BayesChess: A computer chess program based
on Bayesian networks

Antonio Ferndndez and Antonio Salmerdn

Department of Statistics and Applied Mathematics
University of Almeria

Abstract

In this paper we introduce a chess program able to adapt its game strategy to its
opponent, as well as to adapt the evaluation function that guides the search process
according to its playing experience. The adaptive and learning abilities have been
implemented through Bayesian networks. We show how the program learns through
an experiment consisting on a series of games that point out that the results improve
after the learning stage.

Key words: Bayesian networks, adaptive learning, computer chess.

1 Introduction

Bayesian networks are known as an appropriate tool for modeling in scenarios
where a high number of variables take part and there is uncertainty associated
to their values [5,6]. One of the problems in which the use of Bayesian networks
is specially important is the classification or pattern recognition problem. This
is connected to the construction of systems able to adapt themselves to the
user, since it is necessary to determine the kind of user in order to act in
consequence.

In this paper we describe a computer chess program able to adapt itself to the
user and adjust its game strategy according to the user’s style. Furthermore, it

* Supported by the Spanish Ministry of Education and Science, project TIN2004-
06204-C03-01 and FEDER funds

Email address: afalvarez@ual.es,antonio.salmeronQual.es (Antonio
Fernandez and Antonio Salmerén).

Preprint submitted to Elsevier 11 April 2007

learns from its own experience, by refining the evaluation function used in the
search through the tree of movements. These functionalities have been imple-
mented using Bayesian networks. More precisely, we have used classification-
oriented Bayesian networks, based on the Naive Bayes structure, specially ap-
propriate in problems involving a high number of variables and with a learning
database with limited size.

Our aim is not to achieve a really competitive program as Deep Blue [8] or
Fritz [7], but rather to test the suitability of Bayesian networks for constructing
adaptive systems. We have chosen computer chess because it has some features
that can be properly handled using adaptive systems:

e The program constantly interacts with the user and it has to respond to
his/her actions.

e The impossibility of calculating all the possible moves motivates the use of
heuristics.

e The validity of the used heuristics can be tested according to the obtained
results.

e There are different playing styles or strategies that can be adopted during
a game.

Therefore, the aim of this work is the use of Bayesian networks to provide the
program with the ability of being adaptive. More precisely, we have focused
on:

(1) Refining the search heuristic, according the the program’s playing expe-
rience, using a Bayesian network.

(2) Use of a Bayesian network to classify the user’s behaviour and adopt the
appropriate strategy.

We believe that the adaptation capability would be a valuable feature for
sophisticated chess programs like Fritz. The last human-machine competitions
have shown that commercial computer chess programs are able to beat almost
any professional chess player, which means that computers have reached a
really remarkable playing strength. However, many human players still think
that computer chess programs play in a monotone and boring way, and it is
motivating a lack of interest in purchasing those kind of programs. The feature
of adapting to the user’s style, in order not to show a monotone behaviour,
can be an appealing feature for this software.

The rest of the paper is organised as follows: In section 2 we review some basic
concepts on Bayesian networks and classification. The design of the playing
engine and the search heuristics is described in section 3. The automatic up-
date of the heuristic is explained in section 4, while the adaptation to the
user’s behaviour is the aim of section 5. The experiments carried out to eval-
uate the learning process is described in section 6, and the paper ends with

conclusions in section 7.

2 Bayesian networks and classification

Consider a problem defined by a set of variables X = { Xy, ..., X,,}. A Bayesian
network [6,10] is a directed acyclic graph where each node represents a prob-
lem variable and has an associate probability distribution of the variable it
contains given its parent in the graph. The presence of an arc between two vari-
ables expresses the existence of dependence between them, which is quantified
by the conditional distribution assigned to the nodes. From a computational
point of view, an important property of Bayesian networks is that the joint dis-
tribution over the variables in the network factorizes according to the concept
of d-separation [10] as follows:

n

plr,) = [plailpatan) | (1)
i=1

where Pa(X;) denotes the set of parents of variable X; and pa(z;) is a configu-
ration of values for them. This factorisation implies that the joint distribution
for all the variables in the network can be specified with an important re-
duction of space requirements. For instance, the joint distribution over the
variables in the network displayed in Figure 1, assuming that all the variables
are binary, would require the storage of 25 — 1 = 31 values, while making use
of the factorisation, the same information can be represented using just 11
values (see Table 1).

©

Fig. 1. A sample Bayesian network

A Bayesian network can be used for classification purposes if it contains a class

variable, C, and a set of feature variables Xi,..., X,,, so that an object with
observed features x1, ..., z, will be classified as belonging to class ¢* obtained
as

Table 1
Example of factorised distribution for the network in Figure 1

p(X1 =0)=0,20 p(Xa =0|X; =0) =0,80
p(Xa =0|X; =1)=0,80 p(X3 =0|X; =0)=0,20
p(X3=0|X; =1)=0,05 p(X4=0|X2 =0, X3 =0) =0,80
p(X4 =0|X2 =1,X3 =0) =0,80 p(X4=0|X2=0,X3=1)=0,80
p(X4=0|X2=1,X3=1)=0,05 p(X5 =0|X3 =0)=0,80

p(X5 =0/X3 =1)=0,60

¢ =argmaxp(c|ry,...,x,) , (2)
ceQe

where ()¢ denotes the set of possible values of class variable C.

Note that p(c|z1,...,x,) is proportional to p(c) X p(z1,...,x,|c), and there-
fore, solving the classification problem would require to specify a distribution
over the n feature variables for each value of the class. The associate cost can
be very high. However, using the factorisation determined by the network, the
cost is reduced. The extreme case is the so-called Naive Bayes model (see, for
instance [3]), where it is assumed that the feature variables are independent
given the class. This fact is represented by an structure as the one displayed
in Figure 2.

Fig. 2. Structure of a Naive Bayes classifier

The strong independence assumption beneath this model is compensated by
the reduction in the number of parameters to be estimated, since in this case
it holds that

pleln,....a) = ple) f[lpwc) , 3)

and thus, instead of one m-dimensional conditional distribution, we have n
one-dimensional conditional distributions.

3 Design of the chess playing engine

The game of chess has been deeply studied by Artificial Intelligence. In this
work we have considered a playing engine based on the mini-max algorithm

Table 2
Score for the pieces employed by our proposed heuristic

Piece ‘ Pawn Bishop Knight Rook Queen
Score‘ 100 300 300 500 900

Table 3
Weights associated to the location of a white knight

-10 | -10 | -10 | -10 | -10 | -10 | -10 | -10
-10 0 0 0 0 0 0 -10
-10 0 5 5 5 5 0 -10
-10 0 5 10 10 5 0 -10
-10 0 5 10 10 5 0 -10
-10 0 5 5 5 5 0 -10
-10 0 0 0 0 0 0 -10
-10 | -30 | -10 | -10 | -10 | -10 | -30 | -10

with alpha-beta pruning. There are more sophisticated search algorithms ori-
ented to chess, but they are outside the scope of this work. However, the search
heuristic is actually relevant since, as we will describe later, it will be updated
using a Bayesian network learnt from the experience of the program itself.

The heuristic we have chosen is based upon two issues: material (the pieces
on the board) and the location of each piece (depending on the square where
a piece is placed, it can be more or less valuable). Additionally, we have also
given importance to the fact of setting the opponent’s king under check, as it
drastically reduces the number of possible moves.

The evaluation of the material on the board is carried out by assigning a score
to each piece. We have chosen the most usual found in chess programs, which
is displayed in Table 2. The king is not associated with any particular score,
since it must be present in any valid configuration of pieces on the board.

Regarding the evaluation of the position of each piece, we have used an 8 x 8
matrix for each piece, so that each cell contains the value which is added to the
heuristic in the case that the corresponding piece is placed on its corresponding
square. Table 3 shows an example of this kind of matrix, for the case of a white
knight. Notice that the location of the knight in central squares is encouraged,
since it increases its scope.

In overall, the heuristic function is defined in terms of 838 parameters, that
correspond to the value for each piece on the board, the value of setting the
opponent’s king under check and the number stored in the 8 x 8 matrices. More
precisely, there are 5 parameters indicating the value of each piece (pawn,
queen, rook, knight and bishop -the king is not evaluated, as it must always
be on the board-), 1 parameter for controlling whether the king is under check,
64 parameters for evaluating the location of each piece on each square on the

board (i.e., a total of 786 parameters, corresponding to 64 squares X 6 pieces
each colour x 2 colours) and finally 64 more parameters that are used to
evaluate the position of the king on the board during the endgame. This last
situation is considered separately because the behaviour of the king should be
different depending on the game stage. In general, it is not recommendable
that the king advances during the opening, but it can be a good idea during
the endgame, since it can support the advance of the pawns.

4 Automatic update of the heuristic

In this section we describe the process of refinement of the parameters in the
heuristic defined in Section 3. Along with the development of machine learning
techniques in the decade of the eighties, their application to computer chess
was considered, but the conclusion was that they could only be applied in a
marginal way, as for extraction of patterns from openings books [11]. How-
ever, afterwards some applications of classification techniques were developed,
mainly for the evaluation of positions from end-games [4].

With the aim of updating the parameters in the heuristic, we have considered a
Bayesian network based on the Naive Bayes structure, but with the difference
that instead of one class variable, in this case there are two of them: the
current game stage (opening, middle-game or end-game) and the result (win,
lose, draw). As feature variables, we have included all the parameters in the
heuristic as described in Section 3, which means that the network has 840
variables arranged as shown in Figure 3. The high number of variables is the
fact that motivates the use of a structure similar to the Naive Bayes model,
since the use of a more complex structure would increase the time spent to
evaluate the heuristic, slowing down the exploration of the search tree. The
drawback of this choice is that the independence assumption can be little
realistic, but this is somehow compensated by the reduction on the number of
free parameters that have to be estimated from data.

Game stage

Fig. 3. Structure of the network used to learn the heuristic

The parameters in the Bayesian network are initially estimated from a database
generated making BayesChess play against itself, employing one of the players
the heuristic as defined before, and the other one using a randomly perturbed

heuristic, where the value of each variable is randomly increased or decreased a
20%, 40% or kept to its initial value. Table 4 shows the format of the database
with some sample records. We can see how there is a record for each stage in
a game, containing the value of the parameters used by the random heuristic,
ending with the result of the game.

Table 4
Sample games database
Game stage | Pawn Knight Bishop Rook Queen Check Pawn a8 Pawn b8 ... | Result
Opening 120 180 240 700 540 42 -6 0 Lost
Mid 120 360 360 600 1260 36 3 0 Lost
End 120 420 180 400 720 42 -3 3 Lost
Opening 140 360 420 300 1080 18 0 6 Win
Mid 100 300 360 500 1260 42 3 0 Win
End 80 180 240 400 900 42 6 6 Win
Opening 120 420 420 400 720 18 -6 3 Draw
Mid 140 300 360 500 1260 42 3 0 Draw
End 120 420 180 600 900 30 0 6 Draw

Each probability table in this Bayesian network requires the estimation of 45
values, since for each one of the 5 possible values of each variable, we must
consider the game stage and the result (actually, only 36 values are required, as
the remaining 9 can be computed from the restriction that the probabilities in
each column must sum up to 1). Table 5 shows an example of the probability
table for variable Pawn.

Table 5

Example of probability table for variable Pawn

Game stage O O O M M M E E E

Pawn Result \WY% L D w L D w L D
60 02 01 03}03 02 03|02 03 0,2

80 03 o1 01}01 02 01]02 0,1 0,2

100 01 o01 02}04 02 01|01 01 0,2

120 0,1 02 04}01 03 01]03 02 03

140 0,3 05 01}02 01 0402 03 0,1

The learning process is not limited beforehand: It depends on the number
of games recorded in the database. Therefore, the more games we have the
more accurate the parameter estimation will be. Once the initial training is
concluded, BayesChess can adopt the learnt heuristic and, from them on, refine
it with new games, now against human opponents.

After the Bayesian network has been constructed, BayesChess uses it to choose
the parameters in the heuristic. The selection is carried out by instantiating
both class variables (game stage and result) and computing the configuration
of parameters that maximise the probability of the instantiated values. In or-
der to be able to determine in which stage the game is, we have considered
that the opening comprises the first 10 moves, while the end-game is reached

Opponent’s situation

@s attacking the@
Advanced pieces

Fig. 4. Structure of the classifier used to determine the opponent’s style

when there are no queens or the number of pieces on the board is lower than
10. Otherwise, we consider that the stage is the middle-game. Regarding vari-
able result, it can be used to determine the playing style that BayesChess will
adopt. For instance, if we instantiate that variable to value win, BayesChess
will choose the configuration of values for the parameters that maximise the
probability of winning, even if that probability is lower than the probability of
not winning (losing + draw). It means that the program adopts an aggressive
strategy. On the other hand, we can choose to minimise the probability of
loosing, i.e., maximising the sum of the probabilities of winning or reaching
a draw. This corresponds to a conservative strategy. The way in which these
configurations are obtained is through abductive inference [2,9]. In the partic-
ular case of the network used by BayesChess, the configurations can be easily
obtained, since the configuration that maximises the probability of a given
instantiation is obtained by taking the value for each individual variable with
higher probability, due to the factorisation given in Equation (3).

5 Adaptation to the opponent’s situation

Now we will discuss how to make the heuristic adapt the strategy to the
opponent style. With this aim we have considered three types of playing styles
that the user can be employing: attacking, positional or mixed.

We have implemented a Naive Bayes classifier to determine the way in which
the opponent is playing in a given moment, taking as basis these features of the
opponent: first move, situation of castles (opposed or not), number of pieces
beyond the third row (except pawns) and the number of pawns advanced
towards the king. The structure of the classifier is depicted in Figure 4.

The classifier has been trained using a database of games from four well-known
professional players, corresponding the considered styles. In all the games, the
feature variables have been measured and included in the database. More
precisely, we have selected 2708 games by Robert Fischer and Gary Kasparov
as examples of attacking style, 3078 by Anatoli Karpov as positional play and

649 games by Miguel Illescas as examples of mixed player. Table 6 describes
the format of the database.

Table 6
Sample database for learning the classifier of the opponent’s style
1st move Castle Advanced pieces Pawns towards king Stytle
ed equal 2 1 Attacking
Cf6 opposed 0 2 Attacking
Cf3 equal 0 1 Mixed
d4 equal 1 0 Positional
ch equal 0 0 Attacking
c4 opposed 1 2 Positional
other_b equal 1 1 Mixed

Using this classifier, BayesChess determines the opponent’s strategy by in-
stantiating the feature variables and computing the value of variable opponent
situation with highest probability.

5.1 The process of adapting to the opponent

Once the opponent style is determined, BayesChess decides its own strategy
using the Bayesian network that contains the parameters of the heuristic in
this way:

e When the opponent’s style is attacking, it chooses the parameters in order
to minimise the probability of losing.

e When the opponent’s style is positional, it chooses the parameters in order
to maximise the probabiliy of winning.

e When the opponent’s style is classified as mixed, it randomly chooses one
of the former two strategies.

6 Experiments

We have carried out two experiments in order to evaluate the learning of the
heuristic, in both of them using a database with 2000 games of the initial
heuristic against a random one. In both experiments, the heuristic is incre-
mentally learnt. The version of BayesChess that we used in these experiments
is available at http://elvira.ual.es/algra.

The experiment consisted of 11 matches of 200 games between BayesChess
with random heuristic against itself with the learnt heuristic with different
number of games in the learning database. We can see in Figure 5 how the
learnt heuristic improves its results as the number of games increases.

Improvement of learnt heuristic
200

Lost gaﬁnes —
180 Won games
Draw games ———
8 160 |
5
140 r
g
g 120
o
S 100 -
g
= 80 |
o
% 60 [
2 40 +
20

0 Il Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of games in the database

Fig. 5. Evolution of the results of playing the learnt heuristic against the random
one

The second experiment consisted of evaluating the score assigned by the
heuristic to a given position, more precisely to the position shown in Figure 6,
with different number of games in the database. It can be seen that in Figure
6, the white player has one knight and two pawns above the black player, and
therefore the evaluation of the position should be around 500 points of advan-
tage for white. Figure 7 shows how the learnt heuristic actually approaches to
that value when the database grows.

In both experiments, it can be observed that the performance of BayesChess
improves very quickly as the number of games used to learn the heuristic
increases. However, once the training database reaches a certain size (around
400 games in the experiments), the behaviour improves much more slowly. We
think that this is due to the kind of Bayesian network structure that we use to
update the heuristic, which probably reaches close to its maximum accuracy
quickly and after that point it is only slightly refined. This suggests that a
more complex structure could be used when the training database is large, in
order to reach a higher degree of refinement.

7 Conclusions

In this paper we have introduced BayesChess, a computer chess program that
adapts its behaviour according to its opponent and its previous experience.
The results of the experiments carried out suggest that after learning, the
results improve, and the heuristic is adjusted with more accurate parameter
values.

10

Fig. 6. Sample board for the second experiment

Evolution of score to agiven position

Random heuristic
-100 + Fixed heuristic
Learnt heuristic

-200

Score

-900 -
-1000

0O 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of games in the database

Fig. 7. Evolution of the heuristic as the size of the database grows

We think that the use of Bayesian networks is an added value in the con-
struction of adaptive systems. In cases like BayesChess, where the number of
variables involved is very high, they allow to carry out the necessary inferences
efficiently, using restricted network topologies as the Naive Bayes.

Not only chess, but also other computer games that require the machine to
make decisions, can obtain benefits from the use of Bayesian networks in the
way described in this paper. An inmediate example is the game of checkers,
but it must be taken into account that the complexity of that game is much
lower and the heuristic would not contain so many variables.

In the next future we plan to improve BayesChess by refining our implemen-
tation of mini-max and by introducing an end-game classifier. In this sense,

11

there are databases with data about typical positions in end-games with rooks
and pawns, classified as winning, loser, or oriented to draw, and that can be
used to train a classifier [1].

References

1]

C.L. Blake and C.J. Merz. UCI repository of machine learning databases.
www.ics.uci.edu/~mlearn/MLRepository.html, 1998. University of California,
Irvine, Dept. of Information and Computer Sciences.

L.M. de Campos, J.A. Gamez, and S. Moral. Partial abductive inference
in Bayesian networks by using probability trees. In Proceedings of the 5th
International Conference on Enterprise Information Systems (ICEIS’03), pages
83-91, Angers, 2003.

R.O. Duda, P.E. Hart, and D.G. Stork. Pattern classification. Wiley
Interscience, 2001.

J. Flirnkranz. Machine learning in computer chess: The next generation. ICCA
Journal, 19(3):147-161, 1996.

J.A. Gamez, S. Moral, and A. Salmerén. Advances in Bayesian networks.
Springer, Berlin, Germany, 2004.

Finn V. Jensen. Bayesian networks and decision graphs. Springer, 2001.

K. Muller. The clash of the titans: Kramnik - FRITZ Bahrain. IGCA Journal,
25:233-238, 2002.

M. Newborn. Kasparov vs. Deep Blue: Computer chess comes of age. Springer-
Verlag, 1997.

D. Nilsson. An efficient algorithm for finding the M most probable
configurations in Bayesian networks. Statistics and Computing, 9:159-173, 1998.

[10] J. Pearl. Probabilistic reasoning in intelligent systems. Morgan-Kaufmann (San

Mateo), 1988.

[11] S.S. Skiena. An overview of machine learning in computer chess. ICCA Journal,

9(1):20-28, 19836.

12

