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Abstract— This paper develops a new understanding of mean update was called mean shift algorithm and is summarize8)in (
shift algorithms from an information theoretic perspective. We  where (z,;)¥*, are samples of the original dataset.
show that the Gaussian Blurring Mean Shift (GBMS) directly =

minimizes the Renyi's quadratic entropy of the dataset and (r+1) () ny;l Go(x — Toi)Toi
hence is unstable by definition. Further, its stable countgrart, x =m(z") = SN G (2 — 297) : @)
the Gaussian Mean Shift (GMS), minimizes the Renyi's “cross i=1-7 ov

entropy where the local stationary solutions are modes of t8  To be consistent with the existing mean shift literature, we
dataset. By doing so, we aptly answer the question “What does ¢g]| these algorithms Gaussian blurring mean shift (GBMS) a

mean shift algorithms optimize?”, thus highlighting naturally - 5,sgjan mean shift (GMS) respectively indicating the use o
the properties of these algorithms. A consequence of this ne Gaussian kernel specifically

understanding is the superior performance of GMS over GBMS 5 . . .
which we show in a wide variety of applications ranging from  Recent advancements in Gaussian mean shift has made it

mode finding to clustering and image segmentation. increasing popular in image processing and vision comrasnit

In particular, the mean shift vector of GMS has been shown to
always point in the direction of normalized density gratligdj.
Since points lying in low density region have small value of
p(z), the normalized gradient at these points have large value.
I. INTRODUCTION This helps the samples to quickly move from low density ragio
toward the modes. On the other hand, due to relatively higieva

of p(z) near the mode, the steps are highly refined around this
region. This adaptive nature of step size gives GMS a sigmific
advantage over traditional gradient based algorithms evk&zp
size selection is well known problem.

Index Terms—Mean shift, information theoretic learning,
Renyi's entropy.

ET us consider a datasét = (z;))¥.; € R? with indepen-

dent and identically distributed (iid) samples. Using tioan
parametric method of Parzen windowing, the probability sityn
estimate is given by

LN A rigorous proof of stability and convergence of GMS was
px.o(2) =5 > Go(z— i), (1) given by Comanicitet al. [3] where he proved that the sequence
i=1 generated by (3) is a Cauchy sequence that converges due to
2 the monotonic increasing sequence of the pdfs estimatdteagt

_t_ . . . .
where G (t) = e 2.7 is a Gaussian kernel with bandwidthygints. Further the trajectory is always smooth in the sémstethe
o > 0. In order to find the modes of the pdf we rearrange thgnsecutive angles between mean shift vectors is alwaysebat
stationary point equatiolWVpx ,(x) = 0 into an iterative fixed (—%,%). Carreira-Perpifian [4] also showed that GMS is an

point scheme Expectation-Maximization (EM) algorithm and thus has aén
N convergence rate.
i1 Go(x — x5)2; ) . .
2D = m(:c(T)) = levl (@ = zi)e (2) Due to these interesting and useful properties, GMS has been
2i=1Go(z — ;) successfully applied in low level vision tasks like imagey-se

Note that the expressiom(z) is the sample mean of all the Mentation and discontinuity preserving smoothing [3] adl e
samplesz; weighted by the kernel centered &t Thus the term in high level vision tasks like appearance based clusteifilg
m(z) — = was coined “mean shift’ by Fukunaga and Hostetlétnd real-time tracking of non rigid objects [6]. Carreirerpifian
in their landmark paper [1]. Given an initial dataset?) = x,, [7] used mean shift for mode finding in mixture of Gaussian
and using (2), we successively “blur’ the datasgt to produce distributions. The connection to Nadarayana-Watson estim
datasetst(V, X ... x(7) As the new datasets are produced wom kernel regression and the robust M-estimators of lonat
forget the previous one which gives rise to the blurring pesc has been thoroughly explored by Comaniettal. [3]. With just
It was Cheng [2] who first pointed out this and renamed the fixéisingle parameter to control the scale of analysis, thiglsimon-
point update (2) as blurring mean shift. parametric iterative procedure has become particulathactive

This successive blurring made the data to collapse rapidhpd suitable for wide range of applications. .
and hence made the algorithm unstable. In bi95 paper, On the other hand, the understanding of GBMS algorithm re-
which sparked renewed interest in mean shift, Cheng prapase™Mains poor since this concept first appeared in [1]. Apartftbe
modification in which two different datasets would be maimsal  Preliminary work done in [2], the only other notable conation
namely X and X,. The datasefX would be initialized toXx, as Which we are aware of was recently made by Carreira-Pampin
X = x,. At every iteration, a new datas&t™ ™1 is produced N his paper [8], the author showed that GBMS has a cubic
by comparing the present dataset™) with X,. Throughout this Convergence rate and to overcome its instability, devel@paew

processX, is fixed and kept constant. This stable fixed poin®toPPINg criterion. By removing the redundancy among foint
which have already merged, an accelerated GBMS was devktlope
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In spite of these achievements, little progress has beere madsembled the potential fields and their associated foroes i
to understand mean shift algorithms theoretically. Fomgxda, physics.
the question still unanswered is “what do these algorithms o Since the log is a monotonic function, any optimization liase
timize?”. Fashinget al. [9] showed mean shift as quadraticon H(X) can be translated into optimization of argument of
bound maximization but the analysis is indirect and the scothe log which we denote by (X) and call the information
limited. Further, the implications and instability of GBMSleast potential of the samples. We can consider this quantity asva s
understood. It is also not clear what changes are incurreehwlof contributions from each particle; given by
going from GBMS to GMS and vice versa. Cheng et al. [2] tried N
to address this issue with various postulates and optimizat V() = LQ ZG” (z; — ;). 7
concepts making the analysis very complex. In this paper we N i=1
successfully answer some of these issues. By bringing B‘nfreNote that v
perspective to these algorithms from information theorpbint
of view we simplify greatly the understanding of these aildpons.

In next section we introduce information theoretic consept
Section 3 explores the connection between mean shift &hgosi
and Renyi's entropy and its implications. We show the initgb 9 1 & Tj— X4
of GBMS in mode finding leading to its poor performance Tv(xi): TZG"(“_%’)( : 2 ok ®)

T; N4 < o
compared to GMS in clustering and image segmentation prable =1
in section 4 and finally we conclude with discussion in seco We can regard this derivative as a contribution of deriestidue
to all other samples and denoting the contribution by sample

Il. | NFORMATION THEORETICLEARNING (ITL) Wi(th )F(xi | xtj) and overall derivative with respect to, with
z;), We ge

(z;) is the potential field over the space of the
samples, with an interaction law given by the kernel shape T
derivative of this contribution with respect to the value tbe
sample is given by

Let X = (z;)Y; € R? be a random variable with independent

and identically distributed samples. The non-parametensidy ) N
estimator using Parzen windowing technique is given by F(zi) = a_xiv(xi) = 21 F(ai | zj) ©)
J:
N
1 1 Ti—x;
pxs(@) =5 > Ks(r =), 4) Fwi | %)) = 37 Go (w1 — 25) (F—5—)-
i=1

) ) ] ) . F(xz; | x;) is the information force exerted by particle; on
Wherg Ky, is a kern_el with covariance matrix. Althoug.h. N particle z; whereasF () is the net force acting on sample.
principle a full covariance matrix can be used, for simpfi@ind ~ Thjs jdea of interaction between samples of the same dataset
ease of estlmat|0n2, we will _only consider spherical COVE& can be extended to quantify interactions between two eiffer
of the form & = 0“1 for which a number of well established yatasets. Lef = (2;)Y, andy = (y;)M, be iid samples from
. . . . . . : 1= Jj=
techniques exists from kernel density estimation liteefd0]. 1 different random variables iR. Letpy oy (x) andpy. oy ()

Throughout this paper we use the Gaussian kernel. The advggote the pdfs ofc and v estimated non-parametrically with

tage of this kernel selection is two-folded. First, it is ac&h, 5 sgjan kernel and covariance matriI ando? I respectively.
continuous and infinitely differentiable kernel and hasrb&®own 1. we define the Renyi's “cross” entropy between two pefs a
to outperform other kernels in applications where meart $laié '

been employed [3]. Second, the Gaussian kernel is the onhgke H(X;Y)=—log </px (t)py(t)dt). (10)
with a very special property that the integral of the prodafdivo

Gaussian functions is exactly equal to another Gaussiastifum Substituting the Parzen estimates of pdfs Xfand Y yields
with variance equal to the sum of the variances of the originRenyi’s cross information potential given by

Gaussian functions. This property forms the key in develgp@

non-parametric estimator for Renyi’s entropy. V(X5Y) = Epy [px (X)] = /px(t)py(t)dt

Renyi’s quadratic entropy is defined as [11] L NoM
= T Ga’ i —Yil,
1(x) = tog [ 1)z ). ) VN 2 2 ol )

. . . . 2 2 2 H P H
Substituting the Parzen estimate;sf) using a Gaussian kernelWhere o° = o% + oy The information potential and force
and spherical covariancE = 0%/ and using the property of experienced by particle; € X due to all particles of dataset

Gaussian kernel stated above we get a non-parametric gntrdpis shown in (12) where”(z; | y;) is the “cross” information
estimator as shown below. force exerted by particlg; on particlez;. Similarly, one can

easily derive the potential and force experiencedypy Y due

H(X) = —log](VV(])V()) to all particles of dataseX by simply interchanging\l < N

1 (6) andz < y in (12). Fig. 1 summarizes these concepts neatly.
V(X)) = ZZG” (i = 5), These ideeSs I)ie a% the heart of information th?eoretic I)éarn-
ing (ITL) [12]. By playing directly with pdf of the data and
where o% = 20%. Notice the argument of the Gaussian kernedstimating the entropy non-parametrically, ITL effectivgoes
which considers all possible pairs of samples. The idea béyond the second order statistics. The result is new costifins
regarding the samples as information particles was firstdiniced that directly manipulate information, thus bringing in paful
by Principeet al. and collaborators [12], [13] upon realizingtechniques and applications in adaptive systems [13] archima
that these samples interact with each other through laws thearning [14], [15].

(11)



1 : : : Differentiating J(X) with respect tox;,_;; 5 . yy € X and

0sh ] equating it to zero gives
0.6 ! 1 2 N Tj — Tk
04t .. rs ] QF(xk):WZGU(‘Ek—xj)< 302 ):O
02t :\\f ,‘:f» ey E J=1
IR S Y WO . . . . .
or S e 1 F(zy,) is the information force acting on particle, due to all
02 - “‘jé‘ztxf: other samples within the datas&t Thus we would like to evolve
04 <4 t “ 1 this dataset such that the samples reach an equilibriuntigosi
06l . 1 with net force acting on each sample equal to zero. Reamgngi
—osl 1 the above equation gives us the fixed point update rule fon eac
o ‘ ‘ ‘ z, as shown below.
-1 -0.5 0 05 1
N
1 _ 2 =1 Golar — )z
(a) Information force within a dataset mgj - m(:c,(:)) == (14

S Golay, — )

15 ‘ ‘ ‘ ‘ ‘ Comparing this to (2) we see that this is exactly equal to GBMS
algorithm. Thus GBMS minimizes the overall Renyi’s quaurat
entropy of the dataset. Since the only stationary solutfcthis is
a single point, we conclude immediately that GBMS is ungtabl
With X initialized to the original dataset,, successive iterations
of this fixed point algorithm would “blur” the dataset ultitedy
giving us a single point which is useless.

GBMS has been used to find the modes of the data and further
extended to clustering and image segmentation applica{@f
[8]. We argue (supported by our experiments) that this is tuly
when the modes are far apart compared to the kernel sizédrurt

051

-0.51

135 -y rys 0 05 1 15 modes are neither stationary nor saddle points of cost ifumct
H(X) which GBMS minimizes. Thus any stopping criteria for
(b) “Cross” information force between two datasets this algorithm would at most be heuristic and there is no gize

that all the modes will ever be found.

We can rectify this deficiency by making a slight modification
to the cost function. Instead of minimizing Renyi’'s quaiiran-
tropy we minimize Renyi’s cross entrogy(X; X,) (or maximize
V(X§ Xo))-

J(X) = max V(X;Xo)

Fig. 1. Concept of information force arising due to H(X) an¢xtY)

j=1 1 XY (15)
5 M :m)?x NNOZZGU(:Q—J"OJ-)
Fa;Y) = 5=V(w;Y) = > F(xi | yy) (12) i=15=1
! j=1 Differentiating J(X) with respect tox;,_;; 5 . y3 € X and
! M . yj — T equating it to zero gives
*WZ o (@i = yj) ( 2 ) 9
j=1 —J(X)=2 F(z;X,) =0
8xk
I1l. M EAN SHIFT AND RENYI’S ENTROPY Thus in this scenario, the particles of data&emove under the

influence of the “cross” information force exerted by saraple
We now develop the connection between mean shift algorithfigm datasetx,. The fixed point update would then be
and Renyi’s entropy. Consider an original datasgt= (:co)f.vzol €
R? with iid samples. This dataset is kept fixed throughout the
experiment. Let us define another dataket (z)¥_, € R? with
initialization X = X, andox = ox,. With this setup, consider
the following cost function.

Zé'vzl Ga’(mk - Ccoj)moj
Zj’vzl Gg(x'k — moj)

Indeed, this is the GMS update equation as shown in (3). By
minimizing H(X; X,), GMS evolves the dataset and at the
J(X)=min H(X)=min —log(V(X)) (13) same time keeps in “memory” the original datases. Since
X X F(z; Xo) o Vpx, »(z), the result is movement of the samples
Notice that X is the variable which evolves over time andr,_¢ 5 3 € X toward the modes of the datas&t (with
hence appears as argument of the cost function. Since log ike@nel Sizeo')z where F(z; X,) = 0.
monotonous function we can redefidéX) as

2T — @l = (16)

2Note that in practice, we never have to selegt or ox,. Given a dataset
1 N N X,, we estimate the kernel size and directly compute the entropy. In case
J(X) = max V(X)= max oy Z Z Go (z; — ;). of GMS, mean shift with this kernel size would then track thedes of the
i=1j=1 pdf px, o (2).



Theorem 1: With X initialized to X, in GMS, H(X;X,) mostbe heuristic. Of course the stopping criterion (17)nocaie

reaches its local minimum at the fixed points of (16). used unless we hand-pick tha level since the average distance
Proof: Using (16), the mean shift vector in GMS at iteratiormoved by the particles never settles down until all of thewmeha
7 would be merged.
2 T —ma) — 2" The above assumption was effectively used to formulate
1 <N a stopping criterion by Carreira-Perpifian [8]. In phasg 2
_ W 2= Go (@ — 20j) (o) — @) d™) = {d7)(z;)}}V, takes on at most K different values (for
N%, Z;V:‘H Go(x — x0o5) K. modes). Binningd(T) using large number of pins g_ives us the
1 5 Vapx, o(x) histogram which has K or fewer non empty bln_s. Since entropy
=37 m does not depend on exact location of the bins, its value does n

change and can be used to stop the algorithm as shown in (18).

= 50 Valog(px, o (). Ho(d ™) — Ho(d)| < 1078 (18)

Thus the samples move in the direction of normalized density

gradient with increasing density values. Each sample agage where H,(d) = —Zf;l filog f; is the Shannon entropy; is
to that mode to whose convex hull it belongd_et si—{1,2,...,0} the relative frequency of biri and the bins span the interval
be the modes opx, ,(z). Associate eachr;_ri 5 Ny € X [0,maz(d)]. The number of bins B was selected As= 0.9N.

with its corresponding mode;-,i* € {1,2,...,L} to which it It is clear that there is no guarantee that we would find all the
converges. Then, modes using this rule. Further, the assumption used in olgve
N N this criterion does not hold true in many practical scersa® will
. __1 > be shown in our experiments.
V(XaXO)_NNoz;z;GU(xi_Ioj) P
1=15=
| X IV. APPLICATIONS
=N pro,a(wi) We corroborate this new understanding through a detaileof se
=1 experiments. We first start with the mode finding ability of 38
< N and compare it with its stable counterpart, the GMS algoritive
=N ;pxw"(s”) then extend this to clustering and ultimately apply it torsegt
< = real images where the implications of the instability of GBM
< max px,.q(s)- become clear.

Since V(X;Xo0) = &N px, o(six) at the fixed points o
(modes) of (16) and (X; X,) = —log(V(X; Xo)), H(X;X,) A Mode Finding

reaches its local minimum starting with initializatiéh( X ; X,) = Here, we study the mode finding ability of the two algorithms.

H(X,). m We use a systematic approach, by generating a mixture of
Gaussian dataset with known modes. We select the kernel size

A. Sopping Criterion (o) such that the modes corresponding to the estimated paffg(usi

. . ' . Parzen window technique) is as close as possible to thenaligi
1) QMS Stgpplng the GMS algprlthm t.o fmd the modes. nodes. We then use GMS and GBMS to iteratively track these
very simple. Since samples move in the direction of norredliz .
. . ) . modes and compare their performance.
gradient toward the modes which are fixed points of (16), the o : . . I
. 1) Dataset 1: Ring of 16 Gaussians with different a priori
average distance moved by samples becomes smaller over-subs’ - . . S ;
. . - - . probabilities (R16Ga): The dataset in Fig. 2(a) consists of a
guent iterations. By setting ®@l level on this quantity to a low . . . )
.mixture of 16 Gaussians with centers spread uniformly around
value we can get the modes as well as stop GMS from running_. . : : . .
a“circle of unit radius. Each Gaussian density has a spherica

unnecessarily. This is summarized in (17). . . - ;
¥ A7) covariance 027 = 0.01 x I. To include a more realistic scenario,

1 N ) different a priori probabilities were selected which is whoin
Stop when > _d'7 (i) < tol where (17) Fig. 2(b). Using this mixture modell500 iid data points were
=1 generated. We selected the scale of analydis- 0.01 such that
d7 (@) =[la{” — 27V the estimated modes are very close to the modes of the Gaussia

2) GBMS As stated earlier, modes are not the solution d‘pixturej Note_that since the dataset is a mixtura@Gau;sians
GBMS fixed point update equation and hence GBMS cann®®ch with varlgncerg = 0.01 and spread across the unit circle,
be used to find them. But assume that the modes are far apift overall variance of thezdata is much larger then. Thus
compared to kernel size. In such cases, there generallyssedl USiNg a kernel size o6~ = 0.01 for Parzen estimation of
to be two distinct phases of convergence. In the first phame, {he pdf, we ensure that the Parzen kemnel size is smallertttean
points quickly collapse to their respective modes whilerttagles 2ctual kernel size of the data. Fig. 2(c) shows the 3D vievhisf t
move very slowly towards each other. In the second phase, fitimated pdf. Note the unequal peaks due to different ptiopo
modes start merging and ultimately yield a single point.hi t ©f Points in each cluster. . ,
algorithm can be stopped after the first phase then it coulssbd _ F19- 3 shows the mode finding ability of the two algorithms.
in applications like clustering where the exact positiomaides 10 compare with ground truth we also ptbt, contour lines and

is not important, although any such stopping criterion wloat actual centers of the Gaussian mixture. Withlevel in (17) set
to 1075, GMS algorithm stops at6'” iteration giving almost

3See references [2], [3] for more details. perfect results. On the other hand, using stopping critefi®),
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Fig. 4. Cost function of the two algorithms

know exactly what we are optimizing.

H(X™ ™ X,) — H(X™; X,)| < 10710

Another interesting result pops up with this new understand
Notice that even though GBMS does not directly minimize
Renyi’'s “cross” entropyH (X; X,), we can always measure this
guantity between its resulX™ at every iterationt and the
original datasetX,. If the assumption of two distinct and well
separated phases in GBMS holds true, then the samples will
quickly collapse to the actual modes of the pdf before theyt st
slowly moving toward each other. Since we start with initiation
X = Xo, H(X; X,) will reach its local minimum at this point
before it again starts increasing due to the merging of GBMS
modes (and hence moving them away from the actual modes of
the pdf). By stopping GBMS at this minimum we could devise

GBMS stops ar0™" iteration missing alreadyt modes (shown an effective stopping criterion giving same result as GM&hwi
with arrows). We would also like to point out that this is thaess number of iterations.

best result achievable by GBMS even if we had used stoppingunfortunately, we found that this works only when the modes

criterion (17) and selectively hand-picked the bestvalue.

(or clusters) are very well separated compared to the kainel

Fig. 4 shows the cost functions which these algorithms mifmaking the assumption to hold true). For example, Fig. Swsho
imize for a duration of70 iterations. Notice how cost function H(X; X,) computed for GBMS for R16Ga dataset. The minimum
H(X) of GBMS continuously drops as the modes merge. This reached at’" iteration. Using this as the stopping criterion
would go on until H(X) becomes zero when all the samplesvould have prematurely stopped GBMS algorithm giving very
would have merged to a single point. For GMS, on the other harmmbor results. It is clear that GBMS is not a good mode finding
H(X; Xo) decreases and settles down smoothly as its fixed poigtgorithm.

(modes) are reached. Thus a more intuitive stopping aiteri

These results shed a new light in our understanding of these

for GMS which originates directly from its cost function is t two algorithms. Mode finding can be used as a means to cluster
stop when the absolute difference between subsequentsvaefuedata into different groups. We will see next the performante
H(X; Xo0) became smaller than sontel level as summarized these algorithms in clustering where their respective gutigs
below. These are some of the unforeseen advantages wheneffiect greatly the outcome of the applications.
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Fig. 5. Renyi's “cross” entropyH (X; X,) computed for GBMS. This does
not work as a good stopping criterion for GBMS in most casesesithe

assumption of two distinct phases of convergence does fbtive in general. 12p

B. Clustering and Image Segmentation o8y
In this section we extend the mode finding ability of GMS to o8,

clustering application. We present results on two datadedirst oal-

one is an artificial dataset consisting of different Gausslasters
and the second one is a real image where we use clustering as a
means to segment the image into meaningful objects. of

1) Dataset 2: Random Gaussian Clusters (RGC): We gener- os ‘ ‘ ‘ ‘ ‘ ‘ ‘
ated 10 Gaussian clusters with centers spread uniformlynin u CE e
square. The Gaussian clusters have random spherical @oveari
matrices with50 iid samples each. Fig. 6 shows the dataset with
true labeling as well as thmgg contour plots. Fig. 7. Segmentation results of RGC dataset using the twarithons

Although, different kernel sizes should be used for density
estimation of different clusters, for simplicity and to eaps
our idea clearly we use a common Parzen kernel size for pdf o
estimation. We found that a® = 0.01 performance well for ,
our experiments. The pdf is shown in Fig. 6(c). Note that all
the clusters are well identified for this particular kernigles By
correlating the points with their respective modes we wish t
segment this dataset into meaningful clusters.

With tol level set at10=% the GMS algorithm converges at
41%¢ jteration. The segmentation result is shown in Fig. 7(a) .
Clearly GMS performs very well in clustering the datasebint
meaningful clusters. There are a total of 20 misclassificatout A S
of 500 points) which arise mostly due to the cluster with the reons 0
largest spherical covariance matrix. Notice that this teluss
underrepresented with just 50 points. Further due to thelagve Fig. 8. Averaged Norm Distance moved by particles in eaatatiten
of the 204 contour of this cluster with the neighboring cluster
as shown in Fig. 6(b), the misclassifications are bound tarocc
Another interesting mistake occur at the top right corndrere other hand, the segmentation result obtained for GMS is much
4 points belonging to a cluster are misclassified and put as perore homogeneous and consistent with our similarity measur
of another highly concentrated cluster. These points lighim Further, it is only in case of GMS that the modes estimated
narrow valley bordering the two clusters and unfortunatekir from the pdf directly translate into clusters. On the canytréor
gradient directions point toward the incorrect mode. Bshibuld GBMS its not clear how the modes in Fig. 6(c) correlate with th
be appreciated that even for this complex dataset with rgryiclustering solution obtained in Fig. 7(b).
shapes of Gaussian clusters, GMS with the simplest solaion Fig. 8 shows the average change in particle position for both
single kernel size gives such a good result. the algorithms. Notice the peaks in GBMS curve correspandin

On the other hand, using stopping criterion (18), GBMS stops modes merging. This is a classic example were the assompti
at 18" with the output shown in Fig. 7(b). Notice the poorof two distinct phases in GBMS becomes fuzzy. B iteration,
segmentation result as a consequence of multiple modesnmgergtwo of the modes have already merged and1by/ iteration a
It should be kept in mind that by defining the kernel size= total of 5 modes are lost giving rise to poor segmentation result.
0.01, we have selected the similarity measure for clustering ahd case of GMS, on the other hand, the averaged norm distance
are looking for spherical Gaussians with variance around trsteadily decreases and by selectingldevel sufficiently low, we
value. In this regard, the result of GBMS is incoherent. Oa thare always assured a good segmentation result.

0.2

(b) Segmentation result using GBMS
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(a) RGC Dataset (b) 204 contour plots (c) pdf estimated using? = 0.01

Fig. 6. Random Gaussian Clusters Dataset2dtg contour plots and its estimated pdf

Fig. 10(b) and Fig. 10(f) shows the GMS and GBMS result
for 6 segments. Note the poor performance of GBMS. Instead of
grouping similar objects into one, GBMS splits them and rasrg
half to two different clusters. The disc segment in the imags
split into two with one of them merging with the player and
the other with the bottom background. This is counter inteit
given the fact that two of the coordinates of the feature epac
are spatial coordinates of the image. On the other hand, GMS
clearly gives a very good segmentation result with each segm
corresponding to an object in the image. Further, a niceistamt
and hierarchical structure is seen in GMS. As we reduce the
number of clusters, GMS merges clusters of same intensity an
which are closer to each other before merging similar irtgns
clusters which are far apart. This is what we would expect for

2) Dataset3: Baseball Game Image: We highlight the differ- . . - . .
ences between GMS and GBMS by apolving it on a real datastehtls feature space. This results in a beautiful pattern énittirage
Y applying H‘ace where whole objects which are similar are mergedheget

For this purpose, we use the famous baseball game image 0f'n &n intuitive manner. This phenomenon is again observedeas

normalized cuts paper by Shi and Malik [16] shown in Fig. 9. .
For computation purpose, the image has been reducerbter3 move from6 segments t@ where GMS puts all the gray objects

pixels. This gray level image is transformed 2odimensional in one cluster thus putting together three full objects ofikir

feature space consisting of two spatial features namelyxl‘.hemt(_}nSIty N one group.

. . o Thus starting from8 segments result which were very similar
y coordinates of the pixels and the range feature which is t?oe each other GMS and GBMS tread a verv different path for
intensity value at that location. Thus the dataset consis&®30 ' y P

o . . lower number of segments. GMS neatly segments objects in
points in the feature space. In order to use an isotropicekave 9 y seg )

. . . the image into different segments and hence is very close to
prescale the intensity value such that they fall in the seange human segmentation result. The different path followed Hiy t
as the spatial features as done in [4]. All the values regaate '

S . two algorithms results in a completely differentlevel image
in pixel units.

. . . . segmentation as shown in Fig. 10.
In images, we found that a more efficient stopping criterimn f
GMS is to stop when the maximum distance moved among all

the particles is less than soma level rather than the average hift q K hni has b . .
distance. This is summarized in (19). Further, we setohéevel Mean shift, a mode seeking technique, has become incrégsing

equal to10~2 for both the algorithms throughout this experiment‘?’()pula_r N Image processing and vision communlty to_ perform
clustering, segmentation and tracking. Two competing ritlyo

Stop when max [|z{”) — 2{" V| < tol (19) are GMS and GBMS, which differ slightly in the way the fixed
¢ point equation is updated. In this paper, we have succégsful
We performed an elaborate experiment of multi scale armlysinalyzed these algorithms from an optimization framewaikg
where the kernel size was changed from a small value to largeénformation theoretic concepts. To the best of our knowtedhis
value in steps of).5. We selected the best segmentation resuk the first such comprehensive study of these two algorithites
for both the algorithms for a particular number of segment&€heng’s work [2].
The results are shown in Fig. 10. The first column shows theWith this new understanding a number of interesting results
segmentation result fo8 clusters. Since the clusters are welfollow. We have shown that GBMS directly minimizes Renyi’'s
separated for the respective kernel sizes, both GMS and GBM&adratic entropy and hence is an unstable mode finding algo-
give very similar results. The interesting developmentuosc rithm. Since modes are neither stationary nor saddle pofrtsis
when we try to achieve segments less ti3amNote that for this cost function, any stopping criterion would at most be rstigi
image the best number of segments;iso 6 segments as seenOn the other hand, its stable counterpart GMS, minimizes/Ren
in the image itself. Many researcher have tried to do thisgisi “cross” entropy reaching its local minimum when the modes ar
various methods [4], [16]. reached. Thus a new stopping criterion is to stop when thegeha

Fig. 9. Baseball Image

V. DISCUSSION ANDCONCLUSIONS



(a) GMS: segments®=, 0 = 11 (b) GMS: segmentss-, o = 13 (c) GMS: segmentsE, o = 18 (d) GMS: segments>, o = 28.5

(e) GBMS: segments=, c = 10 (f) GBMS: segments&, o = 11.5 (g) GBMS: segmentst, 0 = 13 (h) GBMS: segment-, o = 18

Fig. 10. Baseball image segmentation using GMS and GBMSrittigts. The top row shows results from GMS for various défer number of segments
and thes at which it was achieved. The bottow row similarly shows theults from GBMS

in the cost function is small. Through extensive experimemé [3] D. Comaniciu and P. Meer, “Mean shift: A robust approacward
have shown how this new perspective effects greatly theoougc feature space analysi|EEE Trans. on Pattern Analysis and Machine
of these two algorithms. Intelligence, vol. 24, no. 5, pp. 603-619, May 2002.

- . . [4] M. Carreira-Perpifian, “Gaussian mean shift is em algorithm,” To
This idea can also be extended to mean shift with any other appear in IEEE Trans. on Pattern Analysis and Machine Intelligence,

kernel. A pdf estimated with kernek; will result in entropy 2007.

i ; ; ; ; [5] D. Ramanan and D. A. Forsyth, “Finding and tracking pecfpbm the
es_tlmator Wl.th kerr.]el.Kz’ V\{Ith K.2 being a conyolutlon Ole bottom up,” inProceedings of |EEE Conf. Computer Vision and Pattern
with |tself_. Differentiating this estlmatqr W(_)uld give uséd pomt Recognition, June 2003, pp. 467—474.
update with kerneK’s. Thus, mean shift withiks would result in  [6] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tragkiof non-
gradient ascent on density estimated with keriigl which was (iﬂgi_d Obje(;:tga t'tSinngea” _f_hiﬂy" ""?Ifoceedz ; ings ;&;EEE CfifI-ZCngutef

; ; “ » : sion an ern Recognition, vol. 2, June , pp. 142-149.
g!ven a,SPeCIaI nam_e Cf‘”ed Shadf?W kernel in [2] _We COUId[7] M. Carreira-Perpifian, “Mode-finding for mixtures ofugssian distri-
give a similar name like “preshadow” kernel 16, which is only butions,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
needed to complete the theory but never used in practice. vol. 22, no. 11, pp. 1318-1323, November 2000.

; ) ; H8] M. A. Carreira-Perpifian, “Fast nonparametric clusteririgh vgaussian
A.”O”.‘er |ssge We.havent addressed here is kernel de_ns@ blurring mean-shift.” inCML, W. W. Cohen and A. Moore, Eds. ACM,
estimation which in itself is a vast and well researched field 506, pp. 153-160.

We would direct the readers to [3] for more details on thiSdop [9] M. Fashing and C. Tomasi, “Mean shift is a bound optiniizat |EEE

However, an important point needs special mention at thigest 1;3{1_54?2 Paﬁefft;AzT)a(J))fS and Machine Intelligence, vol. 27, no. 3, pp.
. . . , Marci .

As an exa_mple take the RG,C dataset. Proper density esmnatfﬂ)] B. W. Silverman,Density Estimation for Statistics and Data Analysis.

would assign larger kernel size to samples of broad clusteds Chapman and Hall, 1986.

smaller to samples of compact clusters. This would only ower [11] A. Renyi, “On measure of entropy and information,”Fnoceedings 4th

the density estimation giving even better results for theSsKn Berkeley Symp. Math. Sat. and Prob,, vol. 1, 1961, pp. 547-561.

. . . [12] J. C. Principe, D. Xu, and J. Fisher, “Information thetir learning,”
the other hand, due to dramatically different rates at wiiese in Unsupervised Adaptive Filtering, S. Haykin, Ed. John Wiley, 2000,

clusters collapse to their modes, stopping GBMS would becom  pp. 265-319.
even harder giving poor results. [13] D. Erdogmus, “Information theoretic learning: Resyntropy and its
To conclude, we hope that our new insight would foster fresh gf‘lﬂ;gﬁggnszégzadapt“’e system training,” Ph.D. disgera University
interest in this exciting field and pave the way for even bettgi4) r. Jenssen, “An information theoretic approach to riHearning,”
understanding of these mean shift algorithms. Ph.D. dissertation, University of Tromso, 2005.
[15] S. Rao, W. Liu, J. C. Principe, and A. de Medeiros Mattithsformation
theoretic mean shift algorithm,” irProceedings of IEEE Conf. on
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