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Abstract

This article introduces a method to determine the threshold of unimodal image histograms in a robust manner. It 

is based on a piecewise linear regression that finds the two segments that fit the descending slope of the 

histogram. The algorithm gives a good estimation of the threshold, and is practically insensitive to the noise 

distribution, to the quantity of objects to segment, and to random histogram fluctuations.
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1 Introduction

The study of electron microscopy images of biological specimens, which are especially noisy and low 

contrasted, has lead us to develop a new method to automatically threshold the edges in a robust manner,

compatible with a multiresolution approach. The objective is that the threshold remains reliable whatever the 

amount of edges, the noise distribution or the histogram statistical fluctuations. These parameters vary 

considerably between different acquisitions and different resolutions.

We propose a general thresholding method called the T-point algorithm. The original minimization criterion 

to set the threshold is studied in this article. The algorithm is simple, has low computational complexity, and

requires little a priori knowledge concerning the distribution and proportion of pixels to segment.
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To achieve these objectives, a novel minimization criterion is proposed. It consists of the minimization of 

the error between the descending slope of the histogram and its piecewise linear regression. It belongs to the 

histogram-based algorithms, but, unlike the main available methods, its computation relies on a wide portion of 

the histogram rather than a single bin or a few local bins.

The main automatic thresholding algorithms are reviewed in section 2. The proposed method is described in 

section 3. Experiments and results are discussed in section 4. Examples of applications are given in section 5.

2 Thresholding of unimodal histograms  

Setting thresholds is a non-trivial problem. Ideally, each coherent set of pixels of the image is characterized by 

its gray-level and the histogram presents several corresponding maxima (modes): the threshold can simply be 

placed at the local minima between the peaks of the histograms, detected either directly or indirectly, or it can be 

placed by analyzing the statistics of the classes to minimize (Otsu 1979; Hou et al. 2006; Nakib et al. 2008). 

However, in many cases, when the sets are not clearly distinguished, the histogram becomes unimodal. 

Figure 1 illustrates a unimodal histogram of an image composed of two sets of pixels to be separated: SET 1

and SET 2. Two non-exclusive reasons explain unimodality: SET 2 is very small compared to SET 1, and/or the 

overall Signal to Noise Ratio (SNR) is low (both sets share many gray-levels). These types of histograms can be 

viewed in low contrasted images (e.g., in microscopy images (Baradez et al. 2004)), but they are more frequently 

observed in high-pass filtered images where SET 2 represents the segmentation of the edges, and SET 1 the noise 

to be removed. The gray-level of the edges being higher than the mean gray-level of the noise, the edges 

contributes mainly to the upper elongated tail of the histogram, simply referred to here as the tail. The threshold 

needs to be placed to select as many edges as possible, but with a low amount of false positives (pixels from SET 

1 classified in SET 2).

Figure 1 Unimodal histogram composed of two sets of pixels: SET 1 (noise) and SET 2 (edges)

Generally, unimodal histograms result from gradient magnitude images. Edges contribute mainly to the tail 

of the histogram: they have generally a higher gradient magnitude than homogeneous regions, they are bound to 

be in minority in the images, and their amplitude can vary over a wide range. To separate the peak of the 

histogram from the tail, a simple thresholding method called p-tile is frequently implemented in software 

packages: it considers that edges represent a percentage of the pixels in the image (typically 10-20 % of the more 

contrasted pixels). This method requires however a priori knowledge often unavailable and this simple 

approximation can lead to highly erroneous results.
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Other automatic methods make assumptions on the noise, the shape of the histogram, and other parameters.

Voorhees and Poggio (1987) use a technique based on statistical properties: given an initial image corrupted with 

Gaussian noise, the probability law of its gradient image can be described as a Rayleigh distribution (detailed in 

section 3.1). Consequently, the threshold T is expressed by: 

2ln( )
M F

T g P   . (1)

with gM the position of the histogram peak, and PF the allowed proportion of false edges. The peak position of 

the distribution is proportional to the amount of noise and, as expressed in (1), the precision of the threshold 

detection is directly related to the precision of the peak detection.

Among the parametric methods, histogram-fitting approaches have been studied; the technique 

developed by Henstock and Chelberg (Henstock and Chelberg 1996) relies on a statistical model based on the 

weighted sum of two gamma density distributions. However, parameters need to be set and the edges may not 

always lead to a gamma distribution when the image contains many edges of various contrasts. The method used 

by Wiltschi et al. (Wiltschi et al. 2000) also requires a decision from the user: the first derivative of the 

histogram is computed to search for a specific slope value determined empirically. 

Histogram-shape-based methods represent another set of approaches. Tsai (1995) developed a method 

based on the maximum local curvature to detect discontinuities, and like other methods (e.g. Antoine et al.

2001), requires a preliminary smoothing of the histogram. Smoothing should however be avoided: it sometimes 

alters the information too much and the choice of the appropriate filter and kernel size may be difficult to 

determine (Baradez et al. 2004). Furthermore, the searched discontinuity corresponds to the intersection of the 

two overlapping distributions. It can lead to the selection of an important amount of false positives, for instance 

when the SNR is low and the overlapping of the two distributions important. Our goal is not to minimize the 

classification error of both classes, but to limit the amount of false positives in SET 2.

Another shape-based method has been proposed more recently (Rosin 2001). Rosin developed an 

interesting geometrical method inspired from the triangle algorithm of Zack et al. (1977). A straight line is 

drawn from the maximum to the end of the histogram, to form a triangular-like shape (Figure 2). The threshold is 

selected at the point of the histogram that maximizes the perpendicular distance from the histogram to the 

straight line. This method gives suitable results in many cases, but tends to be sensitive to parameters such as the 

statistical fluctuations of the histogram, and the position of the endpoint (highest gray level).

Figure 2 Triangular method proposed by Rosin.
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3 The T-point algorithm

We introduce a robust and fully automatic technique to determine the threshold of unimodal distributions. After 

a presentation of the notations, the T-point algorithm is described along with a computationally convenient 

implementation of the algorithm.

3.1 Notations and Fundamentals

A discrete histogram is constructed with the N pixels of a considered image, discretized on bins  1, L . Bin i

refers to gray level gi with a precision of 2w , where w is the bin width defined by:

1i i
w g g  . (2)

Let 
i

h be the number of pixels in bin i, with gray levels in the interval  2, 2
i i

g w g w  . Therefore:

1

L

i

i

h N


 . (3)

This histogram is unimodal if its slope is increasing on bins  1, M and decreasing on bins  ,M L , where M is 

the bin position of mode

 arg max i
i

M h , (4)

and gM the corresponding gray-level for bin M.

Theoretical distribution 

The threshold must select the pixels whose value is significantly above the noise. It is therefore determined by 

the statistical noise distribution in the image. A Rayleigh distribution can be established, assuming additive 

Gaussian noise. A theoretical distribution will be used in this article to test the results of the algorithm on known 

distributions.

Generally, histograms become unimodal after a transformation of the image, e.g. gradient analysis, with I
the norm of the gradient of image I. Let I be corrupted with an additive Gaussian noise of variance 

2

n . Since a 

linear combination of m Gaussian random variables leads to a Gaussian distribution of variance
2

1

m

i
 , a 3 3

Prewitt filter on the corresponding gradient images xI and yI in the x- and y-direction leads to a variance of:
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2 26
R n

   . (5)

I is obtained through:

2 2

x yI I I    . (6)

Based on probability theory, the I gray-level distribution can be considered as a Rayleigh distribution

(Pitman 1993), represented by:

2
2

2
( ) exp

2
R

R

g
f g g 

      . (7)

The corresponding cumulative density function, defined by

2

2
( ) ( ) exp

2
F

RT

T
P g f g dg 

       (8)

gives the probability PF of false edges to be above threshold T. Parameter R corresponds to the position gM of 

the peak of the distribution. Useful information can be extracted by simple histogram analysis. As a result of (8), 

T can be computed from the values of  gM and PF, a property used by Voorhees and Poggio (1987) in (1).

Normalized threshold

To facilitate the comparison of the thresholds computed on different histograms, the normalized threshold TN is 

defined by:

N R
T T  . (9)

It is specifically defined for testing purposes, where the amount of noise in the image is known. To segment 

edges with a probability of PF ≈ 2 % of false positive, then TN ≈ 2.8 whatever the amount of noise in the image.

Histograms as empirical distributions

A histogram corresponds to the estimation of the underlying distribution *f of the image. Each bin is a random 

variable whose variance can be related to N and w.

The bin probability * ( )p i is given by:
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/ 2

* * *

/ 2

( ) ( ) ( )
i

i

g w

i

g w

p i f y dy w f g




   . (10)

The expected number of pixels *

i
h falling in bin i is:

* * *( ) ( )
i i
h p i N w N f g    . (11)

i
h is an estimation of *

i
h measured from the image and expressed by:

( )
i
h p i N  , (12)

( )p i being the estimated probability of a pixel to fall in bin i. Its expectation is:

 ( )iE h E p i N     . (13)

Since ( )p i has a binomial distribution that tends to a Poisson distribution,

  *
( ) ( )E p i p i , (14)

and

 2 *
( ) ( )p i p i  . (15)

Therefore,

*
( )i iE h w N f g      (16)

and the standard deviation is

*
( )i ih w N f g       . (17)

The relative standard error is finally defined by

*
1 ( )i i ih E h w N f g           . (18)

From this equation, it can be seen that the relative value in bin i varies more when N and w are small. If choosing 

a large bin width reduces the local fluctuations, it also reduces the resolution at which the threshold can be set. 

On the other hand, a small width intensifies the statistical fluctuations and may generate a statistical error in the 

estimation of the threshold if the algorithm is not robust. We will see in section 4 that the proposed T-point 

algorithm allows a robust setting of the threshold.
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3.2 Description of the algorithm

Our method assumes that: 1) a dominant pixel population produces the main peak of the histogram, i.e. the noise 

on the homogeneous regions in a gradient magnitude image; 2) a secondary population contributes mainly to the 

tail of the histogram, i.e. the edges. The threshold T, desired to select a maximum of edges while ensuring a

minimum of false detection, is presumed to be located somewhere after the position of the maximum of the 

histogram and before the elongated part of the tail. The descending slope can be decomposed into two parts: a 

steep descending part immediately after the peak and a slightly descending part in the flat tail (Figure 3A). Then, 

we suggest looking for the two lines that best describe these two descending slopes. The point of abscissa that 

minimizes the error between the descending slope and the two lines, called the breakpoint, is chosen as the 

threshold. This method is referred to as the T-point algorithm, corresponding to the point where the line 

representation switches from the steep to the slight slope line.

Figure 3 Principle of the T-point algorithm: A/ Histogram; B/ Square errors
1
( )k and

2
( )k ; C/ Total error ( )k ; 

D/ Histogram with the threshold T, and with the corresponding best two fitted lines.

The study considers to the descending slope defined on bins  ,M L (Figure 3A). Each bin  ,k M L is

successively considered as the potential breakpoint. For each k , the two lines are computed using linear 

regressions: using the least squares method, line 
1
D is identified for the left part of the descending slope 

computed with bins  ,M k and line 
2
D is computed on bins  1,k L . The segmented linear estimation ˆ ( )

i
h k of 

bin i for a given k can be written as:

  1 1

2 2

( ) ( ) ,
ˆ ( )

( ) ( ) ,

i

i

i

a k g b k if i M k
h k

a k g b k if i k L

        (19)

where 
1
( )a k ,

1
( )b k and

2
( )a k ,

2
( )b k are the respective parameters of the lines

1
D and 

2
D .

For each k, errors between the fittings and the histogram are computed (Figure 3B). The sum of the square 

errors for 
1
D can be expressed as:

2

1
ˆ( ) ( ( ))

k

i i

i M

k h h k


  , (20)

and for 
2
D :



8

2

2

1

ˆ( ) ( ( ))
L

i i

i k

k h h k
 

  . (21)

The total error ( )k of the fittings, represented on Figure 3C, is the sum of the errors:

   2 2

1 2 1 1 2 2

1

( ) ( ) ( ) ( ) ( ) ( ) ( )
k L

i i i i

i M i k

k k k h a k g b k h a k g b k  
  

           . (22)

The threshold T is set at the breakpoint that minimizes the above cost function and therefore best satisfies the 

piecewise linear fitting (Figure 3D):

arg min( ( ))
k

T k . (23)

Fast algorithm

To ease the implementation of this cost function, a more efficient computational equation can be derived for 

1
( )k and

2
( )k (Allen 1997). First, it can be shown, using general equations, that:

 

   
    

2

1

2 2

1

2

ˆ( ) ( ) ( )

ˆ( ) ( )

var ( ) var ( )

cov ( ), ( )
var ( )

var ( )

n

i

n k

i i M

n y i y i

y i y i

n y i n x i

x i y i
n y i n

x i







 

 
 
    
   


 

. (24)

Second, let’s consider the intermediate variables defined by the sum of the first k values:

2 2
( ) ( ), ( ) ( ) , ( ) ( ), ( ) ( ) , ( ) ( ) ( )

k k k k k

x xx y xx xy

i M i M i M i M i M

S k x i S k x i S k y i S k y i S k x i y i
    

          . (25)

It can be noticed that these variables can be evaluated recursively, e.g. ( 1) ( ) ( 1)
x x
S k S k x k    .  From (24)

and (25), 
1
( )k can be expressed as a function of these variables:

  
2

1 yy 2

(k) (k) (k)(k)
(k)=S (k)

(k) (k)

xy x yy

xx x

n S S SS

n n n S S
        , (26)

with n the number of elements used for the summations in (25). Error 
2
( )k is determined in a similar manner, 

but for (25), since i will go from k+1 to L, variables are evaluated iteratively by counting down from L to M+1. 

The algorithm principle is given in Table 1. The cost function can be defined on interval  ,M L with a 

complexity O(n), n=L-M+1. The complexity is thus proportional to the number of bins.

Table 1 Computationally convenient algorithm for the search of the optimal breakpoint.
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4 Experiments and results – Robustness analysis

We have verified experimentally that the proposed method possesses the required characteristics to segment 

unimodal histograms:

- the minimization criterion ( )k has an absolute minimum, which determines a suitable threshold T for the 

images;

- the method segments edges, keeping the amount of false edge at a low percentage PF of false edges; the 

threshold is robust to segment unimodal histograms for different quantities of edges and different 

contrasts.

- Applied on histograms of random Rayleigh distributed variables, the threshold set with the T-point 

algorithm is found at 2.8
n

T  ( 2%
F

P  ).

Threshold 
n

T needs to be kept constant to keep the amount of false edges stable and allow the identification 

of possible low contrasted edges. Through the experiments presented in this section, we will see that the 

proposed method is almost insensitive to statistical variations of the histogram. 

A comparison with two of the main techniques is undertaken: Voorhees and Poggio’s (1987) statistical 

method, and Rosin’s (2001) geometrical method, called here the triangular method. The method proposed by 

Rosin has been chosen because it is one of the most recent algorithms and its performances has been well rated 

in Medina-Carnicer et al. (2005) where it is compared to other thresholding methods in the context of edge-

detection. For the statistical method, the threshold is set such as 2.8
M

T g  to have a probability PF of 

segmenting false edges of 2 % (see (1)).

In the next two subsections, the robustness of the method is validated on Rayleigh distributions of gradient 

images obtained from images corrupted with a Gaussian noise. The method is extended to other distributions 

through an example given in the section 5.

4.1 Influence of image size and bin width

This subsection shows that the proposed method is robust to the statistical fluctuations of the histograms induced 

by small size images and small bin widths (see (18)).
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The tests have been made on histograms of gradient magnitude images I , I being corrupted with 

Gaussian noise. Histograms have been normalized so that the theoretical position of the peak is 1
R

  . The bin 

widths w of the histograms have been selected from 0.01 to 0.13 (corresponding to bin numbers from 500 to 60). 

The image size has been varied from 64 64N   pixels to 1024 1024N   pixels. For each set of conditions (a 

given size and a given bin width), 100 noisy images were processed to extract statistical data about the mean 

threshold µT and the standard deviation sT of the threshold (Figure 4).

Figure 4 shows that the mean thresholds µT measured with the three algorithms are quite constant. The 

standard deviation sT shows that the thresholds are less stable for small values of N and w. The figure illustrates 

that, for a given N and w, the proposed method surpasses the two others in robustness.

The resolution w of the histogram is a parameter defined by the user. It should be small to select the 

threshold with precision, but a small w increases sT, and a compromise has to be found. As the proposed 

algorithm is weakly influenced by the fluctuations of the histogram, the threshold is more constant, the algorithm 

is robust (sT remains small for all w), and small bin widths can be used to find the threshold with a good 

resolution. 

Figure 4 Repeatability of the estimated threshold. A/ mean threshold µT as a function of the image size; B/ mean 

threshold µT as a function of the bin width. Errorbars (sT) are shown slightly offset around a given value in the x-

axis to prevent overlapping.

4.2 Influence of the quantity and contrast of edges 

In this section, we check if the threshold is constant in terms of percentage of false edge pixels segmented, 

whatever the quantity and contrast of the edges.

Synthetic images
, p

I have been created such as

, %p n p
I I   , (27)

with ın the standard deviation of the Gaussian noise added and Ip% the image of the objects leading to p% of 

edge pixels in the gradient magnitude image pI , . The standard deviation of the noise has been varied from 

ın=5 to 50. To vary the quantity of edge pixels, synthetic images of squares have been created (example in 
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Figure 5). The number and size of squares in the images have been changed to vary p from 0 to 8 %. The values 

of ın have been taken on a large interval to test the limits of the algorithms: a low SNR involves that the two sets 

for the distributions are very close and as we want to avoid false edge pixels, only a few true edge pixels will be 

segmented (Figure 6A). On the other hand, a high SNR lead to a bi-modal histogram if the amount of edges is 

important (Figure 6D).

Figure 5 Example of a synthetic image (gray-level of the background being 0, and gray-level of the objects from 

40 (top left) to 80 (lower right)).

Figure 6 Histogram of synthetic gradient images corrupted with additive noise of standard deviation 

ın.Histogram of the whole image appear in plain black line and histogram of the edges appear in dotted blue 

lines.

For each condition (ın, p), 100 draws have been computed with random Gaussian noise. From these 100 

images, the average normalized threshold value and its standard deviation have been extracted (Figure 7).

In Figure 7A, we see that, with the statistical method, the standard deviation of the experimental

thresholds is very high (around 0.15). It can be easily proved that this method responds linearly to the 

imprecision of the detection of the peak position, which confirms that the peak position is poorly estimated. We 

notice that both geometrical methods (Triangular and T-point methods) are quite insensitive to errors on M.

For the triangular method, the standard deviation value is better (around 0.05). However, the SNR

influences the average threshold, since the average TN tends to be higher when ın decreases (Figure 7B), that is 

when the endpoint L is far from the peak. As the tail of the histogram corresponds to the edges, an endpoint far 

from the peak of the histogram means that there are well contrasted edges. As Rosin (2001) observed, the 

further L is from the peak, the higher the threshold. Nonetheless, such a histogram does not mean that there are 

no low contrasted edges. It is therefore important to keep the threshold in an acceptable range to avoid under-

segmentation.

The T-point method resists better to noise variation than the triangular method, and the 

algorithm is much less sensitive to random fluctuations (standard deviation around 0.02). The function 

minimized in the triangular method depends only on a point-to-point distance from a line to the 
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histogram, whereas the T-point algorithm relies on the whole descending slope, which leads to a 

smaller sensitivity to the fluctuations of the bin values.

Figure 7 Influence of the quantity and contrast of edges on the automatic thresholds. Experimental mean value 

and standard deviation (errorbars) are displayed.

5 Applications

The T-point algorithm is first applied to a multiresolution edge detection on a synthetic image, then to threshold 

other unimodal distributions, and finally, to the multiresolution edge analysis of electron microscope images. 

5.1 Application to multiresolution edge-detection

When the overlapping between the two sets is important, there is no efficient threshold to distinguish them

without segmenting too many false pixels. In practice, separation between modes can be improved by smoothing 

methods, like multiresolution approaches where the image is analyzed at different resolutions (Coudray et al.

2007). In dyadic pyramidal cases, smoothing is followed by decimation (Lindeberg and Bretzner 2003). As the 

scale gets coarser, the size of the image is reduced, the proportion of edges in the image is increased and the 

histogram tends to be less smooth. As a result, a robust threshold has to be used to detect the edges through the 

scales.

To illustrate the evolution of the histograms and thresholds through the scales, the synthetic image

presented in Figure 5 was used. Figure 8 shows the good performances of the T-point method proposed in this 

context, despite the fluctuations of the bin values. The amount of false edge pixels remains sufficiently low to 

segment as many edge pixels as possible while keeping a reasonable amount of false edge pixels.

                  

Figure 8 Thresholding of gradient images (obtained from Figure 5) through the scales of a pyramidal transform,

using the T-point. A/ scale 2 (image size: 512x512); B/ scale 3 (image size: 256x256); B/ scale 4 (image size: 

128x128).
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5.2 Application to other unimodal distributions

The robustness of the proposed method has been validated on known distributions: Rayleigh distributions 

obtained through the gradient transform of an image corrupted with a Gaussian noise. However, it must be noted 

that the T-point remains valid for other types of unimodal distributions, from images corrupted with other noise 

distributions, and after other filter transformations. Below, we illustrate this point with three examples.

a/

Figure 9 illustrates an image corrupted with both additive and multiplicative noise, and Figure 10 shows the 

quantity of missing and false edges segmented as the multiplicative noise is increased. With the method 

developed by Voorhees and Poggio (Figure 10A) only a few true positive edges are missing, but the amount of 

false edge pixels is too important (Figure 10B). Both geometrical methods are appropriate to segment the edges 

while keeping the amount of false positive constant. As the threshold set by the T-point is lower, the amount of 

false edge pixels is slightly higher than with the triangular method (2 % instead of 1 %), and more low contrasted 

edges are segmented (Figure 10A).

Figure 9 Edge thresholding of images corrupted with additive and multiplicative noise. A/ synthetic image 

(coded between 0 and 1) with an additive Gaussian noise (ın =0.02) and a normally distributed multiplicative 

noise (ım =0.06); B/ gradient image; edges segmented with C/ the method of Voorhees and Poggio, D/ the 

triangular method, and E/ the T-point.

Figure 10 A/ Percentage of true edge pixels not detected and B/ of false edge pixels detected on the histograms 

of the gradient image of 

Figure 9 (with Gaussian noise of ın =0.02 and different multiplicative noise with zero-mean).

b/

Figure 11 shows an image of a biological membrane where heterogeneities have been identified using a local 

standard deviation filter (a non linear and non directional edge detector). Assuming the initial image corrupted 

with a Gaussian noise, the resulting image histogram can be considered as a Chi distribution. Results of the 

segmented images confirm that the method leads to good results. Tested on synthetic images, we evaluated the 

amount of false edges to be below 2 %. 



14

Figure 11 Segmentation of heterogeneities. A/ Initial microscope image; B/ Image filtered with a 5x5 standard 

deviation filter; C/ Histogram of image B, and threshold set with the T-point; D/ Segmented image.

c/

Figure 12 displays results of segmentations applied directly to synthetic images corrupted with Gaussian noise. 

In the histograms used, L is the highest gray level in the image. The image of the first line contains one low 

contrasted object which has been segmented correctly. The amount of false pixels is low. On the second line, a 

high contrasted object has been added: since the triangular method is sensitive to L, the low contrasted object is 

poorly segmented, whereas the segmentation obtained with the T-point is stable. 

Figure 12 Segmentation of objects in an image corrupted with Gaussian noise. First column: initial synthetic 

images; second column: results of the segmentation using the T-point; last column: results using the triangular 

method.

5.3 Electron microscope images

We have tested the T-point algorithm on the multiresolution approach proposed by Coudray et al. (2007) to 

analyze electron microscope images that are very noisy and where the contrast and the quantity of edges 

fluctuate a lot. Furthermore, the noise tends to be both additive and multiplicative. The multiresolution 

techniques developed require the edges to be detected at several resolutions of a pyramidal transform, but 

common thresholding methods perform poorly considering the characteristics of these images.

Pyramidal transformations generate images of smaller size where the noise is filtered and the proportion of 

contours is higher (Figure 13B through 13D). Figures 13E through 13G display the corresponding histograms 

with the T-point thresholds, and Figures 13H through 13J display the segmented images. We see that the 

threshold is adapted to detect more edges at each scale, and that the amount of noise remains reasonably low. 

We have run tests on many different images acquired with different microscopes to verify that the T-point 

algorithm achieves the objectives, i.e. set a reliable threshold whatever the amount of edges, the noise 

distribution or the histogram statistical fluctuations. Furthermore, its efficient implementation (computation time 



15

of about 0.2 ms for a 1000 bin histogram and a 1024 x 1024 pixels image) makes it well adapted for real-time 

applications.

Figure 13 Image segmentation in a multiresolution process.

6 Conclusion

An automatic method is proposed to select a threshold in unimodal histograms. The method is based on a 

piecewise linear regression of the descending slope of the histogram. The T-point is defined as the position of the 

breakpoint that minimizes the residual square error between the two fitted segments and the slope. By defining 

the cost function over the whole descending curve instead of some particular points only, the method proves to 

be more robust than other tested methods. 

Results show that the method can be applied to different unimodal distributions which are induced by image 

pre-treatments, noise statistics, and the quantity of edges to be identified. The example related to electron 

microscope images further underlines this need for robustness. These images must be processed at different 

scales to threshold all the edges keeping the amount of false edges low at each scale. Constraints on this kind of 

images are important since the noise in not purely additive, the multiresolution transformations modify 

considerably the distribution, and the histograms have important statistical fluctuations at coarser scales, getting 

closer to bimodal distributions. The required efficiency of thresholding in this context underlines the interest of 

the T-point algorithm.
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A/ Initial image.

B. Gradient at scale 1 of image A.
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Table 1 Computationally convenient algorithm for the search of the optimal breakpoint.

T-point Algorithm: search for the optimal breakpoint

(1) variables n, Sx, Sxx, Sy, Syy and Sxy initialized at 0

for k = M to L

       n = n + 1

       computation of Sx, Sxx, Sy, Syy and Sxy with
k
g and 

k
h , using (25)

       compute 
1
( )k using (26)

end for

(2) variables n, Sx, Sxx, Sy, Syy and Sxy initialized at 0; 
2
( ) 0L 

for k = L to M+1 (step -1)

       n = n + 1

       computation Sx, Sxx, Sy, Syy and Sxy with 
k
g and 

k
h , using (25)

       compute 
2
( 1)k  using (26)

end for

(3) look for the index k that minimizes the sum 
1 2

( ) ( ) ( )k k k   

Table1


