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Abstract 

In this paper, we present a multi-stream approach for off-line handwritten word recognition. 

The proposed approach combines low level feature streams namely, density based features 

extracted from 2 different sliding windows with different widths, and contour based features 

extracted from upper and lower contours. The multi-stream paradigm provides an interesting 

framework for the integration of multiple sources of information and is compared to the 

standard combination strategies namely fusion of representations and fusion of decisions. We 

investigate the extension of 2-stream approach to N streams (N=2,…,4) and analyze the 

improvement in the recognition performance. The computational cost of this extension is 

discussed. Significant experiments have been carried out on two publicly available word 

databases: IFN/ENIT benchmark database (Arabic script) and IRONOFF database (Latin 

script). The multi-stream framework improves the recognition performance in both cases. 

Using 2-stream approach, the best recognition performance is 79.8%, in the case of the Arabic 

script, on a 2100-word lexicon consisting of 946 Tunisian town/village names. In the case of 

the Latin script, the proposed approach achieves a recognition rate of 89.8 % using a lexicon 

of 196 words. 
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1. Introduction 

Despite the growing use of electronic documents in all the economic activities during the last 

years, the use of paper documents is still playing an important role. This is because the 

technologies now offer convenient and cheap means to capture, store, compress and transfer 

digitized images of paper documents, in a transparent mode. However, automating the 

processing of the huge amount of these particular documents requires specialized reading 

systems. While many of such systems are already providing good performance for several 

applications like OCR, Bank checks Readers, Forms readers, etc. (Srihari 2000)(Knerr et al., 

1998)(D’Amato and Kuebert, 2000)(Gorski et al., 1999), the enhancement of performance is 

still required so as to cope with a wider range of document reading applications.  

In today’s business world Latin script is mostly used, but with the increasing communication 

among the different communities worldwide more scripts are getting integrated into 

information systems. In this context, we propose in this work a unified approach for the 

recognition of Latin and Arabic scripts. As we want the approach to be script independent, the 

system must proceed without explicit segmentation of handwriting into graphemes. This is 

because explicit segmentation methods generally rely on script specific rules to find 

segmentation points. According to the proposed strategy it is therefore mandatory that the 

system can operate on low level frame features such as directional or pixel densities. In order 

to achieve good discriminative power with such low level features, we attempt to combine 

multiple feature streams. Various combination strategies have been proposed in the literature 

(Günter and Bunke, 2003). They can be grouped into two broad categories: feature fusion 

methods and decision fusion techniques.  
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The first category commonly known as early integration (Okawa et al., 1998), consists in 

combining the input feature streams by projecting them into a unique feature space, and 

subsequently use traditional HMM classifier to model the combined observations in the 

unique feature space (see Figure. 1).  

 

Figure. 1 : Feature combination approach 

In contrast, decision fusion, known as late integration (Prevost et al., 2003), consists in 

combining the single stream classifier outputs (decisions). Different feature representations 

obtained from the word image are modelled and decoded separately by individual HMM 

classifiers. The decoded outputs are then combined to get the final text output (see Figure. 2). 

(Bertolami and Bunke, 2006) compare these two combination methods in the case of offline 

handwritten text line recognition and shows that both combination methods improve 

recognition performances compared to any recognisers built from the individual feature 

streams. Furthermore, in their case, the early integration approach outperforms the decision 

level combination.  

 

Figure. 2 : Decision fusion approach  

A particular method within the decision fusion framework of sequence models falls into the 

multi-stream hidden Markov model paradigm (see Figure 3). Such an approach has been 
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particularly studied in the domain of Automatic Speech Recognition (ASR) and presents 

multiple advantages (Wellekens et al, 1998) (Bourlard and Dupont, 1997):  

 

Figure 3: 2-Stream combination approach 

 

 It offers a mean to merge different sources of information such as acoustic and visual 

inputs in some applications such as audio-visual automatic speech recognition (Dupont 

and  Luettin, 2000) and automatic meeting analysis (McCowan et al. 2005). 

 It can combine several kinds of independent features. 

 The combination can be adaptive: some sources of information can be weighted, or even 

rejected if they are not reliable. 

 The topology of the HMM can be adapted to each source of information. 

 It allows asynchronous modelling of streams. 

Despite these many possibilities, multi-stream techniques have not been studied and applied 

for handwriting recognition. Only the work reported in (Gauthier et al., 2001) and (Artières et 

al., 2003) have investigated these techniques for on-Line handwriting recognition. The 

authors investigate the cooperation of on-line and off-line handwriting word recognition and 

propose a general framework to combine temporal and spatial representation of the signal. 

In (Kessentini et al., 2007), we have investigated the use of synchronous multi-stream HMM 

(without stream asynchrony) for the recognition of Latin script. In this preliminary work, tests 

were conducted on a private database using two contour feature streams.   

In (Kessentini et al., 2008), we extended this preliminary work by enriching the feature 

streams as described in this paper (see section 4.2.1). Also, asynchronous multi-stream HMM 
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were tested for the first time for the recognition of Latin and Arabic scripts using a limited 

lexicon (less than 500 words) of the IFN/ENIT database and the IRONOFF database. 

This paper extends these two contributions in various aspects. A comparison of the multi-

stream approach to the early and late fusion is conducted. This experiment shows significant 

improvement of recognition performance for both Latin and Arabic scripts. New experiments 

have been conducted on the IFN/ENIT database considering the whole lexicon of 946 town 

names and including the use of set “e” so as to compare with other recently reported works. 

Finally, this paper explores the extension of the multi-stream paradigm to more than two 

streams.  Experiments conducted on the IFN/ENIT as well as the IRONOFF databases using 

up to 4 streams show improvement of the recognition performance but with a significant 

increase of the computational load. 

 This paper is organised as follows. Section 2 reviews the multi-stream formalism and 

presents the training and decoding stages. Generalization to the N-streams model and some 

complexity problems are discussed in section 3. In section 4, the overall system organization 

is presented, the stages of feature extraction and modelling techniques are illustrated. 

Experimental results are given in section 5 using the 2-stream approach. They show that the 

proposed system gives promising results both on Latin and Arabic scripts and compares 

favourably to other published experimentations on the same data. Additional experiments 

have been carried out on IRONOFF-cheque and IFN/ENIT databases using the N-stream 

approach. We discuss the contribution and the computational costs of this extension. 

Conclusion and future works are addressed in section 6. 

 

2. Multi-stream statistical framework  

The multi-stream framework provides a convenient formalism to combine several information 

sources, namely feature streams, using cooperative Markov models (see Figure 4).  
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2.1. Formalism 

This problem can be formulated as follows: assume an observation sequence X representing a 

handwritten word to be recognized, is composed of K input streams Xk and assume that the 

hypothesized model M (e.g. a word model) for a word is the concatenation of J sub-unit 

models Mj (j=1,…,J) (e.g., grapheme or character models). Each sub-unit model Mj is 

composed of K models Mj
k
 (possibly with different topologies) attached to each of the K input 

streams. While the K stream subunit models are assumed independent of each other, they are 

forced to recombine at some recombination states ( on Figure 4).   

 

Figure 4: General form of a k-stream model with recombination states between sub-unit models 

 

The recognition problem can be formulated as the one of finding the word model M
*
 that 

maximizes the posterior probability given a sequence of observations X: 

X) | P(M argmax M
M

*



  (1) 

where  is the set of all possible word hypotheses. Bayes formula gives: 

P(X)

 P(M)  M)| P(X
 argmax  M

*
  (2) 

P(X) being independent of the model M it can therefore be ignored for the computation of M
*
. 

When we assume equal prior probabilities P(M) for all possible word hypotheses, then the 

recognition problem consists in determining the model M
*
 that maximizes the likelihood 

P(X|M). 
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Using subunit decomposition gives: 

     ) M| P(X   M)| P(X

J

1j

jj


  (3) 

Assuming that each stream is independent, each sub-model likelihood   ) M| P(X
jj

can be 

computed as a weight sum of the K streams likelihood as depicted in equation (4).  

J K

k k k

j j j

k =1j=1

P(X | M ) = w P(X | M )   (4) 

This equation can be generalized by letting the stream combination be any function of the 

stream likelihoods and a set of weighting parameters, W. So the equation (4) can be rewritten 

as,  

J

k k

j j

j=1

logP(X | M ) = f(W , P(X  | M ),  k  (5) 

Most of the approaches use a linear weighted combination function of log likelihood as 

follows: 

1 1

log ( | ) log ( | )

J K

k k k

j j j

j k

P X M P X M
 

    (6) 

In practice, different combination rules have been proposed for multi-stream systems, 

including linear (sum, product …), non-linear (MLP) or others (maximum, minimum, 

median…) rules. More details are presented in (Hagen, 2001). 

Linear combination of rules requires the estimation of the stream weights according to their 

relative reliability. Many weighting strategies are proposed in the literature including fixed 

weights which have to be trained prior to application, and adaptive weights which are 

estimated during recognition (Hagen, 2001). 

After describing the general multi-stream formalism, we present in the next sections how to 

train and decode such models. 
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2.2. Multi-stream training 

Training the multi-stream HMM consists of two tasks: the first task is the estimation of its 

HMM stream component parameters (mixture weights, means, variances, and state transition 

probabilities) and the second task is the estimation of appropriate stream exponents. 

Maximum likelihood parameter estimation by means of the Expectation Maximization (EM) 

algorithm can be used in a straightforward manner to train the first set of parameters. This can 

be done in two ways: either by training each stream component parameter set separately, 

based on single-stream observations, and subsequently combine the resulting single-stream 

HMMs, or train the entire parameter set (excluding the exponents) at once using the bimodal 

observations. In this work, the first method is used because computationally it is less complex 

to train the single HMMs instead of the product HMM. 

In order to model the Latin characters, we built 26 uppercase character models and 26 

lowercase character models). In the case of Arabic characters, we built up to 159 character 

models. An Arabic character may actually have different shapes according to its position 

within the word (beginning, middle, end word position). Other models are specified with 

additional marks such as “shadda”. In both Latin and Arabic script, each character model is 

composed of 4 emitting states. The observation probabilities are modelled with Gaussian 

Mixtures (3 per state). 

Embedded training (Rabiner et al., 1982) is used where all character models are trained in 

parallel using Baum-Welch algorithm applied on word examples. The system builds a word 

HMM by concatenation of the character HMM corresponding to the word transcription of the 

training sample.  

The final training step concerns the optimization of the stream weights. It is shown in 

(Potamianos and Graf, 1998) that the maximum-likelihood estimation of the weights fails. 

Indeed, maximising the likelihood with respect to the weighting factor   yields to the 
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selection of a stream with the highest likelihood (hence 0  or 1  ). The authors also 

show that additional constraints on the weight can yield to a satisfactory solution. Two 

different methods have been investigated in this work and will be detailed below. The stream 

combination weights are estimated using two different strategies. 

- Equal combination weights  

This strategy consists in attributing equal weights to the various streams. Its main advantage 

is that no data is needed for estimation of the weights and no extra time for the calculation of 

the weights has to be expended. 

- Relative frequency weights (Hagen, 2001) 

Employing the forced segmentation given by the multi-stream decoding algorithm, the ratio 

between the number of times an expert (ie. a stream) performs best for a given character, and 

the number of times this character occurs in the database is computed. 

,k jk

j

j

n

n
   

where 
,k j

n is the number of training frames for which expert k has the largest probability, over 

all experts, for character j, and
j

n is the number of frames for character j in the training data. 

In this work we noticed that both of the weighting strategies perform similarly. 

  

2.3. Multi-stream decoding  

During recognition the best word model M
*
 that maximizes P(X | M ) has to be determined. 

Two solutions have been investigated in the literature: 

 Recombination at the HMM state level: Although it does not allow for asynchrony or 

different topologies of the stream models, it is pretty simple to implement and amounts to 

perform a standard Viterbi decoding (Forney, 1973) in which local probabilities are 

obtained from a linear or nonlinear combination of the local stream emission probabilities. 
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 Recombination at the sub-unit level: it can force the streams to be synchronous where 

synchrony is required at the end of character models and can allow for asynchrony where 

asynchrony allows the sub unit states to be independent of each other. It requires a more 

sophisticated decoding procedure than the Viterbi search. Two different algorithms have 

been proposed to solve the problem of decoding in this case: 

 Two level dynamic programming (Sakoe, 1979): Here the decoding takes place 

in two steps. A first dynamic programming process is applied at the sub-unit 

level and each sub-model is then scored against arbitrary portions of the frame 

data. Secondly, sub-models are merged together in order to find the best 

overall score. 

 HMM-recombination (Bourlard and Dupont, 1997): It is an adaptation of the 

HMM decomposition algorithm (Varga and Moore, 1990). The HMM 

decomposition algorithm is a time-synchronous Viterbi search that allows the 

decomposition of a single stream (speech signal) into two independent 

components (typically speech and noise). In the same spirit, a similar algorithm 

can be used to combine multiple inputs stream into a single HMM model.  

It was shown in (Dupont 2000) that both algorithms are equivalent. In this work, we choose to 

use the HMM-recombination algorithm which is described below. With this choice, a simple 

pre-processing step that consists in building the product HMM is introduced prior to using a 

classical Viterbi decoding algorithm. Using the two-level dynamic programming approach 

would require much more development.  

 

2.4. HMM-recombination algorithm 

The principle of the multi-stream HMM is to model independently each stream between two 

pre-determined synchronization points, using multiple single-stream HMMs (two in this 
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study). In this study, the synchronization states are the character boundaries (see Figure 5). 

Decoding based on this integration method would require the computation of the best state 

sequence for both streams verifying the synchronous recombination rule at the same time. To 

avoid the computation of two best state paths, the model can be formulated as a composite or 

product HMM (see Figure 6) where each state is built by merging a K-tuple of states from the 

K stream HMMs (here, K=2). The topology of this composite model is defined so as to 

represent all possible state paths given the initial HMM topologies. Decoding under such a 

model requires computing a single best path using the well known Viterbi decoding 

algorithm. 

 

Figure 5 : Example of a multi-stream HMM with 2 streams and 4 states in each character model. 

 

Figure 6 : The corresponding product (composite) HMM. 
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In this model, the observation log-likelihood conditioned on a composite state a-A, that is 

composed of the stream states a and A respectively, is given using a weighted sum of log-

likelihood combination function by: 

 
1 2 1 2

log  P(X (t), X (t) | a - A) = ω log  P(X (t) | a) + (1 - ω) log  P(X (t) | A)  

where 
1 2

X (t) (similarly, X (t)) is the observation vector corresponding to stream 1 (similarly, 

stream 2) and   the reliability of stream 1 ( 0 1  ).  

The transition probabilities of the product HMM are derived from the transition probabilities 

of the 2 single stream HMMs assuming independence of the models between 2 recombination 

states. For example,  

1 2
P(a - B | a - A) = P (a | a)× P (B | A)  

2.5. Generalization to more than 2 streams   

Combining more than two streams is a trivial extension of the approach. The product HMM 

can easily be computing by combining N single-stream HMMs as follows. Let 

 i

i i

j
S s ; j 1,...n   be the set of states of the single-stream model i. Then the product HMM 

is defined in the product state space denoted 


S as follows:  

   1 N

1 2 N 1 2 N

i j k l 2
S S S ... S s s , s , ..., s ; j 1,...n ,k 1,...n ,l 1,...n

 
         

In this model, the observation log-likelihood conditioned on a composite state i
S



 is 

computed using a weighted sum of the single-stream log-likelihood by: 

         
N

1 2 N i i i

1

log P X ( t ), X ( t ), ..., X ( t ) | S log P X t | f S  






 
 



   

where f is a function that identifies the state in the 
th

 stream HMM that accounts to product 

state i
S


as follows:    i k

f S s





  
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The transition probabilities of the product HMM are derived from the transition probabilities 

of the N single stream HMMs assuming conditional independence of the N stream state sets: 

           
N

i j i j

1

P S | S P f S | f S



 
   



  

The number of states per character in the composite HMM is equal to the product of the 

number states per single-stream HMM character. For instance, a three stream character 

HMMs, each made of 4 states, would result in a 444 = 64 states composite HMM etc… 

As we can see, complexity is a major concern when dealing with multiple streams. A 

straightforward solution can be envisaged by reducing the number of states per character 

model. This possibility has been investigated in the following experiments (see section 5.4). 

Some other possibilities for complexity reduction have been left for further developments and 

will be discussed in see section 5.4. 

2.6. Discussion   

Now some comments on using the multi-stream framework as opposed to the classical single 

stream approach can be given. First, the multi-stream framework gives the possibility to 

combine feature streams asynchronously. This means that some features detected at the same 

location in the image can be desynchronised during decoding. Such possibility is impossible 

with standard single-stream HMM and is especially suited when dealing with 2D features as 

is the case in this study dedicated to Off-Line recognition. Second, because a multi-stream 

HMM can be implemented with the product HMM of the N stream models, the formalism is 

applicable to any kind of topology, ranging from left/right models to fully connected ergodic 

models. In addition, we can notice that the formalism can easily be extended to variable 

duration state models straightforwardly (Rabiner, 1989). Indeed, assuming independence of 
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each stream model, the duration probability of the product state i
S


 is the product of the 

duration probability of each state that account for i
S


  as follows: 




 

N

SfS
dpdp

ii

1

)]([
)()(


  

The product HMM framework also allows the multi-stream model to be adapted to a new 

dataset in a straightforward way by using standard adaptation approaches. Notice however 

that adaptation of a product HMM is computationally demanding due to its complexity 

especially with a large number of streams. This particular aspect of multi-stream adaptation 

would require more research efforts to receive efficient low complexity implementations.  

 

3. A script-independent recognition system 

Earlier there have been a few efforts behind designing multi-script recognition systems 

(Malaviya and Leja, 1996) (Chaudhuri and Pal, 1997). However, these systems do not use 

HMMs, the framework that have lately been successfully applied to develop many 

handwriting recognition systems. An HMM based framework offers several advantages 

allowing us to propose a unified script-independent recognition system. These advantages are 

mainly due to automatic training of character models on non-segmented words (embedded 

training), and the segmentation-free recognition paradigm that fits particularly well to a 

script-independent approach. The proposed system (see Figure 7) is based on a multi-stream 

HMM. 

In the following sub-section, we describe the different stages of our approach. In the first step, 

pre-processing is applied to the word image. Two types of features are considered in this 

work: (i) contour based features and (ii) density based features. Contour based features are 

extracted from the lower and the upper contours, and density based features are computed on 

two different sliding windows with varying width (see Figure 8). Therefore, each feature type 
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(contour or density feature) defines two feature streams representing the input word image. 

Each stream model is then separately trained using Baum Welch algorithm. It can be noted 

that for assigning weights to the multi-streams, both the equal weight and relative frequency 

strategies (refer section 2.2) perform similarly. The results reported in section-5 are based on 

using equal weight strategy. The last step is the recognition during which the HMM models 

are simultaneously decoded according to the multi-stream formalism presented above. 

 

Figure 7. Methodology for the 2-stream training and decoding 

 

3.1. Pre-processing  

Pre-processing is applied to word images in order to eliminate noise and to simplify the 

procedure of feature extraction. It is worth noticing that these pre-processing methods are 

script independent. 

 Normalization: In an ideal model of handwriting, a word is supposed to be written 

horizontally and with ascenders and descenders aligned along the vertical direction. In real 

data, such conditions are rarely respected. We use slant and slope correction so as to 

normalize the word image (Kimura et al., 1994). 

Word 
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 Contour smoothing: Smoothing eliminates small blobs on the contour. 

 Base line detection: Our approach uses the algorithm described in (Vinciarelli et al., 2004) 

based on the horizontal projection curve that is computed with respect to the horizontal 

pixel density (see Figure 8). Baseline position is used to extract baseline dependent 

features that emphasize the presence of descenders and ascenders. 

3.2. Features extraction 

An important task in multi-stream combination is to identify features that carry 

complementary information. In order to build the feature vector sequence, the image is 

divided into vertical overlapping windows or frames. The sliding window is shifted along the 

word image from right to left (in case of Arabic words) or left to right (in case of Latin words) 

and a feature vector is computed for each frame. 

 
 

Figure 8. Upper and lower baselines detection 

 

Two feature sets are proposed in this work. The first one is based on directional density 

features. This kind of features has proved to be discriminative for off-Line handwriting 

recognition, especially for Latin script (Kimura et al., 1994). The second one is based on 

foreground (black) pixel densities and has been tested only on Arabic script in (El-Hajj et al., 

2005). In this study, we will thus evaluate the discriminative power of these features using 

two different scripts (Latin and Arabic scripts). 

3.2.1. Contour features 

These features are extracted from the word contour representation. Each word image is 

represented by its lower and upper contours (see Figure 9). A sliding window is shifted along 

the word image, two parameters characterize a window: window width (8 pixels) and window 
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overlap between two successive positions (5 pixels). For each position of a window, we 

extract the upper contour points (similarly, the lower contour points). For every point in this 

window, we determine the corresponding Freeman direction (Freeman, 1961) and the 

directions points are accumulated in the directional histogram (8 features). 

 
Word image contour 

 
Word image upper contour 

 
Word image lower contour 

Figure 9. Word image contours 

In addition to the directional density features, a second feature set is computed at every point 

of the upper contour (similarly, it is done for every points on lower contour). The last (black) 

point (say, p’) in the vertical black run started at an upper contour point (say, p) is considered 

and depending on the location of p’, one of the four situations may arise. The point (p’) can 

belong to a: 

- Lower contour (see corresponding p points as marked red in Figure 10). 

- Interior contour on closure (see blue points in Figure 10). 

- Upper contour (see yellow points in Figure 10). 

- No point found (see green points in Figure 10). 

The black points in Figure 10 represent the lower contour. 

 
 

Word image  Image contour  

Figure 10: Contour feature extraction 

The histogram of the four kinds of points is computed in each window. This second feature 

set provides additional information about structure of the contour like the loops, the turning 
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points (for instance, one in letter 't'), the simple lines, and the end points on the word image 

(altogether, four different features). 

The third feature set indicates the position of the upper contour (similarly, lower contour) 

points in the window. For this purpose, we localize the core zone of the word image. More 

precisely, we extract the lower and upper baselines of word images. These baselines divide 

the image into 3 zones: 1) a middle zone, 2) the lower zone, 3) the upper zone. This feature 

set (3 features) provides additional information about the ascending and the descending 

characters, which are salient characteristics for recognition of the Latin script, as well as of 

the Arabic script. Hence, in each window we generate a 15-dimensional (8 features from 

chain code, 4 features from the structure of the contour and 3 features from the position of the 

contour) contour (for upper or lower contour) based feature vector. 

3.2.2. Density features 

Here we recall the definition proposed in (El-Hajj et al., 2005). From each frame 26 features 

are extracted for window of 8-pixel width (and 32 features for window of 14-pixel width). 

There are two types of features: features based on foreground (black) pixel densities, and 

features based on concavity. In order to compute some of these features (for example, f2 and 

f15 as described next) the window is divided into cells where the cell height is fixed (4 pixels 

in our experiments) see Figure 11. 

Let H be the height of the frame in an image, h be the fixed height of a cell, w the width of a 

frame (see figure 11). The number of cells in a frame nc is equal to nc=H/h. Let nt(i) the 

number of foreground pixels in cell i in frame t, and bt(i) the density level of cell i in frame t, 

then: 

bt(i)=0 if nt(i)=0 else bt(i)=1 

Let LB be the position of the lower baseline, UB be the position of the upper baseline. For 

each frame t, the features are the following: 
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Figure 11. Word image divided into vertical frames (here without overlap)  

- f1: density of foreground (black) pixels. 






cn

i

t inf

1

1 )(  

- f2: number of transitions between two consecutive cells of different density levels.  
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- f3: difference in y position of gravity centers of foreground pixels in the current frame and 

in the previous one. 
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where g is computed as 
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)(  where rt(j) denotes the number of foreground pixels 

in the j-th row in the frame t, 

- f4 to f11: densities of black pixels for each vertical column of pixels in each frame (note 

that the frames here are of 8-pixel width). 

- f12: vertical position of the center of gravity of the foreground pixels in the whole frame 

with respect to the lower baseline. The result is then normalized by the height H of the 

frame. 

Stream direction (right to left) 
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- f13-f14: density of foreground pixels over and under the lower baselines for each frame.  
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- f15: number of transitions between two consecutive cells of different density levels above 

the lower baseline. 
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where k is the cell that contains the lower baseline. 

- f16: zone to which the gravity center of black pixels belongs with respect to the upper and 

lower baselines (above upper baseline, a middle zone, and below lower baseline). 

- f17 to f26: five concavity features in each frame and another five concavity features in the 

core zone of a word, that is, the zone bounded by the upper and lower baselines. They are 

extracted by using a 33 grid as shown in Figure 12. 

     

Left-Up Up-Right Right-Down Down- Left Vertical 

Figure 12. Five types of concavity configurations for a background pixel P 

The density feature set has been chosen in order to capture the presence of ascenders, 

descenders and dots in the word image. Concavity features are added to reflect local concavity 

and stroke directions. Although this set of features has been originally used for Arabic script, 

we will see that it can be useful for the recognition of Latin script. 
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4. Experiments and Results 

The proposed recognition system is script independent. It proceeds without explicit 

segmentation of handwriting into graphemes. This is because explicit segmentation methods 

generally rely on script specific rules to find segmentation points. According to the proposed 

strategy it is therefore mandatory that the system can operate on low level frame features such 

as directional, contour or pixel densities. In order to achieve good discriminative power of 

such low level features, the proposed approach is based on the multi-stream paradigm that 

provides a interesting way of combining individual feature streams. 

To evaluate the performance of our recognition system, experiments have been conducted on 

two publicly available databases: IFN/ENIT benchmark database of Arabic words and 

IRONOFF database for Latin words (French and English). In all experiments, word-level 

recognition accuracies have been computed. 

4.1. IFN/ENIT database 

The IFN/ENIT (Pechwitz et al., 2002) contains a total of 32,492 handwritten words of 946 

Tunisian town/villages names written by 411 different writers. Some town/village names 

occur in the database with slightly different writing style according to the presence or absence 

of “shadda” for example. It follows that our lexicon is made of about 2,100 valid entries. Four 

different sets (a, b, c, d) are predefined in the database for training and one set (e) for testing. 

Table1 shows the experimental results of the performance of our recognition system using 4 

different single streams (upper contour, lower contour and density with two windows varying 

in their widths; Density1 and Density2 correspond to the windows of 8-pixel and 14-pixel 

widths, respectively) as a function of the size of the list of word hypothesis. The best 

recognition rate is 70.5 % obtained using upper contour feature. From these results it appears 

that the upper contour is significantly better than the three other feature stream for the 

recognition of Arabic script. 
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Table 1. IFN/ENIT recognition performance using single stream features 

Models 
TOP 

1 2 5 10 

1) U. contour 70.5 78.6 86.3 90.4 

2) L. contour 63.5 73.1 82.6 86.4 

3) Density1 65.1 73 80.6 83.2 

4) Density2 68.7 78.1 83.3 86.9 

 

To improve the performance given in Table 1, we try to combine the 4 single streams 

according to the multi-stream formalism. Six possible pairs of streams can be formed. The 

recognition results of the 2-streams HMM are presented in Figure 13. 
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Figure 13: The IFN/ENIT 2-stream recognition performances 

 

In all these experiments, we notice that the multi-stream approach improves the performance 

obtained with any of the single stream HMM. The best 2-stream recognition rate is 79.6% in 

Top 1 and is obtained by combining upper contour and density2 features. The gain is 9.1% 
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compared to the best single stream recognition rate. Also combining density and contour 

feature streams performs better than combining 2 contour streams or 2 density streams. 

 

To compare the multi-stream approach to the standard combination strategies namely fusion 

of features and fusion of decisions, we report the best 2-stream result obtained by combining 

the features corresponding to the upper contour and the Density2. As shown in Table 2, the 

multi-stream approach performs better than the two others standard combination strategies of 

each individual stream model. 

 

Table 2. Multi-stream results vs. decision and feature fusion approaches by combining upper contour and 

density2 features 
 

Models 
TOP 

1 2 5 10 

2-stream 79.6 85.7 91.6 94.5 

Decision Fusion 75.4 83.2 89.5 92.2 

Feature Fusion 74.1 82.6 88.4 90.8 

 

Notice that the late decision fusion is performed here using equal weights of the two stream 

likelihoods using the same combination operator as in the multi-stream approach.   

 

 

 

In order to compare our results to the works presented in the literature, we report on table 3 

the results obtained on the same database (learning sets: a, b, c, d; test set: e) during the 

international competition in Arabic handwriting recognition systems at ICDAR 2005 

(Märgner et al., 2005). In this table we have reported the performance of the best proposed 

multi-stream system which shows a gain of 3.67% for the Top 1 solution compared to the 

winner system of the ICDAR’05 competition. 
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Table 3: Comparison with other word recognition systems which are presented in (Mätgner et al., 2005): 

recognition results in % with the IFN/ENIT dataset e (6033 images) 

 

System Top 1 Top 5 Top 10 

ICRA 65.74 83.95 87.75 

SHOCRAN 35.70 51.62 51.62 

TH-OCR 29.62 43.96 50.14 

UOB 75.93 87.99 90.88 

REAM 15.36 18.52 19.86 

ARAB-IFN 74.69 87.07 89.77 

Proposed system 79.6 91.6 94.5 

 

These results should also be compared to those obtained during the last ICDAR'07 contest 

(Märgner and El Abed, 2007). We report in table 4 the results obtained during this 

competition using a learning sets “a, b, c, d, and e” and sets “f” and “s” for testing. Our 

system shows the best performance on set “s” and the third best performance on set “f”. 

 

Table 4. Recognition results in % of correct recognized images on references d, e (Märgner and El Abed, 2007). 

 (ID 01: MITRE; IDs 02-04: CACI; ID 05: CEDAR; ID 06: MIE; IDs 07-08: SIEMENS; IDs 09-12: UOB-ENST; ID 
13: ICRA; ID 14: PARIS V) 

 

ID set f set s 
01 61.70 49.91 

02 11.95 8.01 
03 15.79 14.24 

04 14.28 10.68 
05 59.01 41.32 
06 83.34 68.40 

07 82.77 68.09 
08 87.22 73.94 
09 79.10 64.97 

10 81.65 69.61 
11 81.93 69.93 
12 81.81 70.57 

13 81.47 72.22 
14 80.18 64.38 

Proposed system 82.09 74.51 
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4.2. IRONOFF database 

The IRONOFF database (Viard-Gaudin et al., 1999) contains a total of 31,346 isolated word 

images from a 196-word lexicon (French and English). Although the database contains both 

on-Line and off-line information of the handwriting signals, only the off-line information is 

used for our experiments. The offline handwriting signals are sampled with spatial resolution 

of 300 dots per inch (DPI), with 8 bits per pixel (256 gray levels). For the experiments 

reported in this paper, we have used a training set of 20,898 words and a test set of 10,448 

words.  

Table 5 reports the performance of our recognition system using 4 different single streams 

presented earlier in section 4.1 (upper contour, lower contour and density with two window 

width). One can notice that the lower contour stream performs significantly poorer than the 

other three features streams, which perform similarly. This can be explained by the fact that 

lower contours in Latin words are not generally very informative. Compared to the single 

stream performance on Arabic script where the upper contour performs significantly better 

than the other three streams, no single stream feature significantly outperforms the others 

streams. 

Table 5. IRONOFF recognition performance using single stream features 

Models 
TOP 

1 2 5 10 

1) U. contour 81.2 86.8 91.4 94.6 

2) L. contour 69.8 78.4 88.6 93.4 

3) Density1 81.8 87.6 92.6 95.6 

4) Density2 80 86.2 92.8 95.8 

 

Similar to the experiment conducted on the IFN/ENIT database, we have conducted several 

experiments using the 6 possible 2-stream combinations of HMMs. The results are presented 

in Figure 14. 
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Figure 14 : The IRONOFF 2-stream performances 

 

As already observed on IFN/ENIT database experiments, we once again notice that the multi-

stream combination approach outperforms the performance obtained with the single stream 

HMM. The best 2-stream recognition rate is 89.8 % by combining upper contour and density1 

features. The gain is 8 % compared to the best single stream recognition rate. Similar to what 

has been observed on the Arabic script, we notice that the best two stream features is also the 

combination of complementary feature streams (upper contour and density features). 

In order to compare the multi-stream approach with the standard combination strategies, we 

report in Table 6 the best 2-stream result obtained by combining upper contour and Density1 

single streams. We notice that the multi-stream approach performs better than the standard 

combination approaches. The gain is 3.8 % in Top 1. 
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Table 6. Multi-stream results vs. decision and feature fusion approaches by combining upper contour and 

density1 features 
 

Models 
TOP 

1 2 5 10 

2-stream 89.8 93.8 96.8 98 

Decision Fusion 86 91.4 95 97.4 

Feature Fusion 85.2 90.6 94.4 97 

 

To compare our results to the related works, we report in table 7 the results obtained on the 

same database. We notice that our system provides good results on Latin script by achieving 

the second best performance reported on this database. 

Table 7: IRONOFF: Comparison with other word recognition systems 

Authors 
Performances (%) 

TOP 1 TOP 5 

(Tay et al., 2001) system 1 86.6 94.2 

(Viard-Gaudin et al., 2005) system 1 87.4 95.8 

(Viard-Gaudin et al., 2005) system 2 89.8 97 

(Tay et al., 2001) system 2 96.1 99.1 

Proposed system 89.8 96.8 

 

During these experiments, the multi-stream based system have shown significant recognition 

results for both Latin and Arabic scripts. The comparison of the multi-stream performance to 

the classical combination strategies namely, fusion of features and fusion of decisions shows 

the superiority of the multi-stream approach. We investigate in the next section how the 

multi-stream approach performs using more than two streams. 

 

4.3 Results with N-streams  

The previous results have demonstrated the interest of using a multi-stream approach for the 

recognition of both Arabic and Latin scripts. Following this direction, we are now interested 

in assessing the superiority of this framework when using more than two streams. 
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As already stated in section 2.5, extension to N-streams is straightforward but significantly 

increases the computational cost. In fact, the complexity of the Viterbi algorithm is 

O(T.(C.N)
2
). N being the number of states per character model, C is the number of characters 

in the model and T the number of distinct observation frames per state. In the product HMM, 

the number of states increase to C.N
S 

with S being the number of streams. Therefore, the 

complexity of the Viterbi algorithm becomes O(T(C.N
S
)
2
)= O(T.C

2
.N

2S
). As a consequence, 

the complexity exponentially increases with the number of streams. This is actually a severe 

limitation and this is why we have experimented this framework using small lexicons. We 

have conducted some experiments on IRONOFF-cheque database, a subset of the IRONOFF 

database, which is made of only French cheque words (30 word lexicons). Table 8 shows the 

2-stream, 3-stream and 4-stream recognition results. We notice that adding one feature stream 

generally improves the performance especially when the single stream HMMs are less 

accurate. Nevertheless it considerably slows down the decoding process. During these 

experimentations we have also investigated the influence of reducing the number of states per 

character on the recognition performance. The use of 3 states per character model (3s/c) 

speeds up the decoding procedure but slightly decreases the recognition results as shown in 

table 8.     

Table 8: IRONOFF-Cheque performances 

Models 
4 s/c 3 s/c 

Top1 Top5 Top1 Top5 

2-stream 1)2) 86 95.4 87 97.6 

2-stream 1)3) 92.8 99.2 91 99.4 

2-stream 2)3) 94 99.6 89.4 97.8 

2-stream 3)4) 91 99 86.2 97.2 

3-stream1)2)3) 94 99.6 91.6 99.6 

3-stream1)3)4) 92.6 99.2 90.8 98.8 

3-stream2)3)4) 93.4 99 89.4 98.4 

3-stream1)2)4) 93.6 99.8 92 99 

4-stream 94.2 99.2 92.8 99.2 
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N-stream performances on the IFN/ENIT (testing on set d, learning on sets a, b, c) are given 

in Table 9 using 2 lexicon sizes and 4 states per character model. We use a random selection 

of dictionaries for each word test sample. Once again we observe a slight increase of the 

recognition performance by increasing the number of streams but for a significant increase of 

the complexity of the decoding process. More investigations should be conducted so as to 

reduce the complexity of the N-stream decoding process. This could be studied by introducing 

some of the known techniques that have been already proposed for large lexicon decoding 

(Koerich et al., 2003). Various strategies should be tested such as beam search decoding, 

pruning, A* search etc… together with the use of a lexical tree search.  

 

Table 9: IFN/ENIT performances on set d) 

Models 

Lexicon size 

30 100 

Top1 Top5 Top1 Top5 

1) U. contour 97.8 99.8 95.4 99 

2) L. contour 97.8 99.8 93.4 99.2 

3) Density1 92 97.4 88.4 94 

4) Density2 92.6 98 88.8 94.4 

2-stream 1)2) 98 99.8 95.6 99.8 

2-stream 1)3) 98.6 99.8 98.4 99.4 

2-stream 1)4) 98.7 100 98.6 99.8 

2-stream 2)3) 98 100 96.8 99.8 

2-stream 3)4) 97.6 99.6 96.4 98.6 

3-stream1)2)3) 98.6 99.8 98.4 99.8 

4-stream 99.2 100 98.8 100 

 

It should be noted that due to complexity reasons, the N-stream experiments have been 

carried out on limited lexicons. Choosing a particular limited lexicon may biased the results. 

For this reason, the random selection has been chosen on the IFN/ENIT database. On the 

contrary, because there already exists a small bank-cheque lexicon on the IRONOFF 

database, random election of dictionaries has not been used. This is why the experimental 

settings on the IRONOFF database are probably biased by this bank-cheque lexicon. This 



30 

may explain why the best 2-stream results are obtained in this case using a different stream 

combination (stream 2-3) than those obtained in the previous experiment when using the 

whole IRONOFF lexicon (stream 1-3). This phenomenon is not observed on the N-stream 

IFN/ENIT experiment, probably due to the random selection of the lexicon that makes the 

performance more comparable to those obtained in the previous experiments with the whole 

IFN/ENIT lexicon. 

As a conclusion, it must be stated that the main purpose of these experiments was to establish 

the contribution of additional streams to the recognition performances. Regarding this 

investigation, the experimental results show in both cases (IRONOFF and IFN/ENIT) the 

same moderate improvement of recognition performance when using additional streams. 

 

5. Conclusion and Perspectives 

This paper presents a multi-stream HMM-based approach for off-line handwritten word 

recognition. The proposed system is script independent. It proceeds without explicit 

segmentation of handwriting into graphemes and makes use of low level feature sets 

(directional features and colour density features) irrespective of the scripts. Features are then 

combined according to the multi-stream paradigm. The developed system has been tested on 

two publicly available databases: the benchmark database IFN/ENIT (for Arabic script) and 

IRONOFF database (for Latin script). For both scripts the results show significant 

improvement while using a multi-stream approach. The comparison of the multi-stream 

performances to the classical combination strategies namely, fusion of features and fusion of 

decisions shows the superiority of the multi-stream approach. Moreover, the proposed 

recognition system provides significant results comparable to the best results reported in the 

literature on both databases. Future works will consist of testing a new combination rules 

especially the non-linear ones and a joint training method using a composite HMM. We will 
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be also focused on proposing a unified multi-script recognition system operating 

independently of the script nature. 

Exploring the Transferable Belief Model (TBM) (Smets and Kennes, 1994) to improve the 

combination rules and test a credal HMM (Ramasso et al., 2007) which combines the 

generality of TBM and mechanisms of HMM are also one of the interesting futures works. 

We are also interested in combining other kinds of features providing more complementary 

information to further improve the results using a N-streams approach. Feature stream 

selection should also be addressed using this kind of multi-stream framework. 
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