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Improving the SIFT descriptor with smooth derivative filters
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Abstract

Several approaches to object recognition make extensive use of local image information extracted in interest points, known as
local image descriptors. State-of-the-art methods perform a statistical analysis of the gradient information aroundthe interest point,
which often relies on the computation of image derivatives with pixel differencing methods. In this paper we show the advantages of
using smooth derivative filters instead of pixel differences in the performance of a well known local image descriptor. The method
is based on the use of odd Gabor functions, whose parameters are selectively tuned to as a funcion of the local image properties
under analysis. We perform an extensive experimental evaluation to show that our method increases the distinctivenessof local
image descriptors for image region matching and object recognition.
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1. Introduction

Successful image based object recognition methods recently
developed are supported on the concept of local image descrip-
tors. Image descriptors are localized information chunks ex-
tracted in particular points of the image, that remain stable in
face of common image transformations, and with the ability to
distinguish between different patterns. Several types of local
descriptors have been reported in the literature[1, 2, 3, 4,5, 6],
but only recently a framework was proposed to compare their
performance [7]. That work compares several types of image
descriptors, such as differential operators, gradient histograms,
correlation measures and image moments.

In the framework above mentioned, gradient based his-
tograms showed the best performance. The initial steps consist
in the interest point selection in scale space (e.g. Hessian, Har-
ris), and the computation of the image gradients in the neighbor-
hood of interest points (e.g. pixel differences, Canny detector).
The descriptor is then obtained by splitting the interest point
neighborhood into smaller regions (e.g. cartesian grid, log-
polar grid), and finally for every subregion it is computed the
histogram of the gradient orientation with an appropriate infor-
mation selection procedure (e.g. weighting, Principal Compo-
nent Analysis-PCA). To date, the most remarkable descriptor in
terms of distinctiveness is the SIFT local descriptor [1], which
computes the image gradient from pixel differences, subdivide
the interest point regions in a cartesian grid, and for each subre-
gion, compute the gradient orientation histogram weightedby
the gradient magnitude. The descriptor is the concatenation of
all subregion’s histograms, followed by a unitary normalization.
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Some extensions of the SIFT descriptor have been proposed
recently, in order to improve either matching properties orre-
duce computational complexity. For instance, PCA-SIFT[2]
concatenates the first orderx andy image derivatives of every
subregion, and for reducing the feature vector dimension isper-
formed a PCA data selection. The main objective of PCA-SIFT
is to keep the SIFT matching properties, reducing the descrip-
tor size. On the other hand, the Gradient location-orientation
histogram (GLOH) [7] is an extension of SIFT that computes
the histogram using a log-polar spatial grid and reduces thede-
scriptor size using PCA. The main objective of GLOH is to
improve matching results by using a more robust spatial gridto
compute the gradient histogram. Both PCA-SIFT and GLOH
were tested in the comparison framework mentioned above [7]
and have shown better performance than SIFT for some exper-
imental conditions.

In this work we present an extension of the SIFT descriptor,
proposing an alternative approach for gradient computation us-
ing smooth derivative filters. Using Gabor functions as smooth
filters, our approach improves the distinctiveness of the SIFT
local descriptor. In scale-normalized image regions, gradient
computation using pixel differences, as in [1], is sensitive to
noise and other artifacts induced by the image sensor and the
normalization procedure. One common approach to diminish
the noise sensitivity is to compute smoother approximations of
the image derivatives using filters. In this work we use Gabor
filters, which have been shown to approximate any image di-
rectional derivative [8], by suitable tuning their parameters. We
propose a methodology to define the filters parameters based on
local maxima of the magnitude of the filter response. We ana-
lyze the response for several filter widths, selecting the width in
which the local maximum is located.

To evaluate the impact of our approach we use two evalu-
ation frameworks: (i) Mikolajczyk local descriptor matching
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experiment [7], and (ii) an object recognition experiment.The
first experiment evaluates the matching performance gain ofour
descriptor over SIFT descriptor, while the second experiment
evaluates its impact in an object recognition task.

In the local descriptor evaluation framework, several types
of images and image transformations are employed in the eval-
uation process. The procedure comprises five main steps: (i)
Apply a specific transformation to each image in the data set
and create pairs of images (original and transformed); (ii)in
each pair of images find regions with suitable interest pointde-
tectors (e.g. blobs, corners, ridges) and corresponding normal-
ization parameters (e.g. scale, rotation, affine); (iii) normalize
regions to a fixed size and compute a set of local descriptors in
the regions; (iv) for every pair of images, match the descriptors
computed in the vicinity of the regions provided by the interest
point detection procedure; (v) the evaluation criterion iscom-
posed by precision-recall curves of regions matched between
two images. We utilize this evaluation framework to compare
the distinctiveness of our descriptor proposal against SIFT de-
scriptor.

In the object recognition experiment, we model object cat-
egories by a bunch of local descriptors, using an appearance
only model, that disregards pose between local descriptors. We
detect nine different object categories, considering eachcate-
gory as a two-class problem (object samples and background
samples). Objects are modeled by a feature vector containing
the similarity of the descriptors to one of the classes. In or-
der to estimate class models, we use two learning algorithms:
AdaBoost and SVM. In order to evaluate recognition perfor-
mance, we compute the equal error point of the Receiver Oper-
ator Characteristic (ROC) curve for several object models.To
build different object models, we vary: (i) the local descriptor,
and (ii) the number of local descriptors that represent eachcat-
egory.

In Section 2 we explain the modification proposed to the
SIFT descriptor. In Section 3 we describe in more detail the lo-
cal descriptor evaluation framework. In Section 4 we describe
the object recognition experiment in detail. The experimental
results and discussion are included in Section 5, followed by
conclusions in Section 6.

2. A local descriptor using smooth derivative filters

In this section we first review the SIFT local descriptor com-
putation. Then we present a modification of the SIFT descrip-
tor, using odd Gabor filters to compute first order image deriv-
atives.

2.1. SIFT local descriptor

In the original formulation of the SIFT descriptor[1], a scale-
normalized image region is represented with the concatenation
of gradient orientation histograms relative to several rectangu-
lar subregions. First, to obtain the scale-normalized patches, a
salient region detection procedure provides image point neigh-
borhoods. The saliency function is the scale-space Difference
of Gaussians (DoG), and the image regions (position and scale)

are selected by the local extrema at DoG. In order to compute
the local descriptor, the regions are scale normalized to compute
the derivativesIx andIy of the imageI with pixel differences:

Ix(x, y) = I(x + 1, y) − I(x − 1, y) (1)

Iy(x, y) = I(x, y + 1) − I(x, y − 1). (2)

Image gradient magnitude and orientation is computed for
every pixel in the image region:

M(x, y) =
√

Ix(x, y)2 + Iy(x, y)2 (3)

Θ(x, y) = tan−1(Iy(x, y)/Ix(x, y)). (4)

The interest region is then divided in subregions in a rectangular
grid. In Figure 1 we see examples of the gradient magnitude
and orientation for an image region and its corresponding 16
subregions (4 per dimension).
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Figure 1: Example of gradient magnitude and orientation images

The next step is to compute the histogram of gradient ori-
entation, weighted by gradient magnitude, for each subregion.
Orientation is divided into 8 bins and each bin is set with the
sum of the windowed orientation difference to the bin center,
weighted by the gradient magnitude:

hr(l,m)
(k) =

∑

x,y∈r(l,m)

M(x, y)(1 − |Θ(x, y) − ck|/∆k),

Θ(x, y) ∈ bin k, (5)

whereck is the orientation bin center,∆k is the orientation bin
width, and(x, y) are pixel coordinates in subregionr(l,m).

The SIFT local descriptor is the concatenation of the several
gradient orientation histograms for all subregions:

u = (hr(1,1)
, . . . , hr(l,m)

, . . . , hr(4,4)
) (6)

The final step is to normalize the descriptor in Eq.(6) to unit
norm, in order to reduce the effects of uniform illumination
changes. The gradient orientation is not invariant to rotations
of the image region, so the descriptor is not invariant. To pro-
vide orientation invariance, Lowe proposed to compute the ori-
entation of the image region, and set the gradient orientation
relative to the region’s orientation. The orientation is given by
the highest peak of the gradient orientation histogram of the im-
age region. In further object recognition tests, we computeboth
invariant and non-invariant descriptors.
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We have based our work in an approach similar to the one
described here, proposing modifications only in the local de-
scriptor computation. However, the gradient computation in the
original SIFT descriptor is done with pixel differences which
are very sensitive to noisy measurements. In next section we
explain an alternative way to compute the image derivativesof
Eq.(1) and Eq.(2), using smooth derivative filters where thede-
gree of smoothing is appropriately selected.

2.2. Smooth derivative filters

The computation of image derivatives with pixel differences
is an inherently noise sensitive process. Pixel differences im-
plement ahigh-passfiltering operation on the image spectrum,
amplifying the high frequency range, which is mainly com-
posed by noise. To avoid such sensitivity, it is common to
combine alow-passfilter (image blurring or smoothing) with
the high-passderivative filter, resulting in aband-passfilter,
which we denote bysmooth derivative filter. This effect can be
implemented by either pre-smoothing the image followed by
the derivative computation, or by convolving the image witha
band-passfilter combining both phases. The important ques-
tion to address at this point is “how much blurring should we
apply to the image ?”, or equivalently, “which frequency band
should theband-pass filterfocus on ?”.

Several smooth derivative filters have been proposed for im-
age filtering. Both Gaussian derivatives [8] and Gabor filters
[9, 10] are common choices because of their properties and the
availability of fast computation methods [11]. Gaussian deriv-
atives [8] are smooth filters that can compute the image deriva-
tives of any order. They have good noise attenuation properties
due to an implicit image Gaussian filtering. On the other hand,
Gabor filters are composed by Gaussian-modulated complex
exponentials and provide an optimal trade-off between spatial
and frequency resolution, allowing simultaneously good spatial
localization and description of signal structures [9]. Theap-
plication of Gabor functions to perform computer vision and
image processing tasks has been motivated by biological find-
ings in the low-level areas of primate visual cortex [12], and
more recently by simulations of primate/human visual system
[13, 14].

In this work we will use Gabor filters for the computation of
smooth image derivatives due to the following facts:

• With appropriate parameters, odd Gabor filters can ap-
proximate odd order Gaussian directional derivatives [8].

• Gabor filters have a larger number of parameters than
Gaussian derivatives, thus being more easily customized
to each particular purpose. For instance, using the Gabor
filter parameters in the edge cost function in order to find
the appropiate filter parameters [15, 16].

Notice that the first fact listed above, tells us that the bestperfor-
mance with Gaussian derivative filters can also be achieved with
Gabor filters, and the second fact suggests that a more careful
parameter tuning of the Gabor parameters may eventually lead
to better performance.

2.3. Gabor Filters for Image Derivative Computation

Gabor functions are defined by the multiplication of a com-
plex exponential function (the carrier) and a Gaussian function
(the envelope).

gx,y,θ =
1

2πσ1σ2
·

· exp

(

−
(x cos θ + y sin θ)2

2σ2
1

−
(y cos θ − x sin θ)2

2σ2
2

)

·

· exp

(

i
2π

λ
(x cos θ + y sin θ)

)

(7)

In the previous expression,(x, y) are the spatial coordinates,
θ is the filter orientation,λ is its wavelength, andσ1 andσ2

are the Gaussian envelope standard deviations, oriented along
directionsθ andθ + π/2, respectively.

To compute the first order image derivativesIx and Iy we
will use the odd (imaginary) part of the filter; the orientations
will be θ = 0 andθ = π/2 for, respectively, the horizontal and
vertical derivatives. To approximate the shape of an odd Gabor
Filter to that of a Gaussian derivative, we setσ1 = σ2 = σ,
and we introduceγ = λ/σ, a variable that is proportional to the
number of wave periods within the filter width. By fixing an
appropriateγ value, we will obtain an expression of the Gabor
filter with a single parameter, the filter widthσ.

If we look at the shape of the first order Gaussian deriva-
tives at any scale in the derivative direction, there is one wave
period within the spatial support of the filter, which roughly
corresponds toλ = 6σ. Replacing this value inγ = λ

σ yields
γ = 6. By replacingσ = σ1 = σ2, andγ = 6 in Eq. (7), we
obtain the filter being used in the remainder of the paper:

gx,y,θ(σ) =
1

2πσ2
exp

(

−
x2 + y2

2σ2

)

·

· sin

(

2π

6σ
(x cos θ + y sin θ)

)

, (8)

whereθ = 0 computesIx, andθ = π/2 computesIy. The
choice ofσ will be done by an optimization procedure, based
on the filter energy at locations with high gradient magnitude.

2.4. Scale-selection

In this section we propose a methodology to select a value for
the scale parameterσ, such as to maximize the energy output
of the smooth derivative filters in the analysis of the normal-
ized regions obtained in the interest point selection procedure.
We notice that, at this point, we have image regions that are al-
ready scale-normalized, therefore the scale-selection procedure
we are proposing here should choose one single scale value for
all regions.

In Figure 2 we see examples of the odd Gabor filter to com-
pute theIx at severalσ values. In order to select the best scale
we will use the gradient magnitude over all selected features in
all images, due to its key role of weighting the gradient orien-
tation histogram in the SIFT computation. In fact, the scale-
normalized gradient magnitude has been used to measure edge
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Figure 2: Examples of odd Gabor functions atθ = 0, γ = 6, andσ =
{2

√
2/3, 4/3, 4

√
2/3, 8/3, 8

√
2/3, 16/3}.

strength in scale-space [17]. However, this measure is not very
stable for sufficiently large scales, leading to the selection of
larger scale values in features with actual small scale [17]. This
issue has been addressed in the context of edge scale selection,
based on the concept ofγ-normalized derivatives [18].

We have made some preliminary test with this methodology
but the results were not promising, mainly because the features
obtained in the interest point selection phase are not only edges,
but also blobs, corners, junctions and other structures. Addi-
tionally, the image regions we are considering are already scale-
normalized, so the scale selection procedure is a local search,
as opposed toγ-normalized derivatives in [18]. We, therefore,
propose the following methodology to avoid the bias toward
large scales in the scale-normalized gradient magnitude:

• Considering independently the components of the normal-
ized gradient magnitude. We have noticed that the hor-
izontal and vertical derivatives are often better behaved
than their combination in the gradient magnitude.

• Biasing the scale selection criterion to smaller scale values
for each component, to avoid the non-decreasing behavior
of the normalized derivatives for large scales [17].

Following these criteria, we pick the Gabor filter with largest
energy in thex andy directions, and, from these, we select the
smaller scale:

σ̂x = arg max
σ

|(I ∗ gxi,yi,θ=0(σ))| (9)

σ̂y = arg max
σ

|(I ∗ gxi,yi,θ=π/2(σ))| (10)

σ̂(xi, yi) = min(σ̂x, σ̂y), (11)

Ix(xi, yi) = (I ∗ gxi,yi,0(σ̂))(xi, yi) (12)

Iy(xi, yi) = (I ∗ gxi,yi,π/2(σ̂))(xi, yi). (13)

where(xi, yi) is a point in the scale-normalized region, andσ̂
is the adequate filter width at position(xi, yi).

2.4.1. Computational complexity
The local minima selection of Eqs. (9-13) has an obviously

higher computational complexity than the pixel differenceof
Eqs. (1) and (2). In a scale-normalized image of sizeS×S, the
complexity of the pixel difference and filtering isO(S2), while
the odd Gabor scale selection of Eqs. (9-13) have a complexity
value of

O(S2 × (C × F + 2F + 1)), (14)

whereC is the number of operations per pixel to compute the
response of one Gabor filter andF is the number of Gabor fil-
ters applied. Using the state-of-the-art fast implementation of

Gabor filters,C = 601 operations per pixel [19, 20], andF de-
pends on the type of multi-scale filter implementation and the
size of the normalized region. As we are dealing with scale-
normalized regions, the search alongF scales of Eqs. (9-13)
can be replaced by a single scale suitable for all normalized
images, thus yielding a complexity ofO(S2 × C).

In the following sections we describe how to evaluate the
effect of the scale selection of smooth derivative filters ofEqs.
(9-13) in SIFT performance. We compare performances using
a very recent local descriptor evaluation framework.

3. Local descriptor evaluation

Recently was proposed a framework whose aim is to com-
pare local image descriptors [7]. The method to compare is
comprised by the steps we explain as follows:

Several image pairs are used for evaluation, each one having
a particular type of image transformation. Each pair is obained
by taking two pictures of the same scene in different condi-
tions (position, camera/image settings). Figure 3 shows the test
set images used to perform the local descriptor evaluation,the
same as used in [7] for the sake of the comparison with the other
methods. For each image, one of five possible image transfor-
mations is applied: Zoom + rotation, viewpoint, image blur,
JPEG compression, and illumination. For viewpoint transfor-
mations, scale + rotation and image blur, two classes of images
are considered: (i)natural images containing a large amount
of randomly oriented textures; and (ii)structured imagescon-
taining many distinctive long edge boundaries. In the case of
JPEG compression and illumination transformations, only im-
ages from thestructuredtype are employed.

For the generation of ground truth data (computing the cor-
rect matches between the two images), each pair of images is
related by a projective transformationH. The homography is
computed in two steps: (i) a first approximation to the homogra-
phy is computed using manually selected points, then the trans-
formed image is warped with this homography, and (ii) a ro-
bust small baseline homography estimation algorithm is used
to compute the residual homography between the reference im-
age and the warped one.

Salient image regions are computed using invariant region
detectors. This process outputs elliptic regions in the twoim-
ages that are good candidates for posterior matching. Four de-
tectors are tested:

• the Harris-affine detector[21] computes corners and junc-
tions covariant2 to affine transformations up to a rotation
factor;

• the Hessian-affine[22] detector computes blobs and ridges
covariant to affine transformations up to a rotation factor;

• the Harris-laplace[23] detector computes corners and junc-
tions covariant to scale and rotation changes; and

1Considering an isotropic and non-zero mean Gabor filter implementation
2Corresponding regions in the two images are called covariant.
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• the Hessian-laplace[1, 21] detector computes blobs and
ridges covariant to scale and rotation changes.

These methods provide not only the localization of the salient
regions but also geometrical information regarding the size of
the image region. Then, the region’s dominant orientation is ob-
tained by selecting the peak of the gradient histogram. Withthis
information, each image region can be associated to an ellipse
(R(µ)) representing its dominant shape. Knowing the ground
truth projective transformationH between the images, acor-
respondence testis proposed to evaluate the quality of the in-
variant image detection process. Two image regionsR(µa) and
R(µb) are corresponding if the overlap error is less than thresh-
old ǫ0,

1 −
R(µa) ∩ R(HT µbH)

R(µa) ∪ R(HT µbH)
< ǫ0. (15)

In the previous equationR(µ) is the elliptic region defined by
xT µx = 1, whereµ has the ellipse parameters, andH is the
homography between images.

Candidate image regions are normalized for affine and il-
lumination transformations using, respectively, the elliptic re-
gions parameters computed in the previous steps, and image
region graylevel statistics.

To represent the detected regions in a way suitable for match-
ing, an extended description of its photometric propertiesmust
be provided. Each candidate image region is represented by
the SIFT descriptor and our proposal. Amatching testdeter-
mines if two candidate regions (one on each image of the pair)
are similar. Three different matching methods are employed:
(i) thresholded euclidean distance between the two descriptors,
(ii) nearest-neighbor, and (iii) nearest-neighbor distance ratio.
Based on the ground truth data, matches are classified as correct
or false. In the case of threshold-based matching, two descrip-
tors ua andub are matched if the euclidean distance is below
a threshold. In the case of nearest neighbor, a match exists if
ub is the nearest neighbor toua and the euclidean distance be-
tween descriptors is below a threshold. In the case of nearest
neighbor distance ratio, we have the descriptorua, the nearest
neighborub and the second nearest neighboruc. The descrip-
torsua andub are matched if||ua − ub||/||ua − uc|| < t. The
threshold-based method may assign several matches to one de-
scriptor, while the other two method assign at most one match
to each descriptor.

An evaluation metric is defined, based on precision and re-
call. recall versus1 − precision curve are computed for each
image pair. The recall of the regions detected in two images is
defined as:

recall =
#correct matches

#correspondences
. (16)

The ratio between false matches and the total number of
matches is given by1 − precision value:

1 − precision =
#false matches

#correct matches + #false matches
.

(17)
After completing the steps above, one is able to compare the

matching performance of any local descriptor using therecall

versus1 − precision curve. Additionally, we perform further
tests in object category recognition, in order to compare the real
performance of local descriptors in object recognition, and will
be the subject of the next section.

4. Object Recognition Experiment

In this group of experiments we apply the appearance only
model, in which objects are modeled by a bunch of local de-
scriptors. The idea is to combine information of hundreds of
thousands of local descriptors, being robust to occlusion and
other noise sources [24, 25, 26]. This type of appearance only
object model is adequate to compare the performance of local
descriptors when matching objects, because it considers only
local descriptor matches to find objects in new images.

The recognition of each object category is addressed as a
two-class supervised problem (class labelc ∈ {0, 1}), using
positive (objects,c = 1) and negative (no objects,c = 0) class
samples to learn the category model. The model consists of a
class-similarity feature vector, that contains the matching to the
descriptors of the class. The steps for the supervised learning
of the model of an object category are as follows:

1. SelectM interest points locations by applying the Differ-
ence of Gaussians (DoG) operator in the training set im-
ages{Ic

1 , . . . , Ic
t , . . . , Ic

T }.
2. Compute a local descriptor at interest point locations,uc

i ,
i = 1, . . . ,M , c ∈ {0, 1}.

3. Pick randomlyN << M interest points from the posi-
tive class samples as the category model. The respective
picked local descriptors are denoted by

us1
, . . . , usn

, . . . , usN
1 ≤ sn ≤ M (18)

4. Compute the class-similarity feature vectorV c
t =

[vc
1, . . . , v

c
n, . . . , vc

N ] for each image in the training set.
Pick the descriptorsuc

i that belong to imageIc
t , and com-

pute the similarityvc
i of the descriptorusn

vc
n = min

i
‖usn

− ui‖
2
,

i = 1, . . . ,M , i 6= sn, uc
i ∈ Ic

t (19)

5. Input the class similarity vectorsV c
1 , . . . , V c

t , . . . , V c
T with

their respective labelc to the learning algorithm, in order
to estimate the category model.

After learning the object model, the steps to detect an in-
stance of the object category in a new image are as follows:

1. SelectJ interest point locations.
2. Compute local descriptors in the new imageuj , j =

1, . . . , J at interest point locations.
3. Create class-similarity feature vectorV =

[v1, . . . , vn, . . . , vN ] by matching each class model
descriptorusn

against all descriptorsuj .

vn = min
i

‖usn
− uj‖

2
, j = 1, . . . , J (20)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Data set used for local image descriptor evaluation. Zoom + rotation 3(a) and 3(b), viewpoint 3(c) and 3(d), imageblur 3(e) and 3(f), JPEG compression
3(g), and illumination 3(h)

Figure 4: Typical images from selected databases.

4. ClassifyV as object or background image, with a binary
classifier.

The experiments are performed over a set of classes provided
by Caltech3 : airplanes side, cars side, cars rear, camels, faces,
guitars, leaves, leopardsand motorbikes side, plus Google
thingsdataset [27]. We use categoryGoogle thingsas negative
samples. Each positive training set is comprised of 100 images
drawn at random, and 100 images drawn at random from the
unseen samples for testing. Figure 4 shows some sample im-
ages from each category. For all experiments, images have a
fixed size (height 140 pixels), keeping the original image as-
pect ratio and converted to gray-scale format. We vary the
number of local descriptors that represent an object category,
N = {5, 10, 25, 50, 100, 250, 500}. In order to evaluate the
influence of the learning algorithm, we utilize two classifiers:
SVM [28] with linear kernel4, and AdaBoost [30] with deci-
sion stumps. The evaluation criterion of every experiment is
the performance at the equilibrium point of the Receiver Oper-
ator Characteristic (ROC) curve, when the false positive rate=
miss rate. Now we present the results when comparing the SIFT
descriptor, and our smooth derivative SIFT, using the evaluation
tools presented in this and the previous section.

5. Experimental results

We evaluate the impact of our proposed approach to compute
the SIFT local descriptor in two related tasks: (i) image region
matching, and (ii) component-based object recognition. First
we present the experiments that allow the selection of a single

3Datasets are available at: http://www.robots.ox.ac.uk/˜vgg/data3.html
4Implementation provided bylibsvm[29]

scale value of the Gabor filter, in order to reduce the computa-
tional complexity of the image derivative method.

5.1. Gabor filter scale selection

Aiming to reduce the computational complexity presented in
Eq. (14), we select a single filter suiting all cases. The single
filter selection reduces the complexity of the image derivative
computation fromO(S2 × (C × F + 2F + 1)) to O(S2 ×C).
We compute the relative frequency (i.e. histogram) of the fiter
width σ̂ in Eq. (11), using all the scale-normalized image re-
gions of the image data set presented in Figure 3. To avoid
noisy σ̂ values, we pick pixels with gradient magnitude above
a certain threshold. We plot the marginalized (structured and
textured) histograms and the total histogram in Figure 5. When
comparing structuredvs textured images, we observe that in
the case of textured images the bins located at the left side of
the histogram peak are all larger than the equivalent bins in
the structured images histogram. This is an expected behav-
ior, because the high gradient magnitude points in very textured
images have a very small spatial support, while in structured
images the points with high gradient magnitude have a larger
spatial support. We also notice the difference of peak location
between structured (σ̂ = 1.88) and textured (̂σ = 1.58) images.

Although we biased the filter width selection to small values
using Eq. (11), it still will select high filter width values in some
of the image points (around 10% of image pixels), blurring the
image gradient in some regions. This behaviour would lead
to lose important histogram information in some subregions.
In order to avoid these high filter width values, and keeping
high frequency information of the textured images, we select
the peak of the histogram of Figure 5 to compute the image
derivatives. The image derivatives are given by
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Pixel difference of Eqs. (1-2) 0.44 ms
Multi-scale optimization (Gabor) of Eqs. (9-13)9.75 ms

Single scale (Gabor) of Eqs. (21-22) 1.01 ms

Table 1: Execution time of C implementations, in a Pentium 4, 2.80 Ghz.
Average value of thex derivative computation for all the normalized regions
(size:41 × 41) selected in the images of Figure 3.

Ix(x, y) = (I ∗ gx,y,0(1.58))(x, y) (21)

Iy(x, y) = (I ∗ gx,y,π/2(1.58))(x, y). (22)
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Figure 5: Histograms of̂σ for various image types.

The Eqs. (21, 22) provide a fast approximation of the scale
selection of Eqs. (9-13), keeping the advantage of a smoother
image derivative approximation versus the pixel differences of
Eqs. (1) and (2). In the next sections we present the perfor-
mance improvement of the SIFT descriptor by using Eqs. (21,
22). However, we pay the price of performance improvement
by increasing the computational load of the image derivative
computation, as shown in Table 1. Despite that the theoretical
complexity analysis indicates a 60 times slow down with our
approach, in practice we verified that it only slows down 2-3
times, thus maintaining a real-time functionality. The expla-
nation may be related to the pixel access times to perform the
subtraction, that were not considered in the theoretical analysis.
Additionally, the fixed computational cost of the image normal-
ization will further smooth out the differences between thetwo
methods.

5.2. Image region matching

We computerecall vs1 − precision curves for all types of:
(i) image transformations, (ii) image detectors, and (iii)struc-
tured and textured images. We observe in Figure 6 examples
of the recall vs 1 − precision curve in the case of the view-
point transformation applied between the wall images of Figure
3(a), remarking that our descriptor curve is located above the

original SIFT curve for the three matching criteria. We notice
the same behavior for all the experiments, thus improving SIFT
matching performance. In order to evaluate quantitativelythe
improvement of our descriptor over the original SIFT descrip-
tor, in every experiment we compute the difference in recallrate
for a fixed precision value of 0.5, obtaining the recall valueby
a linear interpolation using the two closest points.

Harr Hess Struc Text Total
Threshold 2.7 4.3 3.7 2.3 3

NN 0.36 0.75 0.59 0.56 0.54
NN ratio 0.23 1.33 0.5 1.02 0.68

Table 2: Mean recall difference (%) between our SIFT descriptor and original
SIFT [1], atprecision = 0.5

We see in Table 2 that the improvement value depends on:
(i) detectors and (ii) threshold criterion. Performance improve-
ment of Hessian detectors is greater than Harris detectors for
every matching criteria. Also the improvement depends highly
on the matching criterion, as recall improvement in the thresh-
old based method is about 10 times than the improvement in
the nearest neighbor methods. This difference is related tothe
difficulty of improving the performance of the nearest neigh-
bor methods, because demand a high precision rate with very
few correspondences. Nevertheless, our method for comput-
ing SIFT local descriptor improves SIFT distinctiveness for all
the matching experiments. Now we present the improvement
results in the object recognition tests.

5.3. Component-based object detection

In this experiment we evaluate the impact of the perfor-
mance improvement of our descriptor in an object category de-
tection task. We test several variations of SIFT local descrip-
tors to build the experimental set-up: (i) original SIFT (SIFT),
(ii) original SIFT non-rotation-invariant (SIFT-NRI), (iii) mod-
ified SIFT (SIFTGabor), and (iv) modified SIFT non-rotation-
invariant (SIFTGabor-NRI).

We compute the Equal Error Point (EEP) of the ROC curve of
every type of: (i) Local descriptor, (ii) object category, and for
(iii) two matching criteria: (a) threshold-based and (b) nearest
neighbor. We see in Fig. 7 an example of the performance
evolution as a function of the number of features, in the caseof
motorbikes category. This example shows the general resultfor
all categories, where the best performance comprises: (i) SVM
algorithm, (ii) NRI descriptors, (iii) threshold-based matching,
and (iv) our modified SIFT descriptor.

5 10 25 50 100 250 500
T -0.58 0.36 1.51 2.76 1.22 0.89 0.46

NN -0.66 -0.32 0.04 0.21 0.45 0.27 .07

Table 3: Mean difference (%) of the recognition rate at the EEP of ROC curve
between our SIFT descriptor and original SIFT [1]. The middleand bottom
row contain the results, respectively, for the threshold based (T) and the nearest
neighbor (NN), for different number of descriptorsN (shown in the top row).
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Figure 7: Equal error point of ROC curve vs. number of local descriptors for the motorbike dataset, for various combinationsdescriptor-rotation option-classifier.

We observe in Table 3 the mean performance difference of:
(i) all categories, (ii) non-rotation invariant descriptors, and (iii)
SVM learning algorithm. The improvement of the threshold
based criterion is at most 10 times the improvement of the near-
est neighbor matching criteria.

Considering the matching criteria and the performance dif-
ference between our descriptor and original SIFT, we notice
in general very similar results in this experiment to the image
region matching results, having the best performance improve-
ment in threshold-based criterion. We are able to maintain the
performance improvement in a very challenging object recogni-
tion task, remarking the differences between both experiments
in: (i) image datasets, and (ii) interest point detector (DoG vs.
Hessian/Harris).

6. Conclusions

We present a modification of SIFT descriptor based on odd
Gabor filters as smooth derivative filters, that improves thedis-
tinctiveness of SIFT descriptor. The modification proposed
computes the first order image derivatives using odd Gabor fil-
ters as convolution kernels. The filters’ parameters are selected
by maximizing the filter response at locations with high im-
age gradient. To evaluate the performance of our descriptor
we perform two experiments: (i) image region matching, us-
ing Mikolajczyk and Schimd framework [7], and (ii) category
object recognition, using a component-based model. In both
experiments, our descriptor improves the SIFT distinctiveness.

The results of the image region matching experiments show
that distinctiveness improvement is highly dependent on: (i)
the matching criterion and (ii) the interest point detector. We
obtain the best improvement results using the threshold-based
matching criterion and Hessian-based interest point detectors.

The object recognition experiment provides similar results,
showing that recognition improvement depends on: (i) the

learning algorithm used to classify objects, and (ii) the match-
ing criterion used to build the feature vector. The best results are
obtained using the SVM learning algorithm and the threshold-
based matching criterion. The setup of the object recognition
experiment presented in this work can be used to evaluate the
impact of any kind of local descriptor, being able to compare
local descriptor performances.
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para a Cîencia e a Tecnologia (ISR/IST plurianual funding)
through the POSConhecimento Program that includes FEDER
funds

References

[1] D. Lowe, Distinctive image features from scale-invariant keypoints, In-
ternational Journal of Computer Vision 60 (2) (2004) 91–110.

[2] Y. Ke, R. Sukthankar, Pca-sift: A more distinctive representation for local
image descriptors, in: Proceedings IEEE CVPR, 2004, pp. 511–517.

[3] W. Freeman, E. Adelson, The design and use of steerable filters, IEEE
PAMI 13 (9) (1991) 891–906.

[4] J. Koenderink, A. van Doorn, Representation of local geometry in the
visual system, Biological Cybernetics 55 (1987) 367–375.

[5] L. van Gool, T. Moons, D. Ungureanu, Affine/photometric invariants for
planar intensity patterns, in: ECCV, 1996, pp. 642–651.

[6] P. Moreno, A. Bernardino, J. Santos-Victor, Gabor parameter selection
for local feature detection, in: Proc. IbPRIA’05, Estoril,Portugal, 2005.

[7] K. Mikolajczyk, C. Schmid, A performance evaluation of local descrip-
tors, IEEE PAMI 27 (10) (2005) 1615–1630.

[8] J. Koenderink, A. van Doorn, Generic neighborhood operators, IEEE
PAMI 14 (6) (1992) 597–605.

[9] D. Gabor, Theory of communication, Journal of IEE 93 (1946)429–459.

8



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1−precision

re
ca

ll

 

 
Sift−Gabor
Sift

(a) threshold-based matching

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1−precision

re
ca

ll

 

 
Sift−Gabor
Sift

(b) nearest neighbor matching

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1−precision

re
ca

ll

 

 
Sift−Gabor
Sift

(c) nearest neighbor ratio matching

Figure 6: recall vs. 1 − precision curves of Harris-affine regions matched
using structured images in Figure 3(c), related by a viewpoint transformation.

[10] J. Daugman, Two-dimensional spectral analysis of cortical receptive
fields profiles, Vision research 20 (1980) 847–856.

[11] I. Young, L. van Vliet, M. van Ginkel, Recursive gabor filtering, IEEE
Transactions on Signal Processing 50 (11) (2002) 2798–2805.

[12] P. Daniel, D. Whitterridge, The representation of the visual field on the
cerebral cortex in monkeys, Journal of Physiology 159 (1961)203–221.

[13] L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for
rapid scene analysis, IEEE PAMI 20 (11) (1998) 1254–1259.

[14] D. D. Deco, T. Lee, The role of early visual cortex in visual integration: a
neural model of recurrent interaction, European Journal of Neuroscience
20 (2004) 1089–1100.

[15] K. Namuduri, R. Mehrotra, N. Ranganathan, Edge detection models
based on gabor filters, in: Proc. of the 11th IAPR International Confer-
ence on Pattern Recognition, 1992, Vol. 3, 1992, pp. 729–732.

[16] Z. Zhu, H. Lu, Y. Zhao, Multi-scale analysis of odd gabortransform for
edge detection, in: Proc. of the First International Conference on Innova-
tive Computing, Information and Control, Vol. 2, 2006, pp. 578–581.

[17] T. Lindeberg, On scale selection for differential operators, in: Proc. 8th.
Conference on Image Analysis, 1993, pp. 857–866.

[18] T. Lindeberg, Edge detection and ridge detection with automatic scale
selection, International Journal of Computer Vision 30 (2) (1998) 117–
154.

[19] A. Bernardino, J. Santos-Victor, A real-time gabor primal sketch for vi-
sual attention, in: Proc. IbPRIA’05, Estoril, Portugal, 2005.

[20] A. Bernardino, J. Santos-Victor, Fast iir isotropic 2-d complex gabor fil-
ters with boundary initialization, IEEE Transactions on Image Processing
15 (11) (2006) 3338–3348.

[21] K. Mikolajczyk, C. Schmid, Scale and affine invariant interest point de-
tectors, International Journal of Computer Vision 1 (60) (2004) 63–86.

[22] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, L. V. Gool, A comparison of affine region de-
tectors, International Journal of Computer Vision 65 (1-2) (2005) 43–72.

[23] K. Mikolajczyk, C. Schmid, Indexing based on scale invariant interest
points, in: Proc. of ICCV, 2001, pp. 525–531.

[24] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, T. Poggio, Object recogni-
tion with cortex-like mechanisms, IEEE Transactions on Pattern Analysis
and Machine Intelligence 29 (3) (2007) 411–426.

[25] A. Opelt, A. Pinz, M.Fussenegger, P.Auer, Generic object recognition
with boosting, IEEE Transactions on Pattern Recognition and Machine
Intelligence 28 (3).

[26] G. Csurka, C. Bray, C. Dance, L. Fan, Visual categorization with bags
of keypoints, in: ECCV Workshop on Statistical Learning in Computer
Vision, 2004, pp. 1–22.

[27] R. Fergus, P. Perona, A. Zisserman, A sparse object category model for
efficient learning and exhaustive recognition, in: CVPR, 2005, pp. 380–
387.

[28] E. Osuna, R. Freund, F. Girosi, Support Vector Machines: training and
applications., Tech. Rep. AI-Memo 1602, MIT (March 1997).

[29] C. Chang, C. Lin, LIBSVM: a library for support vector machines (April
2005).

[30] J. Friedman, T. Hastie, R. Tibshirani, Additive logistic regression: a statis-
tical view of boosting, Tech. rep., Dept. of Statistics. Stanford University
(1998).

9


