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Abstract

This paper provides a comparative study on the use of planar patterns in the gen-
eration of control points for camera calibration. This is an important but often
neglected aspect in camera calibration. Two popular checkerboard and circular dot
patterns are each examined with two detection strategies for invariance to the poten-
tial bias from projective transformations and nonlinear distortions. It is theoretically
and experimentally shown that circular patterns can potentially be affected by both
biasing sources. Guidelines are given to control such bias. In contrast, appropriate
checkerboard detection is shown to be bias free. The findings have important im-
plications for camera calibration, indicating that well accepted methods may give
poorer results than necessary if applied naively.

Key words: Camera Calibration, Calibration Patterns, Bias Compensation, Lens
Distortion.

1 Introduction

There is an abundance of planar charts used within the realms of camera
calibration as sources of both 2D and 3D control points. These points are gen-
erally constructed on a planar surface by means of some high contrast pattern.
In turn, the pattern also facilitates the recovery of the control point projec-
tions on the image plane. Patterns such as squares (Zhang, 2000; Weng et al.,
1992), checkerboards (Lucchese and Mitra, 2002) and circles (Heikkila, 2000;
Asari et al., 1999; Kannala and Brandt, 2006) have become popular as they
can be readily manufactured to a sufficient precision, and their data points
are recoverable through the use of standard image processing techniques.
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In real cameras, an image of the calibration pattern is likely to undergo two
types of transformation: a projective transformation as a consequence of rel-
ative 3D position, and a nonlinear transformation due to various lens distor-
tions. The control point invariance to errors resulting from these two transfor-
mations is based on a combination of the pattern employed, and the detection
method used. As a consequence, for any theoretical combination of calibration
pattern and detection method, we have identified two possible sources of bias
in control point recovery, which we simply term: Perspective bias and Distor-
tion bias. In practice, the presence of these bias sources is primarily governed
by the type of pattern used, which in turn dictates the appropriate detection
methods. This study is based on two calibration patterns from the camera cal-
ibration literature, each with two associated control point detection strategies.
These are the popular checkerboard and circular dot patterns with the stan-
dard detection strategies of edge intersections, corners, centroids and conic
fitting. The underlying biasing principles naturally extend to other similar
patterns and detection methods. The importance of acquiring bias free data
has often been ignored in calibration articles, the result being that camera
models and accuracy cannot be reliably evaluated.

Naturally, many studies in camera calibration have focused specifically on
achieving high calibration accuracy and stability. These works are primar-
ily founded on high precision control points of either 2D or 3D variety, and
the accurate detection of their projections. Linear least-square techniques for
calibration are improved upon by Tsai (1987) and Weng et al. (1992), who con-
centrate on improving the calibration accuracy by comprehensively modelling
lens distortion and further iteratively optimising the parameters. A compar-
ative study is presented in Salvi et al. (2002). Planar calibration techniques
have been proposed by Strum and Maybank (1999) and Zhang (2000) that
place the world coordinate system on the calibration object and thus require
only arbitrarily scaled 2D coordinates. These methods, requiring less arduous
control point specifications, have contributed largely to the common adoption
of planar calibration targets. These works assume that the detected image
points have zero mean gaussian distributions in order to correctly converge
to the optimal solution. This may not always be the case. Heikkila (2000)
and Kannala and Brandt (2006) describe calibration techniques using circular
control points including corrections for their perspective bias to improve the
calibration accuracy.

Our main aim is to aid the practitioner to establish which pattern, and what
design offers, the best precision in control point recovery. The primary concern
in this regard is to obtain bias free data, as this is clearly essential for obtain-
ing uncorrupted estimates from calibration algorithms. We show theoretically
and experimentally, with both real and simulated data, that control points
detected using the centroid recovery principle, can potentially be corrupted
by both perspective bias and distortion bias, with the likelihood of greater



distortion bias magnitude in a typical camera. However, only perspective bias
compensation has been considered in the literature, using adjusted conic cen-
troids. It is shown that the compensation of distortion bias from such circu-
lar pattern points is not possible without first knowing the distortion. Also,
the bias magnitudes resulting from the standard least square conic fitting are
shown to be much less in comparison. This informs a set of basic guidelines for
use with circular type patterns to minimise the introduction of such biases. In
contrast, checkerboard patterns with certain detection strategies, are shown to
be inherently bias free. Overall, this study highlights that even well-accepted
calibration methods may give poorer results than necessary if applied naively
through the use of inappropriate pattern design.

Our analysis is primarily conducted on simulated images with known ideal
control points. Images and control points are synthesised with both nonlin-
ear and projective transformations. Details of the image synthesis precision
is presented ensuring no additional errors are introduced from this stage. We
concentrate on automatic point recovery where all points are observable in
the image. Two standard sub-pixel detection strategies for each pattern are
described, each having unique bias invariant properties. The sources of biases
are theoretically identified for each pattern and are subsequently verified on
the simulated images. A comparative study of each method with respect to
blurring and noise serves to show that the biasing magnitudes are significantly
greater than the expected detection accuracy or noise floor. Finally, examples
of distortion bias in a real images are shown. Overall, this paper emphati-
cally shows that the choice of pattern and detection technique is much more
important than previously realised to achieve bias free control points for real
cameras affected by lens distortion.

2 Pattern and control point synthesis

Two factors influence the recovery of control points: the camera lens effects
and the relative positioning of the calibration object. The error invariance
to these transformations is based on the type of pattern employed and the
detection strategy used. Two popular patterns are chosen for this study, each
with sufficiently different characteristics to illustrate all the possible sources of
control point bias. Biasing aspects of other pattern types can be understood
by comparison with the principles introduced here. The chosen checkerboard
and circular patterns are illustrated in canonical form in Fig. 1. The sizes of
the circles and checkerboard squares, and the actual number of control points
are chosen as typical practical values. For our analysis we subject each pattern
to gaussian blurring, additive gaussian noise, pincushion and barrel distortion
and random placements. The recovered points are then be compared with
their true locations. For the distortion and positioning effects, both control



Fig. 1. The two classes of patterns used for this study, checkerboard and circles,
shown in their canonical form. Image dimensions are 2560 x 1920 pixels. 247 control
points are synthesised. Checkerboard squares have dimensions 85 x 85 pixels, while
circle diameters are 51 pixels. The center or principle point is at (1280,960).

points and the corresponding image must be transformed. Geometric image
re-sampling is carried out by mapping from the transformed image to the
original. This involves calculating for every pixel in the transformed image,
the corresponding pixel coordinate in the original image, effectively requiring
an inverse mapping. The transformed image intensity is then calculated based
on the standard bilinear interpolation around this coordinate.

2.1 Pattern positioning

The image perception of various 3D positions of the control points, p =
(z,y,1)T, (in homogeneous form) are simulated using a pseudo randomly gen-
erated homography H, giving p = Hp, where p are the canonical representa-
tion of the control points. This homography is generated by a combination of a
3D rotation and translation, whose values are drawn randomly from a specific
range. This range limit ensures that the transformed image lies roughly within
the image window and that its apparent 3D position simulates a likely view
of the calibration object. The corresponding image re-sampling is calculated
using H™L.

We also need a means of quantifying a perspective transformation in terms of
how close it is to being a similarity. Taking the third row of the transformation
on its own does not provide sufficient information as this does not consider the
affine element of the projective transform. It has been demonstrated in Mallon
and Whelan (2005) that the affine element of a homography directly influences
its perspective properties. Therefore the homography as a whole must be con-
sidered. One useful way to do this is to employ matrix norms, ideally giving
a single valued measure of severity of the perspective aspect. However, as the
transform is inherently non-linear these cannot be directly applied. To over-



come this we consider the norms of the transform’s Jacobian, in particular the
largest largest singular value (Ly norm) divided by the smallest. Ideally both
singular values are equal giving a condition of one. The condition number is
then:

cond(J(H,p)), where J(H,p)=| % %

This linearly quantifies the local perspective effects of the nonlinear transfor-
mation at points p within the image window. The mean of these values is
taken as the net effect of the perspective transform.

2.2 Simulating lens distortion

General radial lens distortion is approximated in an image by: (Born and Wolf,
1980; Mallon and Whelan, 2007)

x(kyr? + kort + 1
b= p+ D(p.k), where D(p.Jy = | " TR g
y(kr? + kort + 1)

where p = (z,y,1)T are the undistorted image coordinates with r? = x? + 3?2
and P = (%, 9, 1)T are the corresponding distorted coordinates. More details on
the origins of this model are given in Mallon and Whelan (2007). The distortion
parameter, (k;), is used as an index, with values varying through +2(piz?),
with ks = —k;. These values are applied to pixel coordinates normalised by
the average of the image width and height, denoted by (pix). In order to re-
sample a distorted image an inverse of (1) is required. We use the approximate
model proposed in Mallon and Whelan (2004) :

T(6172 + 6ot + 0370 + 0,47 + 1
D*(p,0) = & S ) /(1 + 4657 + 65674).  (2)
Y(01772 + 09 + 037 4 047 + 1)

The parameters of this model are linearly estimated using a dense collection of
points covering the image window. The inversion accuracy for the distortion
range under consideration is shown in Table 1. These residuals are orders of
magnitude lower than the precision of the sub-pixel point detection algorithms,
(see section 4), ensuring that no additional source of error is introduced from
the simulated images.



Table 1
Inverse distortion residuals after the fitting of equation 2. Levels are orders of mag-
nitude below that of the control point detection accuracy, see section 4

k1 (Barrel) -2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25
Mean x1075 0.6997 | 1.8487 | 0.4540 | 0.1080 | 0.0051 | 0.0095 | 0.0027 | 0.0007
SD x1074 1.7838 | 0.9531 | 0.1255 | 0.0232 | 0.0013 | 0.0015 | 0.0003 | 0.0001
k1 (Pincushion) 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Mean x1075 0.0001 | 0.0028 | 0.0192 | 0.0735 | 0.2045 | 0.4682 | 0.9425 | 1.4668
SD x107% 0.0000 | 0.0001 | 0.0012 | 0.0051 | 0.0151 | 0.0372 | 0.0806 | 1.0379

3 Control point recovery

For each pattern, two general sub-pixel detection strategies are described.
These strategies are chosen for their unique biasing properties. Unfortunately,
it is impossible to completely generalise the detection methods, so where nec-
essary the implementation details are provided. In this sense, e.g. regardless
of what type of edge detector, thresholds, etc. are used, the principles may be
easily abstracted to other detection strategies and patterns. The circle detec-
tion methods are based on the centroid extraction and ellipse fitting. Square
detection methods are based on refining an initial corner solution with edge
intersections and with local surface fitting. It will be shown that the detection
methods are subject to two sources of biasing. We theoretically show how they
arise as a result of perspective viewing and lens distortion.

3.1 Circle pattern detection

Given an image of a circular pattern, and following a suitable thresholding
operation, the centroids of the circles are simply calculated as:

T
Ceon = (Zeoms Yeems 1) = (foeF zy - I(pr) DypeF Uf I(ps) ) (3)
cen censy Jcen ZIfGF I(pf) Y nyEF I(pf) ) 7
where I(pg) is the intensity at point pg (binary in practice) and F' is the set
of pixels deemed to belong to the circle. Equivalently, the first and second
order shape moments can be used. Note that our simulated images suffer no
illumination variations * . It is known that if the calibration plane is not parallel
with the image plane, a bias is introduced into Ccen-

! When dealing with real images, the illumination and vignetting effects must be
countered with techniques such as careful local thresholding to avoid introducing
additional bias.



3.1.1 Perspective bias

Considering a calibration plane in a general 3D position, a homography H can
be computed between the pixel coordinates of the control points and the ideal
canonical position as: p = Hp, where p are the locations of the control points
in the image, and p are the ideal canonical position of the control points.
The conic approximation to the edge points of the pattern, pegge, can be esti-
mated linearly as: ﬁergle)edge (Hartley and Zisserman, 2003). The center of
the conic is then calculated as: €.onic = Q_I(O, 0,1)T. For a general 3D posi-
tion these centers transform to Ceonic = HQ_l(O, 0, 1)T. However, in an image
only the conic Q is available, but this is related to Q through Q = H-TQH!.
Thus the unbiased estimates for the centers of the conics undergoing a general
perspective transform H is given by:

Ceonic = Q_lH_T(0> Oa 1)T (4)
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Fig. 2. Mean Euclidean error as a consequence of 1000 random positions of the
circular pattern. Orthogonal like homographies induce a low conditioning (close to
one) while the perspective bias increases with increasing conditioning.

The extent of this biasing influence is simulated in Fig. 2 for random per-
spective views described in section 2.1. In many algorithms, especially when
lens distortion is a factor, the value of H or equivalently, the elements of
the camera projection matrix, are not known exactly beforehand. This forces
the algorithm to iteratively update the estimates of the control points. This



re-estimation of the control points is a serious complication, increasing the
number of iterations and degrading derivative information.

3.1.2 Distortion bias

The second major drawback of circle patterns and their detection methods,
is that they are also subject to bias from lens distortion. Lens distortion in-
troduces a nonlinear shape warping to the area of the conic. This warping
subsequently biases the center point of the conic. The extent of the bias is de-
pendent on the amount of lens distortion and the area or radius of the conic,
as illustrated in Figs. 3 and 4.
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Fig. 3. Simulated mean Euclidean distortion bias for circle pattern (circle dia 50
pix) over the considered range of distortion. The collineation error resulting from
Hp is actually reduced by the conic ill-fitting error.

This bias results from the combined effects of two error sources. Firstly, the
nonlinear nature of distortion (1) warps the conic so that it is no longer a
true conic. Certain sections of the conic become elongated or compressed,
all culminating in the introduction of a bias from the eventual conic fitting.
Tracking the equations for only one term of distortion (k;) the second order
least squares conic fitting (i.e minimisation of an algebraic distance): pTQp, is
performed on a sixth order section. This leads to an ill-fitting bias, the extent
of which is illustrated in Fig. 3. The analytical compensation for such bias is
not possible without exact knowledge as to the true undistorted state of the
control points.

The second error source is from the distortion induced local perspective trans-
form, resulting from the conic fitting. This can be visualised, for example,
by taking two circular control points, one at the image center and the other
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Fig. 4. Simulated mean Euclidean distortion bias in patterns of various circle radii,
considered over a range of distortion levels.

somewhere around the perimeter where the distortion is severe. It can be no-
ticed that, compared to the central point, the outer control point seems to
be at positioned at a different relative position. This difference in perspective
induces a bias as before, only now each control point is individually afflicted,
depending on its location within the image. We call this a collineation error.

Considering a general distortion free conic Q, its least square counterpart in
distorted space is calculated by minimising the algebraic expression: 3,(P;, Qf)l-)2,
where Q must be a real proper conic. These two conics are related through a set
of collineations or homographies Hp that map Q to Q through HLQHp = Q
This collineation may be found by taking the orthogonal matrices U and
U that diagonalise Q and Q: UTQU = A and UTQU = A, where A =
diag(M, Aa, As) and A = diag(Xy, X2, A3), and by choosing Ag = diag(y/ A1/,
A2/ A2, /As/As). The collineation Hp is then formed as Hp = UA,U. How-
ever, the equation HLQHp = Q is not unique as it provides only five of the
necessary eight independent constraints. For simulation purposes a unique
solution is obtained in least square sense by minimising 3, (p;, Hpp;)?.

The homography Hp introduces a local perspective bias that we call the
collineation error. Compensation for this bias cannot be directly applied in
real cameras as the undistorted points are always unobservable. The contri-
bution of collineation error source is simulated in Fig 3, revealing that it is
dominant, and is actually reduced by the ill-fitting error. Naturally, distortion
bias is heavily dependent on the size of the feature. This is examined in Fig.
4 for a range of distortion levels and circle diameters. Comparing with the
perspective bias simulated in Fig. 2, a typical low focal length lens, where &,
is roughly in the region of —0.3 — —0.7piz?, distortion bias is likely to be



greater in magnitude than perspective bias. This is verified in section 4. Note
also that distortion bias is not limited to conic fitting, and is present to the
same extent regardless of detection mode, centroids or conic fitting. Fig. 4 also
demonstrates that the effect of bias for circular dot patterns is negligible if the
pixel diameter of the dot is roughly less than ten pixels. This value should be
used as a rule of thumb for optimal performance of a circular type pattern.

For the practitioner, it is always recommended to use sub-pixel conic bound-
aries and bias-free conic estimation procedures. As mentioned, standard Least
Square (algebraic distance) fitting is employed with non sub-pixel boundaries
in this paper. It is well known that this also induces a bias (Zhang, 1997).
However, using this linear technique gives an insight into the relative scales of
these conic estimation biases in comparison with the distortion and perspec-
tive biases. It can be seen (also consult Section 4) that the conic estimation
bias is much smaller than the potential perspective and distortion bias. Thus,
in practice, when using circular type patterns, priority should be given to
the perspective and distortion bias sources. The hierarchy of potential bias
sources is then: those emanating from lens distortion, those from perspective
distortion and lastly from erroneous conic fitting.

3.2 Checkerboard pattern detection

Given an image of a checkerboard pattern, initial estimates of the location
of the intersections can be gathered using standard corner detection methods
(Jain et al., 1995). These estimates are generally within a few pixels of the
true locations. We describe two existing means of refining these initial solutions
using edge information (Willson, 1994; Li and Lavest, 1996) and surface fitting
(Lucchese and Mitra, 2002). We do not address the filtering of points that do
not belong to the pattern (filtering details can be found in Mallon and Whelan
(2007)), or the ordering of data for subsequent comparisons.

3.2.1 FEdge intersections

A fitting function that models line intersections is formulated. In order to use
it with a checkerboard pattern the edges or intensity derivatives in a medium
sized local region W, centered on the initial estimate are first calculated. The
function is then fit using non-linear iterative techniques:

. CR2((p— _ ; 2 Ch2((p— : _ 2
m&n”hle h3((x—hs) cos ha+(y—he) sin h3) +h16 h3((x—hs)sin hy+(y—he) cos hy)

—2hye @R Hy=he)®) _ (g 4))[|?
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where the intersection point is (hs, hg), hq is the height of the derivative profile,
hs is the width of the profile and hs and hy4 are the edge directions. The process
is illustrated in Fig. 5. As lines project to lines under perspective transforma-
tions, this detection method is invariant to perspective bias. However, under
lens distortion, it is clear that lines project to curves, with the result that this
method is affected by distortion bias. Consequently, an analytical proof is not
perused.
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Fig. 5. Control point refinement based on edge fitting. The first image shows the
selected ROI. Middle image shows the edge image contours. The final image shows
the function fit contours from which the control point is calculated.

3.2.2 Corners

Fig. 6. The saddle refinement process. First the blurred ROI with marked saddle
point is shown. Middle image is a contoured image of the intensity profile. Last
image shows the intensity profile of the surface fit from which the saddle point is
calculated.

A category of sub-pixel refinement is based on surface fitting of intensity
around a corner point (Lucchese and Mitra, 2002). For each initial location
estimate, a small region of interest ¥ is considered for fitting. Following blur-
ring, a quadratic function can be linearly fit to the resulting intensity profile,
as demonstrated in Fig. 6 by minimising:
min [s12% + sowy + s3y” + 54w + s5y + s6 — V(z, y)||*.

The intersection point or saddle point is derived from this surface as the inter-
section of the two lines 2s1x 4+ soy+s4 = 0 and sox+2s3y+ s; = 0. In practice,
the small patch U can effectively be considered a single point, especially in
light of the detection accuracy and noise floor. As points project to points
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under both projective and lens distortion transformations, this method has
the desirable properties of being invariant to both perspective and distortion
bias.

4 Experiments

Three sets of experiments are conducted on the synthesised test images de-
scribed in section 2. The sizes of the circular patterns and chessboard are the
same as those detailed in Figure 1. Two of the experiments verify and quantify
the perspective and distortion bias for each detection method and pattern. A
side by side accuracy evaluation for noise and blurring is presented, to give
a benchmark from which to access the magnitude of both bias sources. Fi-
nally, real examples of distortion and projective bias are presented, based on
a combination pattern of circles and squares. For simplicity detection method
labels are shortened, circle centroids are referred to as centroids, conic cen-
troids as conics, checkerboard edge intersections as edges and checkerboard
corner saddle refinements are referred to as corners.

4.1 Noise and Blurring

The performance of each method is examined for a range of Gaussian blurring.
Fig. 7 shows the mean and standard deviation of the Fuclidean errors com-
puted using the true locations. These test image patterns are also projectively
transformed so as conic based compensation can be accessed. This shows that
the expected detection errors remain relatively constant with respect to blur-
ring. Excluding bias corrupted centroids, these errors are roughly in the pixel
range of 0.02 — 0.04, and lower for the edge based method. The robustness of
the detection methods to noise is presented in table 2, for additive normally
distributed noise. The upper level, o = 20 (pix), represents severe noise un-
likely to be encountered in typical calibration shots. Typical values for noise
in images are in the range 0 = 5 to ¢ = 10 pix.

4.2 Positioning

The detection patterns and methods are examined for a range of nine different
projective transformations as shown in Fig. 8. The perspective bias of centroid
detection on circle patterns can be observed, and increases with perspective
severity. These values correspond with their simulated counterparts in Section
3.1.1. These basic statistics do not convey that these errors are not randomly

12



Table 2
Euclidean errors with respect to additive gaussian noises. Errors are compiled over
100 independent trials and are conducted on perspective and distortion free images.

. Centroids Conics Corners Edges

Noise

o (pix) = | Mean SD Mean SD Mean SD Mean SD
1 0 0 0.0281 | 0.0141 | 0.0051 | 0.0026 | 0.0014 | 0.0007
5 0.0012 | 0.0039 | 0.0369 | 0.0198 | 0.0144 | 0.0076 | 0.0067 | 0.0035
10 0.0220 | 0.0122 | 0.0541 | 0.0287 | 0.0279 | 0.0149 | 0.0134 | 0.0070
15 0.0355 | 0.0188 | 0.0657 | 0.0350 | 0.0420 | 0.0221 | 0.0200 | 0.0104
20 0.0447 | 0.0233 | 0.0841 | 0.0805 | 0.0568 | 0.0298 | 0.0265 | 0.0139
Mean Standard deviation
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Fig. 7. The mean and standard deviation for the four methods over a range of
gaussian blur levels. 1 = edges, 2 = corners, 3 = conics and 4 = centroids. Images
are subject to a perspective transform.

distributed, and are in fact biased. Fig. 9 shows one sample of this circle
centroid bias compared with bias free adjusted conic fitting.

4.8 Distortion

The patterns and detection methods are evaluated without perspective warp-
ing over the range of distortion levels. External sources of simulation error have
been shown to have insignificant levels in section 2.2. Fig. 10 shows the mean
Euclidean error of circle pattern detection methods steadily increases with
distortion level. This is in excellent agreement with the simulated distortion
bias of section 3.1.2. Edges based detection, because of its line fitting, reduces
distortion bias somewhat, more so for the pincushion variety due to the fixed
windowing size and distortion induced image expansion. Fig. 11 shows the
distortion simulated images, each with associated detection method, for one
sample of distortion.
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Fig. 8. The mean Euclidean error for the four detection methods (1 = edges, 2 =
corners, 3 = conics, 4 = centroids) simulated over various degrees of perspective
transforms. Centroid bias is clearly shown by the large mean Fuclidean error.
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Fig. 9. Sample of one perspective transformation (cond. = 1.25). Vector plots reveal
the centroid bias. Residual scale = x2000.
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Fig. 10. Illustrates the distortion induced bias in control points for four detection
methods.
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Fig. 11. Left column images show the circle pattern and associated detection method
errors. Right column images show the checkerboard and associated methods. Dis-
tortion level is k; = —1.5pia®. Residual scale = x2000.
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4.4 Real image results

Real examples of bias arising from the use of a particular pattern are shown
in Figs. 12 and 13. These show the spatial differences between the centroid
and corner based control points, measured by means of a special pattern that
combines both circular and square features.
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Fig. 12. Example of bias in real image (size: 2272 x 1704). Circle dia ~ 110 pix,
with estimated primary distortion term: k; = —1.2. Vector plot shows Centroids
(uncorrected conics) and Corner differences, revealing the distortion bias (scale is
x500). Residual mean and SD are 1.475(0.322).
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Fig. 12 shows an example where an effort was made to minimise perspective
distortion (camera was positioned by hand, so undoubtably an element of
perspective distortion still remains). As can be observed, the distortion bias
is significant. Fig. 13 illustrates a second example including a perspective
element. This shifts the apparent center of the bias, but the distortion bias is
still dominant. These examples comprehensively demonstrate that such biases
are not limited to the simulated case, and equally prevalent in real images.
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Fig. 13. Example of bias in real image with the same camera and settings as Fig. 12.
Vector plot shows Centroids (uncorrected conics) and Corner differences, revealing
the almost complete dominance of distortion bias (scale is x500). Residual mean
and SD are 1.272(0.2711).
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5 Conclusion

This paper deals with control point recovery from planar calibration charts,
by investigating if the choice of pattern can improve the overall detection pre-
cision. This accuracy is examined with respect to perspective transformations
and lens distortion. Initially, pattern synthesis issues are detailed, in partic-
ular the generation of accurate lens distortion in images. Two representative
types of patterns are considered: circles and checkerboards, each with two
common methods of control point recovery: centroids, conic fitting, edge ap-
proximation and corner points. We show theoretically and experimentally that
compensated conic fitting, edge approximation and corner points are invariant
to perspective bias, while only corner points are invariant to distortion bias.
Simulated and real results indicate that distortion induced bias can have a sig-
nificant magnitude. For a suboptimal circular dot pattern, even a low level of
distortion, roughly +0.3(piz®), will induce much greater distortion bias than
the conic estimation error, and is also more significant than the likely per-
spective bias encountered with normal calibration views. In such cases, the
compensation for perspective bias only, is clearly not sufficient to acquire bias
free control points. The hierarchy of bias sources for circular type patterns are
then, lens distortion, perspective and finally estimation bias. Regarding the
practical usage of circular dot patterns, it is recommended that the diameter
of the dots are roughly less than ten pixels in order to avoid bias introduction.
The results of the study indicate that even well-accepted calibration methods
may give poorer results than necessary if applied naively. Overall, this paper
highlights these issues in detail and underlines the importance of a correctly
designed pattern in camera calibration.
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