning heuristic employed. In our studies two simple
rules for the choice of subensemble are proposed. A first rule is to use a fixed
pruning rate that selects the subensemble containing only 20% of the original
bagging ensemble classifiers. A second proposal is to stop aggregation at the
first boosting stopping point, i.e., when the weighted training error reaches
0.5.

Pruned ensembles built by the procedure described in this work take advan-
tage of complementary features of boosting and bagging. In particular, boost-
ing ensembles grow by incorporating classifiers trained to focus on examples
that are misclassified by the current ensemble. If these examples are the ones
that are relevant to define the actual classification boundary, boosting builds
ensembles which generally have a better classification performance than bag-
ging. By contrast, if the examples which are progressively given more weight
by boosting are outliers or have been labeled incorrectly, then the distortion
introduced by boosting in the original problem may lead to a significant de-
terioration in the classification performance of the ensemble (Rétsch et al.
(2001); Dietterich (2000)). In bagging new classifiers are generated without
modifying the original distribution of training examples. The source of varia-
tion among classifiers is the fluctuations in the bootstrap samples. Bagging is
therefore weaker than boosting, since it does not actively focus on examples
that are difficult to classify, but also more resilient to noise in the class labels
of the training examples (Dietterich (2000)). The scheme proposed by boost-



ing to update the weights of the training examples is used in our algorithm to
select which classifier from the complete ensemble generated by bagging is ag-
gregated next. In this manner, the algorithm follows the strategy of boosting,
but it always incorporates classifiers that solve the original classification prob-
lem, not modified versions of it. In this regard, the experiments carried out by
Dietterich (2000) to compare the effects of noise in the classification perfor-
mance of bagging, boosting and randomization ensembles are illustrative. In
these experiments the original training data is modified by flipping the class
label of a number of randomly selected examples. In datasets where the class
labels of 20% of the training examples are modified, the corrupted examples
reach ~50% of the total weight after only a few iterations of boosting. This
percentage is maintained subsequently in the rest of the learning process. As a
consequence of this spuriously high sensitivity to the corrupted examples the
generalization performance of the boosted ensemble in this type of noisy clas-
sification problems is rather poor. The probability of obtaining such a weight
distribution from a uniform bootstrap sampling can be calculated using the
binomial distribution and is very small. In summary, the ordering procedure
can be seen as a regularized version boosting, where the level of overfitting to
noise is limited because the algorithm avoids assigning too much weight to a
few examples, which may be incorrectly labeled. Typically, these regularized
versions of boosting perform better than ordinary boosting in noisy datasets
(Rétsch et al. (2001)).

3 Experiments

To assess the usefulness of the ordering algorithm and the pruning rules pro-
posed in the previous section, experiments in 18 datasets have been carried out.
These include 16 real-world classification problems from the UCI repository
(Blake and Merz (1998)) and two synthetic sets (Waveform and Twonorm)
described in (Breiman et al. (1984); Breiman (1996b)). The characteristics
of these sets are presented in Table 1. This selection includes datasets with
different characteristics and from a variety of fields.

For each dataset included 100 executions were carried out involving the fol-
lowing steps:

(1) Generate a stratified random partition between training and testing sets.
The sizes of these partitions are given in Table 1. For the synthetic sets
a random sampling was performed instead.

(2) Execute the algorithm defined in Fig. 2 with 7" = 200, using CART as the
base learner (Breiman et al. (1984)). The classification errors of boosting
ensembles with 7" = 200 built using the variant of AdaBoost presented
in (Webb (2000)) are reported and will be used as a benchmark.



Table 1
Datasets used in the experiments

(3)

(4)

Dataset Train Test Atts. Classes
Audio 140 86 69 24
Australian 500 190 14 2
Breast W. 500 199 9 2
Diabetes 468 300 8 2
German 600 400 20 2
Heart 170 100 13 2
Horse-Colic 244 124 21 2
Tonosphere 234 117 34 2
Labor 37 20 16 2
New-thyroid 140 75 5 3
Segment 210 2100 19 7
Sonar 138 70 60 2
Tic-tac-toe 600 358 9 2
Twonorm 300 5000 20 2
Vehicle 564 282 18 4
Vowel 600 390 10 11
Waveform 300 5000 21 3
Wine 100 78 13 3

The generalization capability of the different ensembles considered is es-
timated using the testing set. To avoid ties in binary classification prob-
lems, we report results only for subensembles with an odd number of
classifiers.

Boosting assigns progressively higher weights to examples that are more
difficult to classify. For this reason, classifiers generated later in the boost-
ing process solve problems that are increasingly more different from the
original one. In order to compensate for this effect, classifiers generated
later in boosting are given a lower voting weight in the final ensemble
classification. To investigate whether this correction is necessary in or-
dered bagging ensembles, we report the classification accuracy using both
weighted and unweighted voting. Voting weights for the combined ensem-
ble are calculated according to the prescription given in AdaBoost.

Figures 3 to 5 display the dependence of the classification error rate on the
number of classifiers included in the ensembles, estimated on both the training
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and the test sets. Error curves are given for 10 datasets of the 18 datasets in-
vestigated. The plots displayed are representative of all cases investigated. As
anticipated, in bagging with random ordering the error decreases monotoni-
cally as the number of classifiers in the ensemble grows. This decrease levels off
at an asymptotically constant error rate. In contrast to this monotonic behav-
ior, error curves in ordered bagging ensembles exhibit a typical shape where
the error initially decreases with the number of classifiers, reaches a minimum,
and eventually rises. In the case of unweighted voting, the final error coincides
(as it should) with the error level of full bagging. This characteristic shape is
reproduced in both the train and test error curves. However, minima in the er-
ror curve for the training set appear earlier and are narrower than those in the
test set. In datasets where boosting improves the results of bagging ensembles,
the test error curves for ordered bagging and boosting run very close for the
first few iterations. In noisy sets, such as Pima Indian Diabetes, Horse-colic,
while AdaBoost increases the test error, ordered bagging still exhibits a broad
minimum in the test error curve.

To prune the bagging ensemble two different rules are used
(1) From the ordered bagging ensemble, a subensemble composed of a fixed

number of classifiers is selected. In particular, the first 20% classifiers
(exactly 41 classifiers) are kept.

12



Table 2
Errors for the different ensembles (200 trees). The average best result for each
problem is highlighted in bold type. The second best results are underlined.

Full ensembles Pruned ensembles
Dataset Boosting Bagging Fixed size First boosting stop
(200 trees) (200 trees) (41 trees)

unw. wW. unw. W. unw. W. Fftrees
Audio 21.8 30.2 283 246 245 24.1 24.2 29.6
Australian 13.7 145 144 138 141 147 16.3 5.1
Breast W. 3.3 4.7 5.0 4.0 4.1 4.2 43 15.0
Diabetes 26.6 249 252 24.5 248 253 26.2 7.7
German 254 26.6 269 25.2 257 262 278 7.6
Heart 205 204 21.2 189 19.1 19.6 20.6 18.1
Horse-colic 19.1 177 15.7 154 15.2 16.7 189 5.0
Tonosphere 6.6 9.3 9.5 7.5 7.8 7.9 17.1
Labor 9.7 144 16.1 105 10.7 106 9.8 132.0
New-thyroid 5.4 73 7.5 5.5 57 54 55 87.4
Segment 6.2 9.7 9.6 7.0 7.0 700 43.8
Sonar 14.7 247 238 204 20.1 205 199 65.1
Tic-tac-toe 0.9 2.7 25 2.1 2.1 21 2.0 67.6
Twonorm 4.0 9.3 8.0 7.1 7.1 71 6.7 1236
Vehicle 23.5 296 29.2 263 262 264 26.5 23.8
Vowel 7.0 137 130 126 126 128 125 133.3
Waveform 17.5 228 230 196 200 19.7 20.2 33.7
Wine 4.0 6.5 5.7 4.5 4.6 4.6 44 1336

(2) From the ordered bagging ensemble, aggregate classifiers until the first
classifier with a weighted training error above 0.5 is found (first boosting
stop).

The results of the experiments are summarized in Table 2. For each dataset
the averaged generalization accuracies over the 100 executions are shown for
AdaBoost (first column), full bagging with both unweighted and weighted
voting (second and third columns), pruned subensembles of fixed size (41
trees) with both unweighted and weighted voting (fourth and fifth columns)
and pruned ensembles using the first boosting stopping rule with unweighted

13



Table 3
Errors for the different ensembles (100 trees). The average best result for each
problem is highlighted in bold type. The second best results are underlined.

Full ensembles Pruned ensembles
Dataset Boosting Bagging Fixed size First boosting stop
(100 trees) (100 trees) (21 trees)

unw. wW. unw. W. unw. W. Fftrees
Audio 21.9 302 282 249 249 244 245 16.4
Australian 142 145 146 14.0 143 146 16.5 4.8
Breast W. 3.3 4.7 4.9 4.2 4.3 44 4.5 9.5
Diabetes 27.0 249 251 24.5 249 250 26.1 6.8
German 26.1 26.6 26.8 25.4 259 26.3 27.6 6.7
Heart 20.8 20.3 21.0 19.3 199 20.0 20.9 12.3
Horse-colic 194 175 16.2 15.7 15.5 169 19.0 4.3
Tonosphere 6.5 94 95 7.8 7.8 8.1 7.8 10.6
Labor 101 146 139 104 106 104 9.8 66.4
New-thyroid 5.4 75 76 54 5.4 5.5 5.4 44.0
Segment 6.3 9.8 9.7 8.1 8.0 8.0 8.0 24.5
Sonar 16.0 246 24.1 21.1 208 21.6 20.8 36.0
Tic-tac-toe 1.1 2.7 26 2.4 2.4 23 23 36.1
Twonorm 4.4 9.5 8.5 8.2 8.3 76 7.3 64.9
Vehicle 23.7 295 29.1 270 27.0 269 272 16.1
Vowel 7.3 140 134 136 135 13.2 128 68.6
Waveform 179 23.0 232 203 209 203 209 21.9
Wine 4.2 6.6 5.9 4.6 4.6 4.8 44 66.5

and weighted voting (sixth and seventh columns). The last column displays the
average number of trees of the first boosting stopping point for each dataset.
For each dataset the best result is highlighted in bold face and the second best
is underlined.

In most datasets, boosting ensembles have a better generalization performance
than either bagging or boosting-based pruned bagging. However, boosting is
less robust and its generalization performance is poor in noisy problems (Di-
abetes, Horse-colic). Pruning the ordered ensembles generally improves the
classification performance. In particular, subensembles containing 41 classi-
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fiers selected from the ordered bagging ensemble obtain consistently better
generalization accuracies than the corresponding complete bagging ensem-
bles. For all datasets, the differences between unweighted 41 trees and full
bagging, considered individually, are statistically significant at a 99.5% confi-
dence level using the paired two tailed Student’s t-test. This is also true for the
weighted 41 trees subensemble except for the Pima Indian Diabetes dataset.
The improvements are especially large in Wine (30.8% generalization error
reduction), Labor Negotiations (27.1%), New Thyroid (24.7%) and Twonorm
(23.7 %). Using the classifier weights given by boosting in the voting procedure
does not seem to have a marked effect: the error rates exhibit minor differ-
ences (both positive and negative) between weighted and unweighted voting
schemes in the investigated datasets.

Subensembles generated by using the first boosting stop rule have a lower
testing error than full bagging in most of the classification problems investi-
gated. The exceptions are Australian Credit, Pima Indian Diabetes, German
Credit and Horse Colic. Nonetheless, for these four sets the error differences
are not statistically significant at a 99.5% confidence level, while the reduc-
tion in size is substantial: the selected subensembles retain an average of 5.1,
7.7, 7.6 and 5.0, trees, respectively, which is below 5% of the initial pool of
200 trees. For the remaining datasets the first stopping point occurs for larger
subensembles, ranging from 15.0 trees of Breast W. to 133.6 trees of Wine, and
the improvements of classification performance are also larger. Note that in
the datasets where less than 5% of trees are selected, higher error reductions
are obtained for larger ensembles (compare for instance with the classification
errors of subensembles with 41 trees, using unweighted voting). This indicates
that this stopping rule stops prematurely for some datasets. If the votes of the
classifiers in the subensembles are combined using the weights proposed by
the boosting algorithm, the results obtained show small variations whose sign
depends on the particular classification problem (see Table 2). The differences
between unweighted first boosting stop and full bagging are statistically signif-
icant at a 99.5% confidence level for 14 datasets (all except Australian, Pima
Indian Diabetes, German Credit and Heart). For the weighted first boosting
stop subensembles the statistically significant differences are favorable in 12
datasets, unfavorable in 4 sets and not significant in 2.

To evaluate how the number of classifiers in the original bagging ensemble
affects the performance of the pruned ensembles we carry out a second batch
of experiments. For these experiments the randomly ordered ensembles were
re-evaluated using the first 100 trees. The ordering algorithm is then applied
to this smaller pool of classifiers. Table 3 shows the average errors for 100 trees
and 100 executions for AdaBoost (first column), full bagging with both un-
weighted and weighted voting (second and third columns), pruned subensem-
bles of fixed size (21 trees) with both unweighted and weighted voting (fourth
and fifth columns) and pruned ensembles using the first boosting stopping
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rule with unweighted and weighted voting (sixth and seventh columns). The
number of classifiers in the pruned subensemble selected from the ordered en-
sembles of size 100 are shown in the last column. In the datasets investigated,
a bagging ensemble with 100 trees seems to be large enough to achieve the
best possible classification performance of bagging. Slight improvements are
observed for some sets ( New-thyroid, Twonorm, Vowel, Waveform) when using
the larger ensemble but also small error increases (Heart and Horse-colic). For
pruned ensembles, comparing the results in Tables 2 and 3 show that there
are small improvements in classification accuracy for the larger ensembles for
most of the investigated datasets, at the expense of using pruned ensembles
with approximately twice as many classifiers.

3.1 Effects of noise in the performance of the pruned subensembles.

In order to investigate the performance of the pruned ensembles in noisy
datasets, we carry out a series of experiments similar to those conducted by
(Dietterich (2000)). In these experiments classifiers are built using as training
data corrupted versions of the initial training set. For each experiment, a fixed
percentage of training examples is selected at random and their class labels
switched. The percentage of examples whose class label is modified increases
for each experiment in the series. Experiments on the Waveform problem
dataset are carried out using the same 100 samples of training and test data
generated in the previous set of experiments. Class labels of training and test
examples are modified with a probability 0.0, 0.05, 0.1 and 0.2, respectively.
This procedure generates noisy training and test datasets containing on aver-
age 0%, 5%, 10% and 20% of examples labeled differently from the original
Waveform problem.

The average error on the test set for standard boosting, bagging and boosting-
based pruned bagging on the modified noisy versions of the Waveform problem
are shown in table 4. As noted in previous experiments (Dietterich (2000)),
the performance of AdaBoost strongly deteriorates with increasing levels of
noise in class labels. Bagging and pruned bagging subensembles composed of
20 % of the original trees are fairly resilient to this type of noise. In contrast,
the performance of pruned subensembles that use the first boosting stop to
halt aggregation deteriorates significantly (although not as much as boosting)
as the level of noise increases. The amount of pruning determined by the first
boosting stop rule is excessive in these problems and therefore the resulting
ensembles are too small. Nonetheless, this can be acceptable if we are inter-
ested in obtaining very small ensembles at the expense of a limited loss in
classification accuracy.

According to these results, pruned bagging ensembles with 20 % of the original
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Table 4
Average test error in Waveform with modified class labels. The best average result
is highlighted in bold type. The second best averaged results are underlined.

Full ensembles Pruned ensembles
Noise AdaBoost Bagging Fixed size  First boosting stop
(200 trees) (200 trees) (41 trees)

unw. w. unw. w. unw. w. F#trees
0% 17.5 228 23.0 19.6 20.0 19.7 20.2 33.7
5% 242 265 272 23.9 246 25.1 26.6 11.7
10% 31.3 302 312 27.6 286 29.1 31.3 9.8
20% 423 375 386 35.6 364 37.6 40.2 8.8

trees consistently improve the generalization error of the complete bagging
ensemble in both noiseless and noisy datasets. Although they are inferior to
boosting in the noiseless experiment, pruned ensembles outperform boosting
in classification tasks even in classification problems with relatively low levels
of noise in the class labels (5 % in our experiments on the Waveform problem).

4 Conclusions

This article presents a novel algorithm for pruning classifier ensembles that
uses the reweighting scheme for the training examples proposed in AdaBoost
to modify the (originally random) aggregation ordering of bagging. For the
investigated datasets, if we plot the error rate versus the number of classifiers
included in the ordered ensemble, we observe that both training and test error
curves exhibit a minimum for partially aggregated subensembles. This mini-
mum corresponds to pruned ensembles whose misclassification rates are below
the classification error of the full bagging ensemble. These observations suggest
that selecting a subset of classifiers increases the classification speed, lowers
the memory requirements and can improve the classification performance of
the original ensemble.

The minimum observed in the ensemble test error curves is fairly broad, which
implies that it is easy to improve the results of bagging by early stopping in
the aggregation process in the ordered bagging ensemble. We propose two
heuristics to halt aggregation. The first ensemble pruning method consists in
selecting the first 20% of the classifiers from the ordered bagging ensemble. In
the classification problems investigated, this pruning rule generates subensem-
bles that consistently and significantly outperform the full bagging ensemble.
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In the second pruning method, classifier aggregation is stopped when the first
classifier whose weighted training error is above 0.5 is found (first boosting
stop). This stopping rule leads to the selection of subensembles of very differ-
ent sizes and whose classification performance is either equivalent to bagging,
when the pruning procedure selects very small subensembles, or better than
bagging, when the pruned ensembles are large. Using the weighted voting pro-
cedure specified by AdaBoost in the ordered bagging ensembles does not in-
troduce significant variations with respect to unweighted voting. Experiments
show that the differences in the generalization error of the pruned ensembles
generated from bagging ensembles of different sizes (100 and 200) are small.

In the classification problems where boosting outperforms bagging, these pruned
ensembles are slightly inferior to boosting ensembles. However, in noisy datasets
the proposed pruned ensemble method outperforms both AdaBoost and bag-
ging. The results obtained in both noisy datasets and in datasets where a
percentage of the class labels of the examples have been modified, show that
pruned ensembles inherit from bagging the robustness in classification perfor-
mance. In summary, pruned bagging should generally be preferred to bagging
and is a safe and robust alternative to AdaBoost when no information about
the level of noise of the classification task is available.
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