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Abstract

Parameter clustering is a popular robust estimation technique based
on location statistics in a parameter space where parameter samples
are obtained from data samples. A problem with clustering meth-
ods is that they produce estimates not invariant to transformations
of the parameter space. This article presents three contributions to
the theoretical study of parameter clustering. First, it introduces a
probabilistic formalization of parameter clustering. Second, it uses the
formalism to define consistency in terms of a symmetry requirement
and to derive criteria for a consistent choice of parameterization. And
third, it applies the criteria to the practically relevant cases of motion
and pose estimation of three-dimensional shapes. Bias and error statis-
tics on random data sets demonstrate a significant advantage of using
a consistent parameterization for rotation clustering. Moreover, clus-
tering parameters of analytic shapes is discussed and a real application
example of circle estimation given.

Keywords: robust estimation, clustering, Hough transform, statistical con-
sistency.
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1 Introduction

Parameter estimation is generally based upon some parametric model whose
best match to the data is sought. Parameter estimators may be categorized
according to whether they optimize a robust or non-robust match criterion,
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whether they utilize statistics in the data space or in a parameter space, and
whether or not they assume a parametric probability density for the data
or parameters. Parameter clustering (PC) is a technique distinguished by
computing robust location and perhaps dispersion statistics in a parameter
space. Location and dispersion estimates do not require a density model
and, hence, PC is usually realized without assuming specific densities as a
so-called non-parametric technique.

The notion of clustering is used by some authors without relation to
location statistics on parameters or features but with an emphasis on parti-
tioning a data set into distinct groups. In the present context of parameter
estimation, however, partitioning may be a side effect but not the goal.

The general strategy of PC has been exploited for a long time in nu-
merous variations [2, 15, 14, 7, 9], perhaps its most popular incarnation
being the many variants of the Hough transform. Common to all these ap-
proaches is that data samples are drawn from which parameter samples are
computed, often called ‘votes’, that satisfy constraints posed by each data
sample. The intuition is that significant data populations matching an in-
stance of the model constraint will produce many parameter samples that
coincide approximately, hence localize in a cluster.

For methods that are based directly on the data statistics [13], such as
least-squares or M-estimators, the choice of parameterization of the model
constraint does not affect the parameter estimate, as long as the mapping be-
tween parameters and constraint is invertible and sufficiently smooth within
the relevant domain. The situation for parameter-space methods, however,
is quite different in general. For example, the maximum-a-posterior estimate
of a parameter does not transform as the parameters do when changing the
parameterization of the model constraint. Hence, the estimates obtained in
different parameterizations are not equivalent. Likewise, the result of PC is
not invariant to parameter transformation.

This fact brings up the question of a proper choice of parameterization
for clustering, which has not received adequate treatment in the literature.
It is the purpose of this article to analyze the problem from the viewpoint
of statistical consistency. The latter requires of an estimate that it matches
some property of the underlying data population in the limit of having
infinite data samples. If one assumes a specific parametric form of the data
population, one requires that the estimated parameter should take the value
underlying the given population. For PC as a non-parametric technique, on
the other hand, consistency shall here be defined to require that symmetry
in the data be reflected in the estimates. This will yield general criteria for
choosing a consistent parameterization. The criteria will be applied to the
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practically relevant cases of motion and pose estimation of three-dimensional
(3D) shapes, and of straight line and circle estimation.

In the next section, I point out the difference of the present analysis to
some major previous studies on consistency or parameterization in PC. Sec-
tion 3 introduces the general estimation problem considered and the math-
ematical framework for its analysis; the PC algorithm and the concept of
consistency are defined; criteria for consistency are derived. In section 4,
the cases of motion and pose clustering are treated; bias and error statis-
tics on random data sets demonstrate the advantage of using a consistent
parameterization. Clustering parameters of analytic shapes is discussed in
section 5; a real application example of circle estimation is given. In section
6, I note the main questions that are not addressed in the analysis. Section
7 summarizes and concludes this study.

2 Relation to previous work

By far most studies of systematic errors in PC relate to its most popular
variant, the Hough transform. Among all these studies, however, only few
address the issue of consistency or parameterization.

The work in [12] discusses the inconsistency of a number of robust estima-
tors for special mixture populations of data. Although the author includes
the Hough transform in his analysis, he treats it as equivalent to random
sample consensus (RANSAC) and, hence, does not capture effects of the
parameter space. The inconsistency analyzed in the present work is related
to the parameter space and not to the data population.

Assuming a specific distribution of background data additional to the
structure of interest, one may find a parameterization or parameter-space
quantization such that the background contribution is uniform in parame-
ter space. This idea is pursued in [3, 1, 8, 6] for the detection of simple
planar structures. In fact, the resulting algorithm can be viewed as a statis-
tical significance test against the null hypothesis of a pure background-data
distribution. In most applications, however, the actual distribution of back-
ground data in each individual data set will itself differ significantly from
any a-priori assumption, and structure detection may thus not be enhanced;
cf. [6]. In the present work, the goal of parameterization is not optimal
signal detection, but consistency of the parameter estimate. Adequate pa-
rameterizations do not depend on the background-data distribution, but on
intrinsic properties of the parametric model constraint.

For the Hough transform, there is a relationship of the parameter-space
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quantization to an equivalent template in data space, which is analyzed in
[10]. The authors conclude that an adequate choice of parameterization and
quantization should yield a template shape that matches the sought data
populations. Their analysis does not extend to continuous parameter spaces.
As above, the proposed criterion for a good parameterization is dependent
upon the data population and not directly related to the consistency of a
parameter estimate. In the present study, continuous parameter spaces are
considered, while their uniform quantizations are trivially covered by the
analysis as well. The derived criteria for a consistent parameterization are
independent of the underlying data population.

The work most closely related to the present one is found in [5]. The
authors discuss the adequacy of various line parameterizations for yielding
consistent estimates of line orientation in the plane by the Hough trans-
form. However, they do not provide the mathematical framework required
to generalize the analysis to other estimation problems. Here, we start out
from the mathematical framework, provide general criteria for consistent
parameterizations, and then derive some practically relevant cases.

3 Parameter clustering

In this section, the general estimation problem and the PC approach consid-
ered are formalized. Based on the formalization, a consistency requirement
is defined and necessary and sufficient conditions for consistent parameteri-
zations are derived.

3.1 The estimation problem

Suppose we want to estimate a transformation T from a model- or data-
point set X ⊂ R

m to a data-point set Y ⊂ R
n. The transformation of a

point x ∈ R
m is assumed to have the general parametric form

T (x, α) = F (Gα(x)) = F ◦Gα(x) , (1)

where {Gα | α ∈ P} is a d-dimensional Lie group charted in a parameter
space P ⊂ R

d and F is a continuously differentiable function on R
m. For a

set of corresponding point pairs (x, y) ∈ C ⊂ X×Y and a unique parameter
value α ∈ P, we thus have the relation

y = T (x, α) + εx,y , (2)

where εx,y ∈ R
n are measurement errors. The estimation goal is to uncover

the transformation T = F ◦Gα between the point sets X and Y .
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For instance, in motion or pose estimation {Gα | α ∈ P} is the 6D
Euclidian group acting on points x ∈ R

3; or in shape estimation it may
be the 3D group of deformations that maps the unit sphere onto the set of
ellipsoids. The function F is the identity, if the points Y are range data, or
perspective projection with lens distortion, if Y is a set of 2D image points.
However, the present analysis applies equally to cases of non-visual data and
estimation problems, as long as the transformation is of the general form
(1).

If the point correspondences C between X and Y are known and the
measurement error εx,y is isotropic Gaussian, the maximum-likelihood esti-
mate is obtained through solving the least-squares problem,

α̂ = arg min
α∈P

∑

(x,y)∈C

||y − T (x, α)||2 , (3)

where || · || denotes the Euclidean norm. More general Gaussian error as-
sumptions require usage of the Mahalanobis distance in place of the Eu-
clidean norm.

However, point correspondences are often unknown. By far most of the
point pairs X × Y will not follow the transformation (2) for any parameter
value α ∈ P. This is true even in the ideal case that the whole data set X
is mapped onto Y by a single transformation T = F ◦Gα, and often only a
subset of X will match a subset of Y . Estimating the transformation from
all point pairs X×Y , one is thus faced with a typically very high proportion
of outliers

card(X) card(Y )

card(C)
− 1 > max(card(X), card(Y )) − 1 � 1 , (4)

which is why a robust estimator is needed. Moreover, accurate measurement-
error models are rarely available, making a non-parametric technique desir-
able. This is where PC comes in and why it is so popular. For its analysis,
we need a formal definition of the PC estimate.

A definition of a parameter estimate without reference to corresponding
points or an error model may be given in terms of the associated parameter-
probability density, which is derived as follows. Let a unique transformation
T = F ◦Gα, and hence a unique parameter value α ∈ P, be determined by
posing the Nn constraints

yi − T (xi, α) = 0 , i = 1, 2, . . . , N , (5)

for any non-degenerate set of N point pairs (xi, yi) ∈ R
m+n. In order to

satisfy all the constraints, it may be necessary to enlarge the group {Gα |α ∈
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P} by inclusion of nuisance parameters. For instance, when estimating rigid
motions, such extra parameters may describe virtual deformations needed
to match three point pairs. In the final estimate, however, these nuisance
parameters are constrained to the values defining the original group.

In the following, we shall write bold Greek symbols α = (α, ᾱ) ∈ P ×
N to denote the parameters α ∈ P together with any required nuisance
parameters ᾱ ∈ N . The original group {Gα | α ∈ P} is a subgroup of
{Gα | α ∈ P ×N}. Without loss of generality, we may assume that Gα =
G(α,0) for all α ∈ P. We will sometimes write α ∈ P as a shorthand
for (α, 0) ∈ P × {0}. For the data, we will use the bold notations x =
(x1, x2, . . . , xN ) ∈ R

Nm, y = (y1, y2, . . . , yN ) ∈ R
Nn, and

y = (T (x1,α), T (x2,α), . . . , T (xN ,α)) ≡ T (x,α) ≡ F (Gα(x)) . (6)

Let p(x,y) be the probability density on R
N(m+n) for N data-point pairs

from X×Y . Because, given N data-point pairs (x,y), we have y = T (x,α)
for a unique parameter value α ∈ P × N , we can transform the data-pair
density p(x,y) to the data-parameter density

ρ(x,α) = p(x, T (x,α)) |det ∂2T (x,α)| (7)

on R
Nm × P × N . Here ∂2T (x,α) is the Nn × Nn derivative of T (x,α)

w.r.t. α, det denotes the determinant, and | · | the modulus. By integrating
(7) over the data space R

Nm, we obtain the probability density on P × N
of measuring N point pairs related through the transformation T = F ◦Gα,

ρ(α) =

∫

RNm

dx ρ(x,α) =

∫

RNm

dx p(x, T (x,α)) |det ∂2T (x,α)| . (8)

We shall refer to ρ(α) as the parameter density. This is the key quantity for
analyzing PC.

A reasonable parameter estimate can now be defined as the location in
parameter space P of the maximum of the parameter density (8),

α̂ = arg max
α∈P×{0}

ρ(α) . (9)

Indeed, the estimate (9) is a formalization of the objective of PC.
One type of PC, notably the classic-style Hough transform, does not

exploit the N -fold constraints (5), but only a single one. In that case, the
parameter manifold defined by the constraint has to be mapped out in P.
The resulting parameter density ρ(α) depends upon the mapping procedure,
and the parameter estimate (9) is not necessarily the same as when exploiting
N -fold constraints.
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3.2 The algorithm

The ideal PC estimate (9) is not feasible in practice since it depends on the
parameter density which in turn derives from the unknown data density.
Any PC algorithm must approximate the parameter estimate (9) by drawing
a finite data sample and computing the corresponding parameter sample
from it. Hence, PC may proceed as follows.

1. Do until a significant sample {α1, α2, . . .} ⊂ P of parameter values is
collected.

(a) Randomly draw N point pairs {(x1, y1), (x2, y2), . . . , (xN , yN )}
from X × Y .

(b) Compute the parameter value α ∈ P ×N that satisfies the con-
straints (5) posed by the drawn point pairs. If all nuisance pa-
rameters are within the tolerance range, collect the associated
parameter value α ∈ P.

2. Compute location and perhaps dispersion statistics for significant clus-
ters of the collected parameter sample {α1, α2, . . .} ⊂ P.

The estimated centers of parameter clusters may be taken as the parameter
estimates for independent model instances in the data, or all the data-point
pairs that contribute to a cluster may be used to re-estimate a parameter
by some local, non-robust technique, such as (3). Rather than exploiting
all clusters found in a single run, one may remove the data of the most
prominent cluster and re-run the PC algorithm on the remaining data. This
will improve the statistics for the weaker clusters.

In step 1b of the PC algorithm, we may discard a lot of parameter
samples because they violate the constraint on a nuisance parameter more
than tolerable. Indeed, we only want to sample the parameter density (8)
within the parameter subspace P. Therefore, to keep the total sampling
time at a minimum, it is desirable to already constrain the data sampling
procedure of step 1a to adequate sets of point pairs.

In practice, an alternative approach to actually computing nuisance pa-
rameters from the constraints (5) is to solve only for the sought parameters
α ∈ P by minimizing an error function analogous to (3). Samples can then
be selected based on a low residual error, or properly constrained data sam-
pling ensures that (5) is approximately satisfied.
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3.3 Dependence of the estimate on the parameterization

In all of the above formalization of PC, a free choice of the parameterization
of the transformation group has remained. However, the outcome of PC,
i.e., the estimated transformation T = F ◦ Gα̂ with parameter estimate α̂
given by (9), depends upon this choice. While this fact is well known, it is
not always taken care of. It will be illustrated here by an example.

Suppose we estimate some positive transformation parameter α ∈ [0,∞),
say a scale factor. The parameter density for a given data population may
be

ρ(α) = α e−α , (10)

which is a special gamma distribution. According to (9), the ideal PC
estimate is then α̂ = 1.

Alternatively, we could parameterize scale with β =
√
α ∈ [0,∞). The

parameter density then is

ρ′(β) = 2β3 e−β2

, (11)

another gamma distribution, and the ideal PC estimate (9) turns out to be
β̂ =

√

3/2.

Now, while β =
√
α, we are faced with β̂ 6=

√
α̂. Hence, the transforma-

tions estimated in the two parameterizations differ,

F ◦Gα̂ 6= F ◦Gβ̂2 . (12)

3.4 Consistent parameterizations

Statistical consistency usually requires of an estimator that, for every data
population with underlying parameter value α ∈ P, the estimate would be
this value α in the limit of infinite data samples. In general, this is impossible
to achieve without knowledge of the specific parametric data density. In PC,
we do not assume such detailed model knowledge, which makes PC a non-
parametric technique.

While consistency in the usual sense is defined with reference to the
specific data population for all α ∈ P, we now consider the opposite extreme
of an α-invariant data population. This will provide us with a weaker form
of consistency that does not depend upon the parametric data population.

Hence, suppose we were faced with a population of data points that is
symmetric w.r.t. the group {Gα | α ∈ P}, i.e., the data density is invariant
to transformation with Gα,

p(x,y) = p(Gα(x),y) |det ∂Gα(x)| ∀ α ∈ P . (13)
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Consistency of PC then requires that this symmetry be reflected in the
estimates, which should not be biased towards any particular transformation
T = F ◦Gα̂ with α̂ given by (9). Clearly, the only way of insuring this is by
making the parameter density associated with the symmetric data density
uniform,

ρ(α) = const. ∀ α ∈ P × {0} . (14)

In this spirit, we now define consistency for a PC estimator.
Definition 1: Let {Gα | α ∈ P} be a parametric group and let {Gα | α ∈
P × N} be the super-group including the nuisance parameters required to
satisfy the constraints (5). A PC estimator of parameter α ∈ P is consistent,
if the parameter population arising from a group-symmetric data population
is uniform, that is, (14) is satisfied whenever (13) holds.

Note that condition (13) is independent of the parameterization, while
(14) is not. Therefore, requiring the relation between the two is in fact a
selection criterion for parameterizations.

The relevance of consistency in the sense of Definition 1 is that it avoids
a fundamental bias in the parameter population which otherwise derives
from the topology of the underlying group. Such a bias would show up in
the PC estimate (9), even in the limit of infinite data samples and for all
data populations, not just for group-symmetric ones; see section 4.2.

For many groups, there cannot really be an invariant data population.
This is impossible, in particular, for the non-compact groups, such as the
translation group, as there cannot be an infinitely extended, homogeneous
data population. Put mathematically, the associated data and parameter
densities could not be normalized. However, we are not concerned here with
the question of whether such a data population exists. We only want to
know whether PC would deal with it the right way, if it existed. This leads
us to a criterion for parameterizations consistent with the group {Gα |α ∈ P}
that applies regardless of whether or not group-symmetric data exist.
Assertion 1: Let the group and super-group be given as in Definition 1.
Furthermore, let the function

g : (P ×N )2 → P ×N (15)

be defined through the composition law in the super-group,

Gg(α,β) = Gα ◦Gβ . (16)

For a group-invariant data density, cf. eq. (13), the associated parameter
density is uniform, cf. eq. (14), if and only if the condition

|det ∂1g(α,β)| = 1 ∀ α,β ∈ P × {0} (17)

9



holds for the chosen parameterization.
Proof: Transforming the points X according to x 7→ Gβ(x), we obtain the
data density

p′(x,y) = p(G−1
β (x),y)

∣

∣

∣
det ∂G−1

β (x)
∣

∣

∣
(18)

and the associated parameter density

ρ′(α) =

∫

RNm

dx p′(x, T (x,α)) |det ∂2T (x,α)| (19)

=

∫

RNm

dx p(G−1
β (x), T (x,α))

∣

∣

∣
det ∂G−1

β (x)
∣

∣

∣
|det ∂2T (x,α)| ;

cf. eq. (8). Transforming now back, x 7→ G−1
β (x), we get

ρ′(α) =

∫

RNm

dx p(x, T (Gβ(x),α)) |∂2T (Gβ(x),α)| . (20)

We can exploit the super-group composition to write the relation

T (Gβ(x),α) = F (Gα ◦Gβ(x)) = T (x, g(α, β)) , (21)

and, taking its derivative w.r.t. α,

∂2T (Gβ(x),α) = ∂2T (x, g(α, β)) ∂1g(α, β) . (22)

Let us substitute eqs. (21) and (22) into eq. (20) to find

ρ′(α) =

∫

RNm

dx p(x, T (x, g(α, β)))

× |det ∂2T (x, g(α, β))| |det ∂1g(α, β)|
= ρ(g(α, β)) |det ∂1g(α, β)| . (23)

Equation (23) states that the parameter density of the group-transformed
data is equal to the super-group-transformed parameter density.

Now, let us consider the case relevant to parameter consistency. For a
group-invariant data population, cf. eq. (13), we get ρ′ = ρ, and hence from
(23)

ρ(α) = ρ(g(α, β)) |det ∂1g(α, β)| . (24)

If the parameter density is uniform, cf. eq. (14), it follows immediately
from (24) that (17) must hold. Conversely, if (17) holds, then (24) implies
uniformity on P × {0}, since for every α, γ ∈ P there is a β ∈ P such that
γ = g(α, β). q.e.d.
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In the light of Assertion 1, we can now define the consistency of a pa-
rameterization as follows.
Definition 2: Let the group and super-group be given as in Definition 1.
The parameterization with α ∈ P is consistent, if condition (17) is satisfied.

The connection with Definition 1 is, of course, that a PC estimator
is consistent when clustering consistent parameters, if a group-symmetric
data population exists. The latter condition is a technical requirement that
is made obsolete by only discussing parameter consistency in the sense of
Definition 2.

It is interesting to note that condition (24) implies that

∫

A×{0}
dα ρ(α) =

∫

A×{0}
dα ρ(g(α, β)) |det ∂1g(α, β)|

=

∫

g(A,β)×{0}
dγ ρ(γ) , (25)

for any measurable parameter set A ⊂ P and its transformation by Gβ,

g(A, β) = {γ ∈ P | γ = g(α, β) , α ∈ A} . (26)

Condition (25) is known as the right invariance of the measure on the group
{Gα | α ∈ P}, and it means by definition that ρ(α) dα on P × {0} is the
right-invariant Haar measure of this group. Intuitively, an invariant Haar
measure assigns equal weight to all group elements Gα. Left- and right-
invariant Haar measures exist and are each unique (but not necessarily the
same) up to a scale factor for all locally compact topological groups; for
details see, e.g., [11], or any textbook on topological groups. In practice, the
left- and right-invariant Haar measures will uniquely exist for all parameter
estimation problems.

We can now state that the parameter density for group-invariant data
density is equal to the right-invariant Haar measure of the group. This
result is very intuitive, as every group element should have equal weight in
the density. The functional form of the Haar measure, in turn, depends upon
the parameterization. This insight establishes another useful formulation of
the condition for parameter consistency.
Assertion 2: Let the group be given as in Definition 1. The parameteriza-
tion with α ∈ P is consistent, if and only if the right-invariant Haar measure
of the group is uniform in this parameterization.

Note that only for a consistent parameterization, the invariant Haar
measure can be transferred to the final PC estimates (9), such that equal
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weights are obtained for the group estimates given group-invariant data
density.

Assertion 2 has the special appeal that it makes no reference to any
nuisance parameters or to the function F that is part of the sought trans-
formation T = F ◦Gα. It thus makes explicit the fact that consistency of a
parameterization does not depend upon a particular choice of nuisance pa-
rameters or upon F , as long as a unique transformation T can be determined
from a finite number N of data pairs from X × Y ; cf. eq. (5).

4 Motion and pose clustering

In this section, we specialize {Gα |α ∈ P} to the Euclidean group of motions
in 3D, that is, for a point x ∈ R

3,

Gα(x) = R(α)x+ t(α) , (27)

with a rotation R(α) ∈ SO(3) and a translation t(α) ∈ R
3, parameterized

by α ∈ P ⊂ R
6. We want to estimate transformations T = F ◦ Gα from

points X ⊂ R
3 to points Y , where F is either the identity, hence Y ⊂ R

3 are
range data, or a perspective projection, including any distortions, to image
points Y ⊂ R

2.

4.1 A consistent parameterization

A rigid motion between 3D point sets can be uniquely determined from three
point pairs, hence N = 3 for the constraints (5). For uniquely mapping 3D
model points to 2D image points, N = 4 point pairs are required. In both
cases, we need nuisance parameters for deformations in order to satisfy (5).

Let us consider the consistency condition (17) for parameterizations. We
have to analyze the parameters γ = g(α, β) ∈ P ×N of a composition Gα ◦
Gβ of a rigid motion, described by β ∈ P, and a motion with deformations,
described by α ∈ P × N . Under this composition, a point x ∈ R

3 is
transformed according to

Gγ(x) = Gα ◦Gβ(x) = M(α)R(β)x +M(α) t(β) + t(α) , (28)

where M(α) ∈ GL(3) represents a rotation with deformation. We can make
use of the polar factorization of M(α) to write

M(α) = D(ᾱ)R(α) , (29)
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with unique rotation R(α) ∈ SO(3), α ∈ P, and symmetric matrix D(ᾱ),
ᾱ ∈ N , representing the deformation.

Let us introduce the notation α = (αr, αt), where αr ∈ R
3 and αt ∈ R

3

are rotational and translational parameters, respectively. Substituting (29)
into (28), we then obtain

Gγ(x) = D(ᾱ)R(αr)R(βr)x+D(ᾱ)R(αr) t(βt) + t(αt)

= D(ᾱ)R(γr)x+D(ᾱ)R(αr) t(βt) + t(αt) , (30)

where the rotation parameter γr describes the composition of rotations,

R(γr) = R(αr)R(βr) . (31)

We can read the structure of the sought parameter dependencies from (30).
Assuming that we have k nuisance parameters describing deformations, the
(6 + k) × (6 + k) matrix of parameter derivatives has the form

∂1g(α, β) =





∂γr/∂αr 03,3 03,k

∂γt/∂αr ∂γt/∂αt ∂γt/∂ᾱ
0k,3 0k,3 1k



 , (32)

where 0r,s ∈ R
r×s is a matrix with all coefficients zero, 1r ∈ R

r×r is the
identity matrix, and the other terms represent, in a somewhat sloppy but
intuitive notation, the α- and β-dependent partial derivatives with their
respective dimensions. The determinant of (32) turns out to be simply

det ∂1g(α, β) = (det ∂γr/∂αr) (det ∂γt/∂αt) . (33)

Choosing the translational parameters to be the translation vector itself,
i.e., αt ≡ t(αt), we can see from (30) that ∂γt/∂αt = 13, such that (33)
simplifies further to

det ∂1g(α, β) = det ∂γr/∂αr . (34)

Thus, with the natural choice of translation parameters, we obtain consistent
parameters for the Euclidean group, if we choose consistent parameters for
the rotational subgroup.

We shall find consistent rotation parameters by the criterion given in As-
sertion 2. Let us consider the canonical parameters αr = (α1, α2, α3) ∈ Pr ⊂
R

3 of SO(3). The canonical parameters are related to rotations through the
exponential function of matrices,

R(αr) = exp(α1 Λ1 + α2 Λ2 + α3 Λ3) , (35)
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where Λ1,Λ2,Λ3 are infinitesimal rotations about three orthogonal axes. In
fact, ||αr|| ∈ [0, π] is the angle and αr/||αr|| the oriented axis of the rotation
R(αr). This parameterization is one-to-one within the sphere Pr = {αr ∈
R

3 | ||αr|| < π}. Rotations with parameters ||αr|| = π are identical to those
with parameters −αr.

It is easy to derive consistent parameters, starting out from the canoni-
cal parameters. The rotation group is a so-called unimodular group, which
means that left- and right-invariant Haar measures are the same. For sym-
metry reasons, it is clear that the invariant Haar measure of rotations can
be written in polar form as

µHaar(α1, α2, α2) dα1 dα2 dα3 = µ(a) a2 sin θ da dφ dθ , (36)

where µ is an appropriate density function on R+, a = ||αr|| is the rotation
angle, and φ and θ are azimuthal and polar angles, respectively, in the
parameter space Pr of canonical parameters. In consistent parameters αc

r =
(αc

1, α
c
2, α

c
3) ∈ Pc

r ⊂ R
3, the Haar measure is uniform, that is,

dαc
1 dα

c
2 dα

c
3 = (ac)2 sin θ dac dφ dθ , (37)

with ac = ||αc
r ||. Equating (36) with (37) and solving for ac, we arrive at

ac ∝
[∫ a

0
da′ µ(a′) a′2 + const.

]1/3

. (38)

The integral is just the cumulative distribution function of the rotation angle
a associated with the rotational Haar measure. Now, noting that the Haar
measure on the 3D unit sphere of quaternions

(

cos a/2,
sin a/2

a
α1,

sin a/2

a
α2,

sina/2

a
α3

)

∈ S3 (39)

is the Lebesgue measure, we can straightforwardly calculate the cumulative
distribution function as an integral over quaternions. On the quaternion
sphere, we have to integrate over a polar cap around (1, 0, 0, 0) down to a
polar angle of χ = a/2 to get the cumulative distribution function

P (a) =

∫ a

0
da′ µ(a′) a′2 ∝

∫ a/2

0
dχ (sinχ)2 =

a− sina

4
. (40)

Finally, if we choose to map αr = 0 onto αc
r = 0 and ||αr|| = π onto ||αc

r || = 1,
we obtain from (37), (38), and (40) the consistent parameters

αc
r =

( ||αr|| − sin ||αr||
π

)1/3 αr

||αr||
. (41)
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Figure 1: Consistently mapped angle ac = ||αc
r || vs. rotation angle a = ||αr||

as given by eq. (41). The straight dashed line indicates a pure rescaling of
the angle and is drawn for comparison. Only the nonlinearity is effective for
PC.

As in canonical parameters, αc
r/||αc

r || = αr/||αr|| is the oriented axis of
the rotation. The consistent parameterization is one-to-one within the unit
sphere Pc

r = {αc
r ∈ R

3 | ||αc
r || < 1}. Rotations with parameters ||αc

r || = 1 are
identical to those with parameters −αc

r .
The transformation (41) from canonical parameters to consistent param-

eters is a nonlinear mapping of the rotation angle, leaving the rotation axis
unchanged. Figure 1 shows a plot of the angular map. Note that a pure
rescaling of the angle has no effect on the PC estimate of a transformation
T = F ◦Gα̂ with α̂ given by (9).1 All that matters here is the nonlinearity
in the mapping. Although the nonlinear difference between canonical and
consistent parameters may seem small, it will be demonstrated in section
4.2 that the effect of using consistent parameters may be quite significant.

There are other families of consistent rotation parameters which may be
derived in an analogous fashion. For instance, from Euler angles (ψ, θ, φ),
one simply obtains (ψ, cos θ, φ). However, the ambiguity in ψ and φ at
cos θ = 1 may spoil the location statistics for clustering. Therefore, the
consistent parameters (41) are considered in the following.

1Rescaling is just changing the units of measurement.
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4.2 Relation of parameter consistency to estimation

accuracy

In section 3.4, we have defined consistency as a symmetry requirement:
symmetry in the data population w.r.t. the parametric group should be re-
flected in the parameter population, such that the PC estimate is uniformly
distributed. There is hence no bias in a sample of consistent parameters
incurred from the group topology. Conversely, a sample of inconsistent pa-
rameters will have such a fundamental bias which shows up as a bias in the
PC estimate (9), even in the limit of infinite data samples.

The relation between consistency and accuracy is now illustrated for
the case of rotation estimation. Bias and error statistics are presented on
random point sets that are subject to random rotations with various levels
of noise. Three variants of PC are tested to emphasize the universal nature
of the effect of parameter consistency.

4.2.1 The data

As test data, 500 points were randomly drawn from the uniform distribution
in the 3D unit sphere. The points were rotated through a random rotation,
drawn from the uniform distribution on the quaternion unit sphere. Finally,
independent isotropic Gaussian noise was added to each of the original and
rotated points, yielding the data-point sets X and Y , respectively. The noise
standard deviation was varied from σ = 0.01 to σ = 0.02 in steps of 0.001.
For each value of the noise standard deviation σ, 1000 data sets X and Y
were generated.

4.2.2 The algorithms

The rotation from the points X to the points Y was estimated by PC in
canonical parameters (35) and in consistent parameters (41). For each pa-
rameterization, three variants of the general PC algorithm, as defined in
section 3.2, were applied.

One variant of PC is in the style of an enhanced Hough transform. Pa-
rameter samples are counted in a discrete parameter space (100 bins in each
dimension) and the bin that has received the maximum count is picked.
All the data-point pairs that contribute to this bin are then used for a fi-
nal least-squares estimate of rotation. We refer to this PC variant as the
least-squares PC.

The second variant of PC returns the component-wise median of the
parameter samples as the rotation estimate. Because rotation parameters
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have a cyclic topology, however, computation of a meaningful median re-
quires that the parameter space be reasonably centered. Thus, as in least-
squares PC, we start by picking the parameter bin that has received the
highest count. We then transform the rotation parameters such that this
bin is at the origin of the parameter space. The median is computed in the
transformed parameter space. We refer to this PC variant as the median
PC.

The third variant of PC computes a mean-shift estimate of the location
of the maximum parameter density [4]. The window size for the local av-
eraging is adapted to the local parameter density so as to keep the number
of averaged samples approximately constant. We refer to this PC variant as
the mean-shift PC.

For all PC variants, clustering was based on 106 pairs of point triples,
randomly sampled from X and Y , respectively. Approximate congruence
of the point triples was enforced by drawing the Y -triple from a hash table
with the three X-point distances as a key. The bin width in the hash table
was 0.02, i.e., equal to the maximum noise standard deviation σ, in each
distance dimension.

4.2.3 Angle bias

From the 1000 data sets with underlying rotations Ri, we obtained 1000
rotation estimates R̂i, i = 1, 2, . . . , 1000, for each noise level and PC vari-
ant. The rotation angles ang(Ri) and ang(R̂i) are a measure of the size of
rotations, and their sample bias is

Bang =
1

1000

1000
∑

i=1

[

ang(R̂i) − ang(Ri)
]

. (42)

Figure 2 shows that with increasing noise level, a significant angle bias de-
velops for all three PC variants with canonical parameters. In fact, the size
of rotation is systematically under-estimated. On the other hand, the same
plots show that no such bias exists with consistent parameters.

4.2.4 Rotation error

The quantity of primary interest for evaluating an estimator is, of course, the
estimation error. The angle of the rotations R−1

i R̂i that join the estimated
and true rotations, i = 1, 2, . . . , 1000, is a natural error measure for rotations.

17



0.01 0.012 0.014 0.016 0.018 0.02

-0.8

-0.6

-0.4

-0.2

0

0.01 0.012 0.014 0.016 0.018 0.02
-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.01 0.012 0.014 0.016 0.018 0.02
-1

-0.8

-0.6

-0.4

-0.2

0

B
[r

ad
]

an
g

B
[r

ad
]

an
g

B
[r

ad
]

an
g

σ

m
ed

ia
n

 P
C

le
as

t−
sq

u
ar

es
 P

C
m

ea
n

−s
h

if
t 

P
C

Figure 2: Angle bias Bang for least-squares, median, and mean-shift PC in
canonical (dashed lines) and consistent parameters (solid lines) as a function
of the noise standard deviation σ. The error bars are standard errors of the
mean.
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The sample-mean error thus is

Erot =
1

1000

1000
∑

i=1

ang(R−1
i R̂i) . (43)

As can be seen in Fig. 3, the accuracy of all estimates degrades with in-
creasing data noise, with the rotation error increasing on sigmoidal curves.
Indeed, all tested PC algorithms are driven from a regime of accurate esti-
mation to total break down within the range of noise applied. The accuracy
of PC with consistent parameters, however, degrades more gracefully than
with canonical parameters.

To more easily appreciate the advantage of consistent over canonical
parameters, Fig. 4 shows the sample-mean ratio of canonical and consistent
rotation errors,

Qrot =
1

1000

1000
∑

i=1

ang(R−1
i R̂i)

ang(R−1
i R̂c

i )
, (44)

where R̂i is now the estimate with canonical and R̂c
i with consistent param-

eters, as a function of the sample-mean rotation error (43) with consistent
parameters. It can be seen that consistent parameters outperform canoni-
cal parameters throughout, from the regime of accurate estimation to total
break down. In fact, the canonical error grows more than an order of mag-
nitude larger than the consistent error for all PC variants. At a reasonably
accurate consistent estimate with error ≤ 0.1 rad, the canonical estimate
has an error of up to 0.8 rad for least-squares PC, up to 2.5 rad for median
PC, and up to 2.0 rad for mean-shift PC. Only at the very lowest error close
to zero is the advantage of using consistent parameters negligible. Note
that the dramatic improvement in estimation accuracy results entirely from
a moderate change in parameterization; cf. Fig. 1.

5 Clustering parameters of analytic shapes

There are estimation problems that may seem not to fit under the general
form defined in eq. (2). In particular, one often seeks in a data set the
parameters of a family of shapes that is given in an analytic form, such as
lines, circles, or quadrics. In such cases, there is no other data set to be
matched to the given one.

A parametric family of shapes, however, may usually be generated by
applying a group of transformations to a single ‘root’ shape from that fam-
ily. Estimating the shape parameters is hence equivalent to estimating this
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Figure 3: Mean rotation error Erot for least-squares, median, and mean-shift
PC in canonical (dashed lines) and consistent parameters (solid lines) as a
function of the noise standard deviation σ. The error bars are standard
errors of the mean.
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transformation. Moreover, the analytic form of the root shape defines a
(usually continuous) point set. In this way, matching of analytic shapes to
data is just a special case of the general framework developed here.

A prominent example of analytic shape matching is straight line detec-
tion in the plane. Any straight line may be generated from, say, the line
{(x, y) ∈ R

2 | y = 0} through rotations and translations along the rotated
normal. Choosing the rotation angle φ ∈ [0, π) and translation distance
t ∈ R as the parameters, a combination of two such motions (φ1, t1) and
(φ2, t2) yields the parameters (φ3, t3) = (φ1 + φ2, t1 + t2), which is just
a translation in parameter space. Evidently, this parameterization fulfills
condition (17) and is thus consistent. It turns out that insuring consistency
leads to the usual recommendations for line parameterization [5].

As another example, consider the case of circle estimation in the plane.
A general circle may be generated from the unit circle through translation
and scaling. The naive parameterization by center (cx, cy) ∈ R

2 and radius
r ∈ R+ does not fulfill condition (17), but (cx, cy, ln r) does. The potential
effect of adopting the consistent parameters instead of the naive ones is now
illustrated by an example.

For automated satellite capturing, it is useful to process images of the
satellite nozzle; see Fig. 5. The goal is to estimate the parameters of the
nozzle edge from points determined by some edge operator. A PC algorithm
operating in the naive parameter space is based upon the parameter density
ρ(cx, cy, r), one operating in the consistent parameter space is based upon
ρc(cx, cy , ln r). According to the general rules for transforming densities,
they are related through

ρc(cx, cy, ln r) = r ρ(cx, cy, r) . (45)

Let (c∗x, c
∗
y, r

∗) denote the correct values for the nozzle center and radius. In
order to visualize the effect of the different radial parameterizations, Fig. 6
shows the conditional densities

ρ(r|c∗x, c∗y) =
ρ(c∗x, c

∗
y, r)

∫

R+
dr′ ρ(c∗x, c

∗
y , r

′)
, (46)

ρc(ln r|c∗x, c∗y) =
ρc(c

∗
x, c

∗
y, ln r)

∫

R
d(ln r′) ρc(c∗x, c

∗
y, ln r

′)
, (47)

and the marginal densities

ρ(r) =

∫

R2

dcx dcy ρ(cx, cy, r) , (48)

ρc(ln r) =

∫

R2

dcx dcy ρc(cx, cy, ln r) , (49)
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image edges

Figure 5: Image of a satellite nozzle and its edge density. The latter was
computed from local intensity variations, exploiting prior knowledge on noz-
zle position as predicted from previous image frames.

or, more precisely, the respective empirical frequencies of parameter sam-
ples. Evidently, while samples with the correct radius r∗ or log-radius ln r∗

dominate at the correct center position (c∗x, c
∗
y), there is a dominant mode of

smaller circles among all samples. These outlier samples derive largely from
reflections on the right inner side of the nozzle that contribute a significant
share of edge points; cf. Fig. 5. The problem for a PC algorithm is to find
the correct mode around (c∗x, c

∗
y, r

∗) or (c∗x, c
∗
y, ln r

∗), respectively, without
getting biased by the many outlier samples. In this situation, it is signifi-
cant that the bias towards smaller circles is just slightly weaker among the
log-radial samples than among the radial samples; cf. the lower plot in Fig. 6.
Indeed, a mean-shift procedure estimates a circle radius of 71.7 pixels in the
(cx, cy, r)-parameter space and of 72.7 pixels in the (cx, cy, ln r)-parameter
space, the correct value being r∗ = 74.1 pixels. The radial estimation error
made with naive parameterization is hence about 70% larger than with con-
sistent parameterization. For the center position, the estimate obtained with
naive parameterization is a non-significant 0.04% worse than that obtained
with consistent parameterization.

Note that, although the outliers form the dominant mode in the marginal
parameter densities (48) and (49), they do not dominate the joint parameter
densities ρ(cx, cy, r) and ρc(cx, cy , ln r) that respectively drive the naive and
consistent PC algorithms. In fact, if they did, it would be impossible to get
close to the correct parameters with any parameterization.

Other images may, of course, give rise to a more favorable distribution of
parameter samples than in the example given here. In such cases, using the
consistent instead of the naive parameterization may not have a significant
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Figure 6: Relative frequencies of radial parameter samples (black thin
curves) and log-radial parameter samples (gray thick curves) computed from
the edge points shown in Fig. 5. The upper plot shows the frequencies for
the samples with correct (±1 pixel) circle center, corresponding to the con-
ditional densities (46) and (47); the lower plot shows the frequencies for all
samples, corresponding to the marginal densities (48) and (49). The radial
values are plotted relative to the correct nozzle radius r∗.
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effect on the estimation result.

6 Open questions

Two main questions remain open, a theoretical and an empirical one. The-
oretically, it is interesting to know whether a set of consistent parameters
exists for all estimation problems. From the argument in section 3.4, it is
clear that such parameters exist at least for all compact Lie groups. Such
groups have an invariant Haar measure on a bounded parameter space. Con-
sistent parameters are those in which this measure is uniform; cf. Assertion
2. Moreover, in section 4.1, the Euclidean group has been treated as an
example of a non-compact group with consistent parameters.

In this theoretical study, we could not address the empirical question
of how large the benefit of applying consistent parameters to various real
cases of PC actually is. There is no representative example application.
Rather, the size of the effect will vary with the nature of the estimation
problem and of the data. Indeed, a large range of canonical-to-consistent
error ratios has been seen in section 4.2.4 by varying the noise level of random
data. This study demonstrates, however, that the improvement gained by
using consistent parameters can be quite significant. Checking the effect
of parameter consistency seems therefore worthwhile in every application of
PC.

7 Conclusion

In this article, a probabilistic framework has been introduced for analyzing
PC algorithms. A notion of consistency has been defined that requires the
parameter population and, hence, the parameter estimates to reflect the
symmetry of the data population. A consistent parameter space is thus
characterized by the absence of bias in the parameter sample. Criteria
for consistency have been derived and it has been shown that consistent
parameterizations depend only upon intrinsic properties of the underlying
parametric group, notably its invariant Haar measure. As an example, the
practically relevant cases of motion and pose estimation of 3D shapes have
been treated and a consistent parameterization derived. Moreover, estima-
tion of analytic shapes has been discussed.

The relation of parameter consistency to estimation bias and error has
been illustrated for rotation estimation with statistics on random data sets.
In particular, a dramatic improvement in accuracy of more than an order of
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magnitude has been demonstrated when using consistent instead of canoni-
cal parameters. Furthermore, a significant improvement has been seen in a
real application example of consistent circle estimation.

Although optimality in terms of expected estimation error cannot be
generally proven, the theoretical and experimental results presented suggest
that a consistent parameterization should be tried when estimating param-
eters by PC.

Two important research issues remain. One is to answer the theoretical
question of whether a consistent parameterization exists for all estimation
problems. The other is to apply consistent parameterizations to various
kinds of estimation problems and empirically study the improvement in ac-
curacy gained in each case.
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