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Mean Shift: An Information Theoretic Perspective
Sudhir Rao,Student Member, IEEE, and José C. Prı́ncipe,Fellow, IEEE

Abstract— This paper develops a new understanding of mean
shift algorithms from an information theoretic perspective. We
show that the Gaussian Blurring Mean Shift (GBMS) directly
minimizes the Renyi’s quadratic entropy of the dataset and
hence is unstable by definition. Further, its stable counterpart,
the Gaussian Mean Shift (GMS), minimizes the Renyi’s “cross”
entropy where the local stationary solutions are modes of the
dataset. By doing so, we aptly answer the question “What does
mean shift algorithms optimize?”, thus highlighting naturally
the properties of these algorithms. A consequence of this new
understanding is the superior performance of GMS over GBMS
which we show in a wide variety of applications ranging from
mode finding to clustering and image segmentation.

Index Terms— Mean shift, information theoretic learning,
Renyi’s entropy.

I. I NTRODUCTION

L ET us consider a datasetX = (xi)
N
i=1 ∈ R

d with indepen-
dent and identically distributed (iid) samples. Using the non-

parametric method of Parzen windowing, the probability density
estimate is given by

pX,σ(x) =
1

N

N
X

i=1

Gσ

`

x − xi

´

, (1)

where Gσ(t) = e
− t

2

2σ2 is a Gaussian kernel with bandwidth
σ > 0. In order to find the modes of the pdf we rearrange the
stationary point equation∇pX,σ(x) = 0 into an iterative fixed
point scheme

x
(τ+1) = m(x(τ)) =

PN
i=1 Gσ(x − xi)xi

PN
i=1 Gσ(x − xi)

(2)

Note that the expressionm(x) is the sample mean of all the
samplesxi weighted by the kernel centered atx. Thus the term
m(x) − x was coined “mean shift” by Fukunaga and Hostetler
in their landmark paper [1]. Given an initial datasetX(0) = Xo

and using (2), we successively “blur” the datasetXo to produce
datasetsX(1), X(2) . . . X(τ). As the new datasets are produced we
forget the previous one which gives rise to the blurring process.
It was Cheng [2] who first pointed out this and renamed the fixed
point update (2) as blurring mean shift.

This successive blurring made the data to collapse rapidly
and hence made the algorithm unstable. In his1995 paper,
which sparked renewed interest in mean shift, Cheng proposed a
modification in which two different datasets would be maintained
namelyX andXo. The datasetX would be initialized toXo as
X(0) = Xo. At every iteration, a new datasetX(τ+1) is produced
by comparing the present datasetX(τ) with Xo. Throughout this
processXo is fixed and kept constant. This stable fixed point
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update was called mean shift algorithm and is summarized in (3)
where(xoi)

No

i=1 are samples of the original datasetXo.

x
(τ+1) = m(x(τ)) =

PNo

i=1 Gσ(x − xoi)xoi
PNo

i=1 Gσ(x − xoi)
. (3)

To be consistent with the existing mean shift literature, we
call these algorithms Gaussian blurring mean shift (GBMS) and
Gaussian mean shift (GMS) respectively indicating the use of
Gaussian kernel specifically.

Recent advancements in Gaussian mean shift has made it
increasing popular in image processing and vision communities.
In particular, the mean shift vector of GMS has been shown to
always point in the direction of normalized density gradient [2].
Since points lying in low density region have small value of
p(x), the normalized gradient at these points have large value.
This helps the samples to quickly move from low density regions
toward the modes. On the other hand, due to relatively high value
of p(x) near the mode, the steps are highly refined around this
region. This adaptive nature of step size gives GMS a significant
advantage over traditional gradient based algorithms where step
size selection is well known problem.

A rigorous proof of stability and convergence of GMS was
given by Comaniciuet al. [3] where he proved that the sequence
generated by (3) is a Cauchy sequence that converges due to
the monotonic increasing sequence of the pdfs estimated at these
points. Further the trajectory is always smooth in the sensethat the
consecutive angles between mean shift vectors is always between
`

−π
2 , π

2

´

. Carreira-Perpiñán [4] also showed that GMS is an
Expectation-Maximization (EM) algorithm and thus has a linear
convergence rate.

Due to these interesting and useful properties, GMS has been
successfully applied in low level vision tasks like image seg-
mentation and discontinuity preserving smoothing [3] as well as
in high level vision tasks like appearance based clustering[5]
and real-time tracking of non rigid objects [6]. Carreira-Perpiñán
[7] used mean shift for mode finding in mixture of Gaussian
distributions. The connection to Nadarayana-Watson estimator
from kernel regression and the robust M-estimators of location
has been thoroughly explored by Comaniciuet al. [3]. With just
a single parameter to control the scale of analysis, this simple non-
parametric iterative procedure has become particularly attractive
and suitable for wide range of applications.

On the other hand, the understanding of GBMS algorithm re-
mains poor since this concept first appeared in [1]. Apart from the
preliminary work done in [2], the only other notable contribution
which we are aware of was recently made by Carreira-Perpiñ´an.
In his paper [8], the author showed that GBMS has a cubic
convergence rate and to overcome its instability, developed a new
stopping criterion. By removing the redundancy among points
which have already merged, an accelerated GBMS was developed
which was2 ×−4× faster1.

1Note that this can also be done for GMS algorithm
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In spite of these achievements, little progress has been made
to understand mean shift algorithms theoretically. For example,
the question still unanswered is “what do these algorithms op-
timize?”. Fashinget al. [9] showed mean shift as quadratic
bound maximization but the analysis is indirect and the scope
limited. Further, the implications and instability of GBMSis least
understood. It is also not clear what changes are incurred when
going from GBMS to GMS and vice versa. Cheng et al. [2] tried
to address this issue with various postulates and optimization
concepts making the analysis very complex. In this paper we
successfully answer some of these issues. By bringing in fresh
perspective to these algorithms from information theoretic point
of view we simplify greatly the understanding of these algorithms.

In next section we introduce information theoretic concepts.
Section 3 explores the connection between mean shift algorithms
and Renyi’s entropy and its implications. We show the instability
of GBMS in mode finding leading to its poor performance
compared to GMS in clustering and image segmentation problems
in section 4 and finally we conclude with discussion in section 5.

II. I NFORMATION THEORETICLEARNING (ITL)

Let X = (xi)
N
i=1 ∈ R

d be a random variable with independent
and identically distributed samples. The non-parametric density
estimator using Parzen windowing technique is given by

pX,Σ(x) =
1

N

N
X

i=1

KΣ(x − xi), (4)

where KΣ is a kernel with covariance matrixΣ. Although in
principle a full covariance matrix can be used, for simplicity and
ease of estimation, we will only consider spherical covariance
of the form Σ = σ2I for which a number of well established
techniques exists from kernel density estimation literature [10].

Throughout this paper we use the Gaussian kernel. The advan-
tage of this kernel selection is two-folded. First, it is a smooth,
continuous and infinitely differentiable kernel and has been shown
to outperform other kernels in applications where mean shift has
been employed [3]. Second, the Gaussian kernel is the only kernel
with a very special property that the integral of the productof two
Gaussian functions is exactly equal to another Gaussian function
with variance equal to the sum of the variances of the original
Gaussian functions. This property forms the key in developing a
non-parametric estimator for Renyi’s entropy.

Renyi’s quadratic entropy is defined as [11]

H(X) = − log

„Z

p
2(x)dx

«

. (5)

Substituting the Parzen estimate ofp(x) using a Gaussian kernel
and spherical covarianceΣ = σ2

XI and using the property of
Gaussian kernel stated above we get a non-parametric entropy
estimator as shown below.

H(X) = − log(V (X))

V (X) =
1

N2

N
X

i=1

N
X

j=1

Gσ

`

xi − xj

´

,
(6)

where σ2 = 2σ2
X . Notice the argument of the Gaussian kernel

which considers all possible pairs of samples. The idea of
regarding the samples as information particles was first introduced
by Prı́ncipe et al. and collaborators [12], [13] upon realizing
that these samples interact with each other through laws that

resembled the potential fields and their associated forces in
physics.

Since the log is a monotonic function, any optimization based
on H(X) can be translated into optimization of argument of
the log which we denote byV (X) and call the information
potential of the samples. We can consider this quantity as a sum
of contributions from each particlexi given by

V (xi) =
1

N2

N
X

j=1

Gσ

`

xi − xj

´

. (7)

Note that V (xi) is the potential field over the space of the
samples, with an interaction law given by the kernel shape. The
derivative of this contribution with respect to the value ofthe
sample is given by

∂

∂xi
V (xi) =

1

N2

N
X

j=1

Gσ

`

xi − xj

´`xj − xi

σ2

´

. (8)

We can regard this derivative as a contribution of derivatives due
to all other samples and denoting the contribution by samplexj

with F (xi | xj) and overall derivative with respect toxi with
F (xi), we get

F (xi) =
∂

∂xi
V (xi) =

N
X

j=1

F (xi | xj)

F (xi | xj) =
1

N2
Gσ

`

xi − xj

´`xj − xi

σ2

´

.

(9)

F (xi | xj) is the information force exerted by particlexj on
particlexi whereasF (xi) is the net force acting on samplexi.

This idea of interaction between samples of the same dataset
can be extended to quantify interactions between two different
datasets. LetX = (xi)

N
i=1 andY = (yj)

M
j=1 be iid samples from

two different random variables inRd. Let pX,σX
(x) andpY,σY

(y)

denote the pdfs ofX and Y estimated non-parametrically with
Gaussian kernel and covariance matrixσ2

XI andσ2
Y I respectively.

Then, we define the Renyi’s “cross” entropy between two pdfs as

H(X;Y ) = − log

„Z

pX(t)pY (t)dt

«

. (10)

Substituting the Parzen estimates of pdfs ofX and Y yields
Renyi’s cross information potential given by

V (X; Y ) = EpY
[pX(X)] =

Z

pX(t)pY (t)dt

=
1

MN

N
X

i=1

M
X

j=1

Gσ

`

xi − yj

´

,

(11)

where σ2 = σ2
X + σ2

Y . The information potential and force
experienced by particlexi ∈ X due to all particles of dataset
Y is shown in (12) whereF (xi | yj) is the “cross” information
force exerted by particleyj on particlexi. Similarly, one can
easily derive the potential and force experienced byyi ∈ Y due
to all particles of datasetX by simply interchangingM ↔ N

andx ↔ y in (12). Fig. 1 summarizes these concepts neatly.
These ideas lie at the heart of information theoretic learn-

ing (ITL) [12]. By playing directly with pdf of the data and
estimating the entropy non-parametrically, ITL effectively goes
beyond the second order statistics. The result is new cost functions
that directly manipulate information, thus bringing in powerful
techniques and applications in adaptive systems [13] and machine
learning [14], [15].
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(a) Information force within a dataset
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(b) “Cross” information force between two datasets

Fig. 1. Concept of information force arising due to H(X) and H(X;Y)

V (xi; Y ) =
1

MN

M
X

j=1

Gσ

`

xi − yj

´

F (xi; Y ) =
∂

∂xi
V (xi; Y ) =

M
X

j=1

F (xi | yj)

=
1

MN

M
X

j=1

Gσ

`

xi − yj

´`yj − xi

σ2

´

(12)

III. M EAN SHIFT AND RENYI ’ S ENTROPY

We now develop the connection between mean shift algorithms
and Renyi’s entropy. Consider an original datasetXo = (xo)

No

i=1 ∈

R
d with iid samples. This dataset is kept fixed throughout the

experiment. Let us define another datasetX = (x)Ni=1 ∈ R
d with

initialization X = Xo and σX = σXo
. With this setup, consider

the following cost function.

J(X) = min
X

H(X) = min
X

−log
`

V (X)
´

(13)

Notice that X is the variable which evolves over time and
hence appears as argument of the cost function. Since log is a
monotonous function we can redefineJ(X) as

J(X) = max
X

V (X) = max
X

1

N2

N
X

i=1

N
X

j=1

Gσ

`

xi − xj

´

.

Differentiating J(X) with respect toxk={1,2,...,N} ∈ X and
equating it to zero gives

2 F (xk) =
2

N2

N
X

j=1

Gσ

`

xk − xj

´

„

xj − xk

σ2

«

= 0

F (xk) is the information force acting on particlexk due to all
other samples within the datasetX. Thus we would like to evolve
this dataset such that the samples reach an equilibrium position
with net force acting on each sample equal to zero. Rearranging
the above equation gives us the fixed point update rule for each
xk as shown below.

x
(τ+1)
k

= m(x
(τ)
k

) =

PN
j=1 Gσ(xk − xj)xj

PN
j=1 Gσ(xk − xj)

(14)

Comparing this to (2) we see that this is exactly equal to GBMS
algorithm. Thus GBMS minimizes the overall Renyi’s quadratic
entropy of the dataset. Since the only stationary solution of this is
a single point, we conclude immediately that GBMS is unstable.
With X initialized to the original datasetXo, successive iterations
of this fixed point algorithm would “blur” the dataset ultimately
giving us a single point which is useless.

GBMS has been used to find the modes of the data and further
extended to clustering and image segmentation applications [2],
[8]. We argue (supported by our experiments) that this is true only
when the modes are far apart compared to the kernel size. Further,
modes are neither stationary nor saddle points of cost function
H(X) which GBMS minimizes. Thus any stopping criteria for
this algorithm would at most be heuristic and there is no guarantee
that all the modes will ever be found.

We can rectify this deficiency by making a slight modification
to the cost function. Instead of minimizing Renyi’s quadratic en-
tropy we minimize Renyi’s cross entropyH(X; Xo) (or maximize
V (X; Xo)).

J(X) = max
X

V (X; Xo)

= max
X

1

NNo

N
X

i=1

No
X

j=1

Gσ

`

xi − xoj

´

(15)

Differentiating J(X) with respect toxk={1,2,...,N} ∈ X and
equating it to zero gives

∂

∂xk

J(X) = 2 F (x;Xo) = 0

Thus in this scenario, the particles of datasetX move under the
influence of the “cross” information force exerted by samples
from datasetXo. The fixed point update would then be

x
(τ+1)
k

= m(x
(τ)
k

) =

PN
j=1 Gσ(xk − xoj)xoj

PN
j=1 Gσ(xk − xoj)

(16)

Indeed, this is the GMS update equation as shown in (3). By
minimizing H(X;Xo), GMS evolves the datasetX and at the
same time keeps in “memory” the original datasetXo. Since
F (x;Xo) ∝ ∇pXo,σ(x), the result is movement of the samples
xk={1,2,...,N} ∈ X toward the modes of the datasetXo (with
kernel sizeσ)2 whereF (x; Xo) = 0.

2Note that in practice, we never have to selectσX or σXo
. Given a dataset

Xo, we estimate the kernel sizeσ and directly compute the entropy. In case
of GMS, mean shift with this kernel size would then track the modes of the
pdf pXo,σ(x).
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Theorem 1: With X initialized to Xo in GMS, H(X; Xo)

reaches its local minimum at the fixed points of (16).
Proof: Using (16), the mean shift vector in GMS at iteration

τ would be

x
τ+1 − x

τ = m(xτ ) − x
τ

=

1
No

PNo

j=1 Gσ(x − xoj)(xoj − x)

1
No

PNo

j=1 Gσ(x − xoj)

=
1

2
σ

2∇xpXo,σ(x)

pXo,σ(x)

=
1

2
σ

2∇x log(pXo,σ(x)).

Thus the samples move in the direction of normalized density
gradient with increasing density values. Each sample converges
to that mode to whose convex hull it belongs3. Let sl={1,2,...,L}

be the modes ofpXo,σ(x). Associate eachxi={1,2,...,N} ∈ X

with its corresponding modesi∗ , i∗ ∈ {1, 2, . . . , L} to which it
converges. Then,

V (X; Xo) =
1

NNo

N
X

i=1

No
X

j=1

Gσ

`

xi − xoj

´

=
1

N

N
X

i=1

pXo,σ(xi)

≤
1

N

N
X

i=1

pXo,σ(si∗)

≤ max
sl

pXo,σ(sl).

Since V (X; Xo) = 1
N

PN
i=1 pXo,σ(si∗) at the fixed points

(modes) of (16) andH(X; Xo) = −log
`

V (X; Xo)
´

, H(X; Xo)

reaches its local minimum starting with initializationH(X; Xo) =

H(Xo).

A. Stopping Criterion

1) GMS: Stopping the GMS algorithm to find the modes is
very simple. Since samples move in the direction of normalized
gradient toward the modes which are fixed points of (16), the
average distance moved by samples becomes smaller over subse-
quent iterations. By setting atol level on this quantity to a low
value we can get the modes as well as stop GMS from running
unnecessarily. This is summarized in (17).

Stop when
1

N

N
X

i=1

d
(τ)(xi) < tol where

d
(τ)(xi) =‖x

(τ)
i − x

(τ−1)
i ‖

(17)

2) GBMS: As stated earlier, modes are not the solution of
GBMS fixed point update equation and hence GBMS cannot
be used to find them. But assume that the modes are far apart
compared to kernel size. In such cases, there generally seems
to be two distinct phases of convergence. In the first phase, the
points quickly collapse to their respective modes while themodes
move very slowly towards each other. In the second phase, the
modes start merging and ultimately yield a single point. If the
algorithm can be stopped after the first phase then it could beused
in applications like clustering where the exact position ofmodes
is not important, although any such stopping criterion would at

3See references [2], [3] for more details.

most be heuristic. Of course the stopping criterion (17) cannot be
used unless we hand-pick thetol level since the average distance
moved by the particles never settles down until all of them have
merged.

The above assumption was effectively used to formulate
a stopping criterion by Carreira-Perpiñán [8]. In phase 2,
d(τ) = {d(τ)(xi)}

N
i=1 takes on at most K different values (for

K modes). Binningd(τ) using large number of bins gives us the
histogram which has K or fewer non empty bins. Since entropy
does not depend on exact location of the bins, its value does not
change and can be used to stop the algorithm as shown in (18).

˛

˛

˛
Hs(d

(τ+1)) − Hs(d
(τ))

˛

˛

˛
< 10−8 (18)

where Hs(d) = −
PB

i=1 fi log fi is the Shannon entropy,fi is
the relative frequency of bini and the bins span the interval
[0, max(d)]. The number of bins B was selected asB = 0.9N .

It is clear that there is no guarantee that we would find all the
modes using this rule. Further, the assumption used in developing
this criterion does not hold true in many practical scenarios as will
be shown in our experiments.

IV. A PPLICATIONS

We corroborate this new understanding through a detailed set of
experiments. We first start with the mode finding ability of GBMS
and compare it with its stable counterpart, the GMS algorithm. We
then extend this to clustering and ultimately apply it to segment
real images where the implications of the instability of GBMS
become clear.

A. Mode Finding

Here, we study the mode finding ability of the two algorithms.
We use a systematic approach, by generating a mixture of
Gaussian dataset with known modes. We select the kernel size
(σ) such that the modes corresponding to the estimated pdf (using
Parzen window technique) is as close as possible to the original
modes. We then use GMS and GBMS to iteratively track these
modes and compare their performance.

1) Dataset 1: Ring of 16 Gaussians with different a priori
probabilities (R16Ga): The dataset in Fig. 2(a) consists of a
mixture of 16 Gaussians with centers spread uniformly around
a circle of unit radius. Each Gaussian density has a spherical
covariance ofσ2

gI = 0.01×I. To include a more realistic scenario,
different a priori probabilities were selected which is shown in
Fig. 2(b). Using this mixture model,1500 iid data points were
generated. We selected the scale of analysisσ2 = 0.01 such that
the estimated modes are very close to the modes of the Gaussian
mixture. Note that since the dataset is a mixture of16 Gaussians
each with varianceσ2

g = 0.01 and spread across the unit circle,
the overall variance of the data is much larger than0.01. Thus
by using a kernel size ofσ2 = 0.01 for Parzen estimation of
the pdf, we ensure that the Parzen kernel size is smaller thanthe
actual kernel size of the data. Fig. 2(c) shows the 3D view of this
estimated pdf. Note the unequal peaks due to different proportion
of points in each cluster.

Fig. 3 shows the mode finding ability of the two algorithms.
To compare with ground truth we also plot2σg contour lines and
actual centers of the Gaussian mixture. Withtol level in (17) set
to 10−6, GMS algorithm stops at46th iteration giving almost
perfect results. On the other hand, using stopping criterion (18),
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Fig. 2. Ring of16 Gaussian Dataset with different a priori probabilities. The numbering of clusters is in anticlockwise direction starting with center(1, 0)
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(a) Good Mode finding ability of GMS algorithm
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(b) Poor mode finding ability of GBMS algorithm

Fig. 3. Modes of R16Ga Dataset found using GMS and GBMS algorithms

GBMS stops at20th iteration missing already4 modes (shown
with arrows). We would also like to point out that this is the
best result achievable by GBMS even if we had used stopping
criterion (17) and selectively hand-picked the besttol value.

Fig. 4 shows the cost functions which these algorithms min-
imize for a duration of70 iterations. Notice how cost function
H(X) of GBMS continuously drops as the modes merge. This
would go on until H(X) becomes zero when all the samples
would have merged to a single point. For GMS, on the other hand,
H(X; Xo) decreases and settles down smoothly as its fixed points
(modes) are reached. Thus a more intuitive stopping criterion
for GMS which originates directly from its cost function is to
stop when the absolute difference between subsequent values of
H(X; Xo) became smaller than sometol level as summarized
below. These are some of the unforeseen advantages when we
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2.8

3
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3.6

3.8

iterations

H(X) − GBMS
H(X;Xo) − GMS

Fig. 4. Cost function of the two algorithms

know exactly what we are optimizing.
˛

˛

˛
H(Xτ+1; Xo) − H(Xτ ; Xo)

˛

˛

˛
< 10−10

Another interesting result pops up with this new understanding.
Notice that even though GBMS does not directly minimize
Renyi’s “cross” entropyH(X; Xo), we can always measure this
quantity between its resultXτ at every iterationτ and the
original datasetXo. If the assumption of two distinct and well
separated phases in GBMS holds true, then the samples will
quickly collapse to the actual modes of the pdf before they start
slowly moving toward each other. Since we start with initialization
X = Xo, H(X; Xo) will reach its local minimum at this point
before it again starts increasing due to the merging of GBMS
modes (and hence moving them away from the actual modes of
the pdf). By stopping GBMS at this minimum we could devise
an effective stopping criterion giving same result as GMS with
less number of iterations.

Unfortunately, we found that this works only when the modes
(or clusters) are very well separated compared to the kernelsize
(making the assumption to hold true). For example, Fig. 5 shows
H(X; Xo) computed for GBMS for R16Ga dataset. The minimum
is reached at7th iteration. Using this as the stopping criterion
would have prematurely stopped GBMS algorithm giving very
poor results. It is clear that GBMS is not a good mode finding
algorithm.

These results shed a new light in our understanding of these
two algorithms. Mode finding can be used as a means to cluster
data into different groups. We will see next the performanceof
these algorithms in clustering where their respective properties
effect greatly the outcome of the applications.
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Fig. 5. Renyi’s “cross” entropyH(X; Xo) computed for GBMS. This does
not work as a good stopping criterion for GBMS in most cases since the
assumption of two distinct phases of convergence does not hold true in general.

B. Clustering and Image Segmentation

In this section we extend the mode finding ability of GMS to
clustering application. We present results on two datasets; the first
one is an artificial dataset consisting of different Gaussian clusters
and the second one is a real image where we use clustering as a
means to segment the image into meaningful objects.

1) Dataset 2: Random Gaussian Clusters (RGC): We gener-
ated 10 Gaussian clusters with centers spread uniformly in unit
square. The Gaussian clusters have random spherical covariance
matrices with50 iid samples each. Fig. 6 shows the dataset with
true labeling as well as the2σg contour plots.

Although, different kernel sizes should be used for density
estimation of different clusters, for simplicity and to express
our idea clearly we use a common Parzen kernel size for pdf
estimation. We found that aσ2 = 0.01 performance well for
our experiments. The pdf is shown in Fig. 6(c). Note that all
the clusters are well identified for this particular kernel size. By
correlating the points with their respective modes we wish to
segment this dataset into meaningful clusters.

With tol level set at10−6 the GMS algorithm converges at
41st iteration. The segmentation result is shown in Fig. 7(a) .
Clearly GMS performs very well in clustering the dataset into
meaningful clusters. There are a total of 20 misclassification (out
of 500 points) which arise mostly due to the cluster with the
largest spherical covariance matrix. Notice that this cluster is
underrepresented with just 50 points. Further due to the overlap
of the 2σg contour of this cluster with the neighboring cluster
as shown in Fig. 6(b), the misclassifications are bound to occur.
Another interesting mistake occur at the top right corner, where
4 points belonging to a cluster are misclassified and put as part
of another highly concentrated cluster. These points lie inthe
narrow valley bordering the two clusters and unfortunatelytheir
gradient directions point toward the incorrect mode. But itshould
be appreciated that even for this complex dataset with varying
shapes of Gaussian clusters, GMS with the simplest solutionof
single kernel size gives such a good result.

On the other hand, using stopping criterion (18), GBMS stops
at 18th with the output shown in Fig. 7(b). Notice the poor
segmentation result as a consequence of multiple modes merging.
It should be kept in mind that by defining the kernel sizeσ2 =

0.01, we have selected the similarity measure for clustering and
are looking for spherical Gaussians with variance around this
value. In this regard, the result of GBMS is incoherent. On the
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(b) Segmentation result using GBMS

Fig. 7. Segmentation results of RGC dataset using the two algorithms
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Fig. 8. Averaged Norm Distance moved by particles in each iteration

other hand, the segmentation result obtained for GMS is much
more homogeneous and consistent with our similarity measure.
Further, it is only in case of GMS that the modes estimated
from the pdf directly translate into clusters. On the contrary, for
GBMS its not clear how the modes in Fig. 6(c) correlate with the
clustering solution obtained in Fig. 7(b).

Fig. 8 shows the average change in particle position for both
the algorithms. Notice the peaks in GBMS curve corresponding
to modes merging. This is a classic example were the assumption
of two distinct phases in GBMS becomes fuzzy. By5th iteration,
two of the modes have already merged and by18th iteration a
total of 5 modes are lost giving rise to poor segmentation result.
In case of GMS, on the other hand, the averaged norm distance
steadily decreases and by selecting atol level sufficiently low, we
are always assured a good segmentation result.
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Fig. 6. Random Gaussian Clusters Dataset, its2σg contour plots and its estimated pdf

Fig. 9. Baseball Image

2) Dataset3: Baseball Game Image: We highlight the differ-
ences between GMS and GBMS by applying it on a real dataset.
For this purpose, we use the famous baseball game image of the
normalized cuts paper by Shi and Malik [16] shown in Fig. 9.
For computation purpose, the image has been reduced to110×73

pixels. This gray level image is transformed to3 dimensional
feature space consisting of two spatial features namely thex,
y coordinates of the pixels and the range feature which is the
intensity value at that location. Thus the dataset consistsof 8030

points in the feature space. In order to use an isotropic kernel we
prescale the intensity value such that they fall in the same range
as the spatial features as done in [4]. All the values reported are
in pixel units.

In images, we found that a more efficient stopping criterion for
GMS is to stop when the maximum distance moved among all
the particles is less than sometol level rather than the average
distance. This is summarized in (19). Further, we set thetol level
equal to10−3 for both the algorithms throughout this experiment.

Stop when max
i

‖x
(τ)
i − x

(τ−1)
i ‖ < tol (19)

We performed an elaborate experiment of multi scale analysis
where the kernel sizeσ was changed from a small value to large
value in steps of0.5. We selected the best segmentation result
for both the algorithms for a particular number of segments.
The results are shown in Fig. 10. The first column shows the
segmentation result for8 clusters. Since the clusters are well
separated for the respective kernel sizes, both GMS and GBMS
give very similar results. The interesting development occurs
when we try to achieve segments less than8. Note that for this
image the best number of segments is5 to 6 segments as seen
in the image itself. Many researcher have tried to do this using
various methods [4], [16].

Fig. 10(b) and Fig. 10(f) shows the GMS and GBMS result
for 6 segments. Note the poor performance of GBMS. Instead of
grouping similar objects into one, GBMS splits them and merges
half to two different clusters. The disc segment in the imagewas
split into two with one of them merging with the player and
the other with the bottom background. This is counter intuitive
given the fact that two of the coordinates of the feature space
are spatial coordinates of the image. On the other hand, GMS
clearly gives a very good segmentation result with each segment
corresponding to an object in the image. Further, a nice consistent
and hierarchical structure is seen in GMS. As we reduce the
number of clusters, GMS merges clusters of same intensity and
which are closer to each other before merging similar intensity
clusters which are far apart. This is what we would expect for
this feature space. This results in a beautiful pattern in the image
space where whole objects which are similar are merged together
in an intuitive manner. This phenomenon is again observed aswe
move from6 segments to4 where GMS puts all the gray objects
in one cluster thus putting together three full objects of similar
intensity in one group.

Thus starting from8 segments result which were very similar
to each other, GMS and GBMS tread a very different path for
lower number of segments. GMS neatly segments objects in
the image into different segments and hence is very close to
human segmentation result. The different path followed by the
two algorithms results in a completely different2 level image
segmentation as shown in Fig. 10.

V. D ISCUSSION ANDCONCLUSIONS

Mean shift, a mode seeking technique, has become increasingly
popular in image processing and vision community to perform
clustering, segmentation and tracking. Two competing algorithm
are GMS and GBMS, which differ slightly in the way the fixed
point equation is updated. In this paper, we have successfully
analyzed these algorithms from an optimization framework using
information theoretic concepts. To the best of our knowledge, this
is the first such comprehensive study of these two algorithmsafter
Cheng’s work [2].

With this new understanding a number of interesting results
follow. We have shown that GBMS directly minimizes Renyi’s
quadratic entropy and hence is an unstable mode finding algo-
rithm. Since modes are neither stationary nor saddle pointsof this
cost function, any stopping criterion would at most be heuristic.
On the other hand, its stable counterpart GMS, minimizes Renyi’s
“cross” entropy reaching its local minimum when the modes are
reached. Thus a new stopping criterion is to stop when the change
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(a) GMS: segments=8 , σ = 11 (b) GMS: segments=6 , σ = 13 (c) GMS: segments=4 , σ = 18 (d) GMS: segments=2 , σ = 28.5

(e) GBMS: segments=8 , σ = 10 (f) GBMS: segments=6 , σ = 11.5 (g) GBMS: segments=4 , σ = 13 (h) GBMS: segments=2 , σ = 18

Fig. 10. Baseball image segmentation using GMS and GBMS algorithms. The top row shows results from GMS for various different number of segments
and theσ at which it was achieved. The bottow row similarly shows the results from GBMS

in the cost function is small. Through extensive experiments we
have shown how this new perspective effects greatly the outcome
of these two algorithms.

This idea can also be extended to mean shift with any other
kernel. A pdf estimated with kernelK1 will result in entropy
estimator with kernelK2, with K2 being a convolution ofK1

with itself. Differentiating this estimator would give us fixed point
update with kernelK3. Thus, mean shift withK3 would result in
gradient ascent on density estimated with kernelK2 which was
given a special name called “shadow” kernel in [2]. We could
give a similar name like “preshadow” kernel toK1 which is only
needed to complete the theory but never used in practice.

Another issue we haven’t addressed here is kernel density
estimation which in itself is a vast and well researched field.
We would direct the readers to [3] for more details on this topic.
However, an important point needs special mention at this stage.
As an example take the RGC dataset. Proper density estimation
would assign larger kernel size to samples of broad clustersand
smaller to samples of compact clusters. This would only improve
the density estimation giving even better results for the GMS. On
the other hand, due to dramatically different rates at whichthese
clusters collapse to their modes, stopping GBMS would become
even harder giving poor results.

To conclude, we hope that our new insight would foster fresh
interest in this exciting field and pave the way for even better
understanding of these mean shift algorithms.
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