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Abstract

The nearest-neighbour (1NN) classifier has long been used in pattern recognition,
exploratory data analysis, and data mining problems. A vital consideration in ob-
taining good results with this technique is the choice of distance function, and corre-
spondingly which features to consider when computing distances between samples.
In recent years there has been an increasing interest in creating ensembles of classi-
fiers in order to improve classification accuracy. This paper proposes a new ensemble
technique which combines multiple 1NN classifiers, each using a different distance
function, and potentially a different set of features (feature vector).

These feature vectors are determined for each distance metric simultaneously us-
ing Tabu Search to minimise the ensemble error rate. We show that this approach
implicitly selects for a diverse set of classifiers, and by doing so achieves greater
performance improvements than can be achieved by treating the classifies indepen-
dently, or using a single feature set. Naturally, optimising a the level of ensembles
necessitates a much larger solution space, to make this approach tractable, we show
how Tabu Search at the ensemble level can be hybridised with local search at the
level of individual classifiers. The proposed ensemble classifier with different dis-
tance metrics and different feature vectors is evaluated using various benchmark
data sets from UCI Machine Learning Repository and a real-world machine-vision
application. Results have indicated a significant increase in the performance when
compared with various well-known classifiers. Furthermore, the proposed ensemble
method is also compared with ensemble classifier using different distance metrics
but with same feature vector (with or without Feature Selection (FS)).
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1 Introduction

The nearest-neighbour (1NN) classifier has long been used in pattern recog-

nition, exploratory data analysis, and data mining problems. Typically, the k

nearest neighbours of an unknown sample in the training set are computed

using a predefined distance metric to measure the similarity between two sam-

ples. The class label of the unknown sample is then predicted to be the most

frequent one occurring in the k nearest-neighbours. The 1NN classifier is well

explored in the literature and has been proved to have good classification

performance on a wide range of real-world data sets [1–4].

The idea of using multiple classifiers instead of a single best classifier gained

significant interest during last few years. In general, it is well known that an

ensemble of classifiers can provide higher accuracy than a single best classi-

fier if the member classifiers are diverse and accurate. If the classifiers make

identical errors, these errors will propagate and hence no accuracy gain can

be achieved in combining classifiers.

In addition to diversity, accuracy of individual classifiers is also important,

since too many poor classifiers can overwhelm correct predictions of good

classifiers [5]. In order to make individual classifiers diverse, three principle

approaches can be identified:

• Each member of the ensemble is the same type of classifier, but has a dif-

ferent training set. This often done in an iterative fashion, by changing

the probability distribution from which the training set is resampled. Well

known examples are bagging [6] and boosting [7].

• Training multiple classifiers with different inductive biasses to create diverse
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classifiers, e.g. “stacking” approach [8].

• Using the same training data set and base classifiers, but employing feature

selection so that each classifier works with a specific feature set and therefore

sees a different snapshot of the data. The premise is that different feature

subsets lead to diverse individual classifiers, with uncorrelated errors [9].

Specific examples of these three different approach can be found in the liter-

ature relating to Nearest-Neighbour techniques. Bao et al. [10] have followed

the second route, and proposed an ensemble technique where each classifier

used a different distance function. However, although this approach does use

different distance metrics, they use the same set of features, so it is possible

that some errors will be common, arising from features containing noise which

have high values in certain samples. An alternative approach is proposed by

Bay [11] following the third route: each member of the ensemble uses the same

distance metric but sees a different randomly selected subset of the features.

Here we propose and evaluate a method which combines features of the second

and third approaches. Building on [10,11], we explore the hypothesis that the

overall ensemble accuracy can be improved if those choices of subsets arise

from

• iterative heuristics such as tabu search [12] rather than random sampling

• different distance metrics rather than single distance metric

Furthermore we hypothesise that these choices are best co-adapted, rather

than learnt separately, as co-adaptation may permit implicit tackling of the

problem of achieving ensemble diversity. In order to do this, and to distin-

guish the effects of different sources of benefits, a novel ensemble classifier is

proposed in this paper that consists of multiple 1NN classifiers each using a
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different distance metric and a feature subset derived using tabu search. The

proposed ensemble 1NN classifier (DF-TS-1NN) is then compared with var-

ious well-known ensemble classifiers. Two diversity measures namely “Plain

Disagreement Measure” and “Entropy” [13] are also used to evaluate whether

ensemble diversity can be achieved by using proposed ensemble 1NN classifier.

The rest of this paper is organized as follows. Section 2 provides a review

on Feature Selection Algorithms. Section 3 describes the propose multiple

distance function ensemble classifier followed by experiments in section 4. In

section 5, a case study is discussed. Section 6 concludes the paper.

2 Brief Review of Feature Selection Algorithms

The term feature selection refers to the use of algorithms that attempt to se-

lect the best subset of the input feature set. It has been shown to be a useful

technique for improving the classification accuracy of 1NN classifiers [14,15].

It produces savings in calculating the features (since some of the features are

discarded) and the selected features retain their original physical interpreta-

tion [16]. Feature Selection is used in the design of pattern classifiers with

three goals [16,17]:

(1) to reduce the cost of extracting features

(2) to improve the classification accuracy

(3) to improve the reliability of the estimation of performance

The feature selection problem can be viewed as a multiobjective optimiza-

tion problem since it involves minimizing the feature subset and maximizing
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classification accuracy. Mathematically, the feature selection problem can be

formulated as follows. Suppose X is an original feature vector with cardinality

F and X̄ is the new feature vector with cardinality F̄ , X̄ ⊆ X, J(X̄) is the

selection criterion function for the new feature vector X̄. The goal is to opti-

mize J(). The problem is NP-hard [18,19]. Therefore, the optimal solution can

only be achieved by performing an exhaustive search in the solution space [1].

However, exhaustive search is feasible only for small F. A number of heuristic

algorithms have been proposed for feature selection to obtain near-optimal

solutions [16,17,20–24].

The choice of an algorithm for selecting the features from an initial set depends

on F. The feature selection problem is said to be of small scale, medium scale,

or large scale according as F belongs to the intervals [0,19], [20,49], or [50,∞],

respectively [17,22]. Sequential Forward Selection (SFS) [25] is the simplest

greedy sequential search algorithm. Other sequential algorithms such as Se-

quential Forward Floating Search (SFFS) and Sequential Backward Floating

Search (SBFS) are more efficient than SFS and usually find fairly good so-

lutions for small and medium scale problems [21]. However, these algorithms

suffer from the deficiency of converging to local optimal solutions for large

scale problems when F > 100 [17,22]. Recent iterative heuristics such as tabu

search and genetic algorithms have proved to be effective in tackling this cat-

egory of problems which are characterised by having an exponential and noisy

search space with numerous local optima [12,22,23,26].

Tabu search (TS) has been applied to the problem of feature selection by

Zhang and Sun [22]. In their work, the tabu search performs the feature selec-

tion in combination with an objective function based on Mahalanobis distance.

This objective function is used to evaluate the classification performance of
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each subset of the features selected by the TS. Feature selection vector in TS is

represented by a binary string where a 1 or 0 in the position for a given feature

indicates that the presence or absence of that feature in the solution. Their

experimental results on synthetic data have shown that the tabu search not

only has a high possibility to obtain the optimal or near-optimal solution, but

also requires less computational effort than the other suboptimal and genetic

algorithm based methods. Later, Tabu Search has been successfully applied

in other feature selection problems [15,27–29].

3 Proposed Ensemble Multiple Distance Function Classifier

In this section, we describe the proposed algorithm for constructing an en-

semble of classifiers using multiple distance functions. For the purposes of this

paper, each of the base classifiers is 1NN, we use different functions, and Tabu

Search to optimise the feature set for each classifier, and so we denote this

approach DF-TS-1NN. The use of n classifiers, each with a different distance

function and potentially different set of features is intended to increase the

likelihood that the errors of the individual classifiers are not correlated. In

order to achieve this it is necessary to find appropriate feature sets within the

context of the ensemble as a whole. However with F features and n different

classifiers, the search space for the Tabu Search acting at the ensemble level is

of size 2F∗n. Initial experiments showed that in order to make the search more

tractable it is advantageous to hybridise the Tabu Search by incorporating

into each iteration independent phases of local search. These act only within

the sub-space of features for each classifier, and use the individual classifier’s

fitness. Figure 1 shows the hybrid training phase of the proposed classifier.
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Original Feature Vector (FV)

Select Best M
Feature Vectors

Select Best M
Feature Vectors

Evaluate M^n Solutions using
Plain Disagreement Measure 

"N" Feature Subsets 
using NN Classifier
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using NN Classifier
and Distance Dn

New Feature Vector
for Distance D1

New Feature Vector
for Distance Dn

Best Solution

Tabu Search

Final Feature Vector
for Distance D1

Final Feature Vector
for Distance Dn

Fig. 1. Training Phase of proposed DF-TS-1NN classifier.

 NN Classification 
using Distance D1

Feature 
Vector (FV1)

Feature
Vector (FV2)

Feature
Vector (FVn)

Ensemble Voting Scheme

Final Classification Decision

 NN Classification 
using Distance D2

 NN Classification 
using Distance Dn

Fig. 2. Testing Phase.

The hybridisation with local search works as follows. During each iteration

of Tabu Search, N random neighbours with Hamming Distance 1 from the

current feature set FVi are generated for each classifier i ∈ {1, . . . , n} and eval-

uated using the 1NN error rate for the appropriate distance metric Di. From

the set of N neighbours, the M best solutions are selected for each classifier.

All Mn possible combinations are then evaluated using a simple voting scheme

(SVS) and the best is selected to go forward to the next iteration. Considering

M > 1 neighbours at the individual classifier level means that the feedback
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from the SVS allows Tabu Search to iteratively search for combinations of fea-

ture vectors that improve the classification accuracy. Implicitly, this approach

seeks feature vectors for the different distance measures whereby the errors

are not correlated and so provides diversity - so it is possible that the selected

combination might include a feature vector for one or more classifiers which

do not have the best individual classifier accuracy.

The result of this Tabu Search training phase for the ensemble is a set of

n feature vectors. These define the n classifiers in the ensemble which are

combined for testing as shown in Figure 2.

3.1 Distance Metrics

The following five distance metrics, all widely used in the literature, are used

within the 1NN classifiers to compute a distance between two m-dimensional

vectors x and y.

• Squared Euclidean Distance: E =
∑m

i=1(xi − yi)
2

• Manhattan Distance: M =
∑m

i=1(xi − yi)

• Canberra Distance Distance: C =
∑m

i=1(xi − yi)/(xi + yi)

• Squared Chord Distance: Sc =
∑m

i=1(
√

xi −√yi)
2

• Squared Chi-squared Distance: Cs =
∑m

i=1(xi − yi)
2/(xi + yi)

3.2 Diversity Measure

Diversity is an important measure to evaluate the performance of an ensemble

classifier [30]. In this paper, we have used two diversity measures namely “Plain
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Disagreement Measure” and “Entropy” [13] to evaluate the impact of diversity

in improving the classification accuracy using proposed ensemble classifier.

The plain disagreement measure is most commonly used pairwise measure for

diversity in the ensemble of classifiers [13,31]. For two classifiers a and b, the

plain disagreement is the fraction of the samples on which the classifiers make

different predictions:

Plain Disagreement =
1

Ns

Ns∑

k=1

Diff(Ca(sk), Cb(sk)) (1)

where Ns is the number of samples in the data set, Ci(sk) is the class as-

signed by classifier i to sample k, and Diff(x, y) = 0, if x = y, otherwise

Diff(x, y) = 1. This measure varies from 0 to 1. The measure is equal to 0,

when the classifiers return the same classes for each instance, and it is equal

to 1 when the predictions are always different [13].

Entropy is non pairwise measure for diversity in the ensemble of classifiers

[13,32]. If S is the number of base classifiers, then the entropy is defined as:

Entropy =
1

Ns

Ns∑

a=1

C∑

b=1

−Na
b

S
∗ log(

Na
b

S
) (2)

where Ns is the number of samples in the data set, C is the number of classes

and Na
b is the number of base classifiers that assign sample a to class b. In

order to keep this measure of diversity within the range [0,1] the logarithm

should be taken to the base C.
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3.3 Feature Selection and Diversity using Tabu Search

Tabu Search (TS) was introduced by Glover [33,34]. Starting from an initial

solution, TS examines a set of feasible neighbouring solutions and moves to

the best admissible neighbour, even if this causes the objective function to

deteriorate. This process may permit escape from local optima, and provide a

global search character. To avoid cycling, solutions that were recently explored

are declared forbidden or tabu for a number of iterations. The tabu list stores

characterization of the moves with lead to those solutions. The tabu status of

a solution is overridden when certain aspiration criteria are satisfied [12].

For a data set with F Features, Tabu Search is run for Ts iterations with

a Tabu list of size T = ceil(
√

F ). As described above, local search is used

to bias the sampling of the neighbourhood of the current solution. Thus in

practice we examine a set of Mn neighbourhood solutions drawn from a set

of size Nn where N = ceil(
√

F ) 1 . The Aspiration criteria is deemed met if a

solution has the lowest error rate yet seen. For a single classifier, each solution

is represented by a binary vector of length F indicating the incorporation(1)

or not(0) of the corresponding feature into the distance measurement for that

classifier. For an ensemble of n classifiers, the solution vector therefore has

length nF . All features are included in the initial solution. We use a 0/1 cost

function, Cij = 1 if datum i is misclassified, by classifier j otherwise zero. In

order to estimate the 1NN error rate rates for each classifier in the local search

phase, we apply B−-fold cross-validation.

1 in the case that we evolve each classifier’s feature subset independently, we con-

sider N neighbours
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Preliminary results using different subsets of the distance measures (i.e. n < 5)

showed that showed that different combinations were better for different fea-

tures sets. Therefore we believe that our approach of using all 5 is more generic.

We set M = 2 and Ts = 200 for all data sets to reduce the computational

burden - again preliminary results do not show benefits from increasing these.

Figure 3 shows an example showing neighbourhood solutions during one it-

eration. Let us assume that the cost of the three different feature subsets in

the solution are 50, 48, and 47 using Distance Metrics 1, 2, and 3 respectively.

N = 4 neighbours are then randomly generated for each distance metric us-

ing HD1. M = 2 best solutions are selected and Mn = 23 = 8 solutions are

evaluated using ensemble cost function. The best solution is then selected for

the next iteration.

1 1 1 1 1 50

Initial Solution

1 1 1 1 1 48

Initial Solution

1 1 1 1 1 47

Initial Solution

1 1 1 1 0 48

1 1 1 0 1 54

1 0 1 1 1 47

1 1 0 1 1 49

N-Neighbours with HD=1

0 1 1 1 1 49

1 1 1 0 1 45

1 0 1 1 1 51

1 1 1 1 0 48

N-Neighbours with HD=1

1 0 1 1 1 46

1 1 0 1 1 49

0 1 1 1 1 50

1 1 1 0 1 45

N-Neighbours with HD=1

1 0 1 1 1 47

1 1 1 1 0 48

Best M Neighbours

1 1 1 0 1 45

1 1 1 1 0 48

Best M Neighbours

1 1 1 0 1 45

1 0 1 1 1 46

Best M Neighbours

M^n Ensemble Solutions Ensemble Cost

10111

10111

10111

10111

11110

11110

11110

11110

11101

11101

11101

11101

11110

11110

11110

11110

11101

11101

11101

11101

10111

10111

10111

10111

47

44

47

44

43

42

49

48

Selected for Next Iteration

Fig. 3. An example showing neighbourhood solutions during one iteration in pro-

posed tabu search method. n = 3, N = 4, and M = 2.
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3.4 Algorithmic Cost

In each of the Ts iterations, N · n 1NN classifiers are created and used to

classify the Ns samples. Since we apply B− fold cross validation, obtaining a

prediction for each data item requires (B−1)/B ·Ns ·F calculations. The cost

of the “local search” phase is thus O (N · n ·N2
s · F ). Since the predictions for

each classifier-data item pair can be stored and can be accessed in linear time,

the cost of evaluating the Mn classifier combinations and selecting the best

to become the new incumbent solution is O(Mn ·Ns). The total cost of creat-

ing the algorithm via Tabu Search is thus: O (Ts · (N · n ·N2
s · F + Mn ·Ns)).

Typically in our work N, M, n, F << Ns, as are the combined terms N ·n and

Mn, so the cost is approximately O(Ts ·N2
s ).

It should be noted that using modern multi-core processors it is simple to speed

up the computational time considerably since the evaluation of the M ∗n 1NN

classifiers can be done independently in parallel. The computational time is

dominated by the square of the number of data samples. In previous work [48]

using Genetic Algorithms to select features for a Self-Organising Map [47], we

have shown how data-set sub-sampling can be applied to greatly reduce the

computational effort. It remains for future work to evaluate whether the use of

such more rapidly computed approximates of the error rates can successfully

be exploited within the Tabu Search metaheuristic.

Finally, we should note that this is the cost of creating an algorithm for a new

dataset. As detailed later, for the purposes of the performance comparisons,

we used repeated B− fold cross-validation with multiple runs of Tabu Search,

and so the computational time and effort was significantly larger.
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4 Experiments

To evaluate the effectiveness of our method, extensive experiments were carried

out to determine the best training method, and to benchmark the approach

against several well known methods for creating single classifiers or ensembles.

4.1 Benchmark Methods

For comparison we used the following methods as implemented in WEKA [36].

• Decision Tree Method (C4.5): A classifier in the form of a tree structure,

where each node is either a leaf node or a decision node [3,37].

• Random Forest (RF): Ensemble using a forest of random trees [38].

• Naive Bayes Algorithm (NBayes): The Naive Bayes Classifier technique is

based on Bayesian theorem. Despite its simplicity, Naive Bayes can often

outperform numerous sophisticated classification methods [39].

• Bagging: A method for generating multiple versions of a predictor and using

these to get an aggregated predictor (ensemble) [6]. For the sake of com-

pleteness we evaluated the use of both C4.5 and 1NN as the base classifier.

• AdaBoost1: A meta-algorithm for constructing ensembles which can be used

in conjunction with many other learning algorithms to improve their per-

formance [7]. Again we used both C4.5 and 1NN as the base classifiers.

• Random Sub Space (RSS): This method generates an ensemble of classi-

fiers, each using a pseudo randomly selected subsets of the features, that

is, classifiers constructed in randomly chosen subspaces [31]. 1NN is used

as the base classifier, thus this is equivalent to our DT-TS3-1NN algorithm

but with the meta-heuristic learning component removed.
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We considered the following variations of the proposed ensemble algorithms

(1) DF-1NN: Ensemble Classifier using NN classifiers with each classifier hav-

ing different distance metrics (DF) but without feature selection.

(2) DF-TS1 -1NN: As above (1) but using Tabu Search (TS) to perform

feature selection independently for each classifier.

(3) DF-TS2-1NN: As above (1) but with a single common feature set selected

by Tabu Search based on the ensemble accuracy.

(4) DF-TS3-1NN: Proposed Ensemble classifier. As above (1) but with dif-

ferent feature subsets derived simultaneously for each classifier using TS.

4.2 Data sets Descriptions and Experimental Setup:

We used a range of datasets of different characteristics from the UCI [40].

These, along with the Tabu Search parameters, are described in Table 1.

Table 1
Data sets Description. N = Number of neighbourhood solutions sampled.

Name Ns (size) Features Classes T (Tabu List) N

Australian 690 14 2 4 4

Breast Cancer 569 32 2 6 6

CMC 1473 9 3 3 3

Dermatology 358 34 6 6 6

Diabetes 768 8 2 3 3

German 1000 20 2 5 5

Heart 270 13 2 4 4

Ionosphere 351 34 2 6 6

Musk 476 166 2 13 13

SatImage 4435 36 6 6 6

Segment 2310 18 7 5 5

Sonar 208 60 2 8 8

Spectf 269 44 2 7 7

Vehicle 846 18 4 5 5

To estimate the predictive accuracy of classifiers it is necessary to split the

available data into disjoint test and training sets, and it is well known that
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the results obtained will depend on the particular choice of test/train split.

Therefore in all data sets, repeated B−fold stratified cross validation has been

used to estimate error rates [41,42].

For B-fold CV, each data set is divided into B blocks and B classifiers are

trained, each using (B-1) blocks as a training set and the remaining block

as a test set. Therefore, each block is used exactly once as a test set. The

average accuracy of the B classifiers is used as the prediction of the accuracy.

Evaluating the proposed approach requires both that the test set should never

be seen by TS, and also an estimate of the value of a particular ensemble

feature vector. Therefore during the search process the solution quality was

estimated using (B−1)−fold CV with the current training set. As an example;

if there are 100 samples, and B = 10; the data set is first divided into 10

different sets with each set consists of 90 training and 10 test samples. For each

of the ten test sets, our proposed algorithm is trained, using as its objective

function the 9-Fold CV accuracy on the remaining 90 training samples. The

accuracy of the evolved feature subsets is then evaluated by classifying the 10

items in the the test set (which has never seen by TS) against the 90 training

samples. This whole process is then repeated for each of the ten splits.

For greater statistical rigour, each experiment was run 5 times using different

random 10-CV partitions [43]. The mean and standard deviations of these are

presented below, and we also apply statistical hypothesis tests. The compar-

ison results reported in section 4.4, also used five replicates of ten-fold cross

validation with the same data splits.

In every case, since we are establishing whether there is a difference between

a group of algorithms, we have begun by applying a two-way ANOVA with
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the data set and algorithm as independent factors. If it is confirmed that with

greater than 95% confidence the results from the different algorithms do not

come from the same underlying distribution, we then apply post-hoc testing

using Tamhane’s T2 test (which does not assume equal variances) to establish

whether the observed pair-wise differences are statistically significant.

In order to offset any bias due to the different range of values for the original

features in 1NN classifier, they are normalized over the range [1,10] using

Equation 3 [14], where xi,j is the jth feature of the ith pattern, x
′
i,j is the

corresponding normalized feature, and as before Ns is the size of the data set..

x
′
i,j = (

xi,j −mink=1...Nsx(k,j)

maxk=1...Nsx(k,j) −mink=1...Nsx(k,j)

∗ 10) (3)

4.3 Comparison of Different ways of Creating Feature Sets

Table 2 shows the classification accuracy using various distance functions

within single classifiers, and for the ensemble technique, all without feature

selection. As can be seen, on some data sets there is a wide discrepancy be-

tween the accuracy obtained with different distance metrics. With the simple

voting scheme the votes of the less accurate classifiers can dominate, so that

the ensemble performs worse than the best single classifier on those datasets.

Table 3 shows the accuracy achieved when Tabu Search is used to perform

feature selection of the individual classifiers. Comparing the results for indi-

vidual classifiers with feature selection (TS-E,TS-M ,TS-C,TS-Cs,TS-Sc) to

those without (Table 2) it can be seen that feature selection always increases

the accuracy.
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Table 2
Mean and standard deviation of classification accuracy (%) for individual classi-
fiers and ensemble, all without feature selection. M=Manhattan, E=Euclidean,
C=Canberra, Cs = Chi-Squared, Sc = Squared-Chord.

Data Set E M C Cs Sc DF-1NN

Australian 79.7 (4.96) 79.8 (4.63) 83.7 (3.5) 80.3 (4.46) 80.2 (4.15) 82.3 (4.15)

Breast Cancer 95.2 (2.42) 95.0 (3.05) 95.2 (2.76) 95.5 (2.45) 95.5 (2.45) 95.5 (2.48)

CMC 43.0 (2.82) 43.3 (3.36) 45.6 (3.14) 44.2 (2.85) 44.9 (2.79) 44.3 (2.83)

Dermatology 95.4 (4.24) 96.0 (3.41) 96.3 (3.08) 97.5 (2.80) 96.9 (2.99) 97.4 (2.84)

Diabetes 70.3 (4.38) 69.6 (5.16) 65.6 (5.18) 69.3 (4.51) 69.4 (4.53) 69.8 (4.63)

German 70.5 (3.56) 71.1 (3.77) 70.2 (4.14) 70.5 (3.64) 70.0 (3.75) 72.2 (3.54)

Heart 76.1 (7.71) 77.9 (7.00) 79.0 (6.75) 76.7 (7.37) 76.1 (7.68) 76.9 (7.39)

Ionosphere 86.9 (5.22) 90.6 (4.69) 92.2 (4.53) 89.0 (4.95) 88.6 (5.06) 90.2 (4.61)

Musk 85.8 (3.96) 83.9 (5.17) 84.7 (5.46) 86.2 (3.91) 86.1 (3.84) 86.2 (3.84)

SatImage 90.0 (1.09) 90.5 (1.37) 90.3 (1.27) 90.2 (1.38) 90.1 (1.43) 90.4 (1.22)

Segment 97.2 (1.15) 97.6 (1.02) 95.2 (1.64) 96.7 (1.16) 96.6 (1.24) 97.1 (1.04)

Sonar 83.0 (7.62) 85.0 (6.89) 87.1 (6.53) 86.1 (6.28) 86.5 (6.35) 85.6 (6.69)

Spectf 70.1 (8.99) 70.7 (7.71) 69.8 (8.80) 69.7 (8.88) 69.9 (9.15) 70.6 (9.54)

Vehicle 69.5 (4.06) 69.5 (4.01) 69.6 (3.92) 70.6 (3.50) 70.5 (3.74) 70.7 (3.60)

Table 3
Mean and Standard Deviation of Classification Accuracy (%) using individual clas-
sifiers and with FS using TS. M=Manhattan, E=Euclidean, C=Canberra, Cs =
Chi-Squared, Sc = Squared-Chord.

Data Set TS-E TS-M TS-C TS-Cs TS-Sc

Australian 86.2 (3.35) 86.7 (3.35) 86.1 (2.94) 85.9 (3.49) 86.9 (2.70)

Breast Cancer 96.8 (1.82) 97.5 (1.82) 97.5 (2.03) 97.0 (1.64) 97.1 (1.83)

CMC 48.5 (3.62) 48.2 (3.26) 49.0 (3.46) 48.9 (3.57) 48.9 (3.61)

Dermatology 96.0 (3.85) 96.5 (2.89) 96.8 (3.1) 96.8 (2.80) 97.0 (3.00)

Diabetes 71.1 (4.21) 71.0 (3.91) 71.9 (3.61) 71.0(4.31) 71.3 (3.90)

German 73.3 (3.32) 74.0 (3.38) 73.8 (3.38) 74.5 (3.20) 73.1 (3.32)

Heart 80.3 (5.82) 81.6 (5.67) 82.4 (5.58) 82.5 (5.89) 82.0 (5.08)

Ionosphere 93.6 (3.94) 95.4 (3.50) 95.9 (3.65) 92.9 (4.18) 93.9 (4.35)

Musk 89.8 (3.26) 89.0 (4.02) 89.6 (4.22) 90.1 (3.78) 89.2 (3.28)

Satimage 91.2 (0.96) 91.4 (1.00) 91.1 (1.01) 91.0 (1.00) 91.1 (1.13)

Segment 97.8 (0.94) 98.0 (0.87) 97.7 (0.92) 97.9 (0.86) 97.9 (0.90)

Sonar 85.2 (6.51) 87.2 (7.55) 90.7 (6.04) 90.1 (5.43) 87.6 (6.89)

Spectf 82.0 (6.40) 82.2 (5.66) 82.7 (6.66) 81.0 (6.75) 82.7 (6.65)

Vehicle 74.0 (3.77) 74.7(4.29) 74.0 (3.16) 74.1 (3.21) 73.5 (3.60)

Table 4 shows the classification accuracy obtained using different variations on

the way that feature selection is performed for the ensemble. This shows that

the use of feature selection to derive a common subset for all classifiers ( DF-

TS2-1NN) results in improved performance compared to the same algorithm
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without feature selection (DF-1NN in Table 2), but now the mean accuracy

is higher than the best individual classifier on most data sets. This is a good

example that indicates that in order for ensembles to work well - the member

classifiers should be accurate.

The other condition for ensembles to work well is diversity, and the perfor-

mance improves further when feature selection is done independently for each

classifier (DF-TS1-1NN), as they can now use potentially different feature

sets. However, this approach only implicitly (at best) tackles the diversity is-

sue, and the performance is further increased when different feature subsets

co-adapt, so that each feature set is optimized in the context of the ensemble

as whole (DF-TS3-1NN).

Comment: text to follow in seperate email from Jim once he has

analysed the data

Table 4
Mean and Standard Deviation of Classification Accuracy (%) using various varia-
tions of the proposed classifier.

Data Set DF-TS1-1NN DF-TS2-1NN DF-TS3-1NN

Australian 88.4 (3.53) 89.1 (3.34)

Breast Cancer 97.3 (1.83) 97.5 (1.71)

CMC 49.8 (3.72) 52.8 (3.20)

Dermatology 97.5 (2.60) 97.3 (2.79)

Diabetes 73.9 (4.21) 76.5 (2.43)

German 76.6 (3.73) 77.7 (2.90)

Heart 84.0 (5.42) 86.1 (4.65)

Ionosphere 94.9 (3.93) 95.0 (3.75)

Musk 90.7 (3.23) 91.7 (2.78)

Satimage 92.5(0.85) 92.3 (0.98)

Segment 98.2 (0.80) 98.8 (0.60)

Sonar 90.0 (5.50) 90.6 (5.41)

Spectf 84.7 (6.50) 83.5 (7.35)

Vehicle 75.8 (4.01) 76.2 (3.60)

Table 5 shows the number of features used by proposed classifier on a typical

(randomly chosen) run from each dataset. Different features have been used
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by the individual classifiers that are part of the whole ensemble classifier,

thus increasing diversity and producing an overall increase in the classification

accuracy. FCommon represents those features that are used by every classifier

in the ensemble while FEnsemble is the total number of features used in the

ensemble. As can be seen on most data sets there are few, if any, features that

are used by every classifier. This is a cause of diversity amongst the decision

of the different classifiers. The fact that these feature sets are learned rather

than simply assigned at random is responsible for the different classifiers all

remaining accurate - the other pre-requisite for successful formation of an

ensemble. This issue is explored further in the next section.

Tables 6 and 7 show the diversity using “Plain Disagreement” and “Entropy”

for the four variations of the proposed ensemble methods, averaged over all

50 runs (5 repeats of ten-fold CV). It is clear from these tables that both

pairwise and non-pairwise diversity measures are high in all datasets except

Table 5
Total Number of Features used by proposed classifier. FT = Total Available Fea-
tures, FM= Feature using Manhattan Distance, FE=Features using Euclidean Dis-
tance, FC=Features using Canberra Distance, FCs = Features using Chi-Squared
Distance, FSc = Feature using Squared-Chord Distance.

Data Set FT FE FM FC FCs FSc FCommon FEnsemble

Australian 14 5 9 9 7 5 1 14

Breast Cancer 32 19 13 15 21 13 3 28

CMC 9 6 6 6 6 4 2 9

Dermatology 34 19 23 21 15 21 8 32

Diabetes 8 3 5 1 3 5 0 8

German 20 9 13 13 13 15 3 19

Heart 13 10 8 10 6 8 2 13

Ionosphere 34 11 13 15 11 11 2 26

Musk 166 84 74 76 86 90 0 124

Segment 18 6 12 12 10 8 2 17

SatImage 36 24 22 24 16 24 5 36

Sonar 60 31 33 27 35 33 0 58

Spectf 44 22 14 16 20 24 1 30

Vehicle 18 9 11 13 7 13 0 17
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Table 6
Diversity using “Plain Disagreement Measure”.

Data Set DAll DEnsemble1 DCommon DEnsemble2

DF-1NN DF-TS1-1NN DF-TS2-1NN DF-TS3-1NN

Australian 0.1088 0.1331 0.1810

Breast Cancer 0.0151 0.0265 0.0432

CMC 0.1424 0.2184 0.4660

Dermatology 0.0276 0.0360 0.0450

Diabetes 0.1147 0.2428 0.3371

German 0.1660 0.2552 0.3027

Heart 0.0748 0.1516 0.2370

Ionosphere 0.0526 0.0527 0.08460

Musk 0.0761 0.0866 0.0978

Satimage

Segment 0.0311 0.0197 0.0374

Sonar 0.0883 0.1275 0.1433

Spectf 0.1184 0.2140 0.2486

Vehicle 0.1463 0.2022 0.2739

Table 7
Diversity using “Entropy”.

Data Set DAll DEnsemble1 DCommon DEnsemble2

DF-1NN DF-TS1-1NN DF-TS2-1NN DF-TS3-1NN

Australian 0.1822 0.2106 0.3104

Breast Cancer 0.0278 0.0400 0.0738

CMC 0.1552 0.2534 0.5269

Dermatology 0.0174 0.0225 0.0302

Diabetes 0.1955 0.3965 0.5708

German 0.2825 0.4271 0.5138

Heart 0.1283 0.2370 0.4034

Ionosphere 0.0866 0.0790 0.1450

Musk 0.1279 0.1476 0.1668

Satimage

Segment 0.0315 0.0118 0.0232

Sonar 0.1493 0.2085 0.2433

Spectf 0.1904 0.3476 0.42146

Vehicle 0.1268 0.1705 0.2403

Musk when selecting feature subsets for all of the classifiers simultaneously

(DF-TS3-1NN). Thus, diversity plays an important role increasing the classi-

fication accuracy of various data sets using proposed ensemble technique. Since

Musk has 166 features; we argue that feature selection alone plays an impor-

tant role in improving the classification accuracy. Further, in many cases using
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a common feature set (DF-TS2-1NN) actually reduces the diversity compared

to not doing FS at all (DF-1NN), even though accuracy of DF-TS2-1NN is

higher than accuracy of DF-1NN. In contrast; diversity does increase a little

when FS done independently (DF-TS1-1NN) and thus justify our use of local

search done independently in our hybrid TS algorithm.

4.4 Comparison with other algorithms

Table 8 shows the comparison of accuracy (in %) between the proposed DF3-

TS-1NN classifier and others for different data sets. These results can be sum-

marised as follows:

• On 12 of the 14 data sets DF-TS3-1NN produces the highest mean accuracy.

· On 3 datasets (Australian, German, Segment) it is significantly better

than all other algorithms.

· On 4 datasets it is statistically better than all but one other method

(RSS-1NN on Breast Cancer, Naive Bayes on Heart, Random forest on

Ionosphere, AdaBoost on Musk).

· Most of pairwise tests show DF-TS3-1NN is significantly better than the

other method.

• On 2 datasets another method had a higher mean accuracy:

· but this difference is not statistically significant,

· and DF-TS3-1NN is significantly better than most other algorithms.

• With the exceptions of RSS on SatImage, AdaBoost/Bagging on Sonar,

the DF-TS3-1NN significantly outperforms not just 1NN on every dataset,

but also the alternative methods for producing ensembles of 1NN classifiers

(AdaBoost, Bagging and Random Sub-Space).
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• The significant performance advantages over Random SubSpace search in-

dicate that learning is truly taking place during the Tabu Search phase.

Table 8
Average Classification Accuracy (%) using different classifiers. RF = Random For-
est, RSS=Random Sub-Space Search. Bold type indicates algorithm with highest
mean accuracy per dataset. Use of a * indicates that the difference in fitness between
the best and all other clasifiers is significant with more than 95% confidence.

Dataset C4.5 RF NBayes Bagging AdaBoost Bagging AdaBoost 1NN RSS DF-TS3

(C4.5) (C4.5) (1NN) (1NN) -1NN -1NN

Aust. 84.52 85.43 77.18 85.93 84.97 79.86 77.34 82.33 82.67 89.11*

(3.88) (4.30) (3.79) (3.57) (4.23) (4.59) (4.53) (4.15) (4.41) (3.34)

Breast 93.36 95.90 93.38 95.13 95.67 95.55 93.73 95.16 96.52 97.54

(3.73) (2.37) (2.74) (2.80) (2.55) (2.26) (3.10) (2.42) (2.61) (1.71)

CMC 50.35 50.56 49.02 53.25 51.61 43.21 43.02 42.95 46.38 52.75

(4.05) (3.48) (3.93) (3.73) (2.81) (2.77) (3.26) (2.82) (2.25) (3.24)

Derm. 95.77 96.83 97.28 96.83 96.87 95.42 92.66 95.44 96.66 97.28

(2.57) (2.86) (3.06) (2.72) (3.24) (4.10) (4.53) (4.24) (3.41) (2.79)

Diabet. 74.01 75.07 75.67 75.15 71.44 70.51 67.55 70.27 70.89 76.45

(4.96) (5.50) (5.21) (5.62) (4.90) (4.13) (4.75) (4.38) 5.32) (3.43)

German 72.26 74.68 74.64 74.90 73.18 71.28 68.08 70.54 73.16 77.66*

(4.02) (3.08) (3.22 (3.25) (3.57) (3.76) (3.49) (3.56) (3.54) (2.90)

Heart 78.89 80.44 84.44 79.56 79.19 75.85 75.93 76.15 80.44 86.07

6.87 (6.26) (6.08) (6.62) (6.81) (7.42) (7.75) (7.71) (6.98) (4.65)

Ionos. 89.52 93.04 82.44 91.86 92.33 86.73 87.78 86.92 89.80 95.01

(3.21) (4.37) (5.79) (4.31) (4.02) (4.98) (5.38) (5.22) (4.87) (3.75)

Musk 82.89 88.12 73.34 87.73 89.78 86.13 87.06 85.76 87.89 91.65

(5.66) (4.69) (7.41) (4.29) (4.24) (4.37) (4.39) (3.96) (3.45) (3.05)

SatImg 86.44 90.39 79.54 89.94 90.09 89.96 88.67 89.96 91.13 92.33

(1.46) (1.23) (1.68) (0.81) (1.50) (1.19) (1.64) (1.09) (0.89) (0.98)

Segmnt 96.93 97.83 80.04 97.60 98.35 97.06 96.73 97.18 97.20 98.83*

(1.04) (0.98) (1.71) (0.93) (0.79) (1.20) (1.29) (1.15) (1.20) (0.60)

Sonar 72.40 80.91 67.73 77.74 81.16 86.90 86.36 83.01 88.64 90.63

(9.11) (8.10) (9.43) (7.64) (8.19) (6.79) (7.05) (7.62) 6.68 (5.41)

Spect 76.03 79.58 68.08 79.85 79.60 69.80 67.11 70.11 73.33 83.51

(7.01) (7.25) (10.02) (5.55) (6.75) (8.48) (8.76) (8.99) (9.21) (7.35)

Vehicle 73.37 74.77 45.09 74.76 76.47 69.85 68.29 69.51 71.25 76.24

(4.08) (4.09) (4.20) (3.63) (3.87) (4.31) (3.72) (4.06) (4.19) (3.60)

Tamhane’s T2 test is a conservative post-hoc test. Use of the more common

LSD test indicates that more of the increases in accuracy between DF-TS3-

1NN and other methods are statistically significant. A two-way Analysis of

Variance, with the algorithm and dataset as independent factors, and the ac-
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curacy as the dependent variable confirmed that both of the factors the are

statistically significant with over 95% confidence. Using Tamhane’s T2 test

was used to perform a post-hoc pairwise comparison between the different al-

gorithms after the effects of the data set had been factored out confirmed that

the performance of DF-TS3-1NN was better with more than 95% confidence.

Figure 4 shows the standard deviation of each data set for different algorithms.

From the graph, it is clear that the standard deviation of the proposed clas-

sifier compares favorably with other algorithms. In particular; the standard

deviation is almost same for all algorithms in which 1NN is used as base

classifier.
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4.5 Comparison with results from literature

Comparisons with, or even definitions of “state of the art” are always diffi-

cult in a rapidly changing field, where it is not always possible to replicate

algorithms. In order to indicate the relative merit of the approaches tested, Ta-

ble 9 shows a comparison between the results obtained with our approach, and

the best results found on on-line comparison site maintained by the Nicolaus

Copernicus University [44]. This website provides a comprehensive comparison

of many different algorithms on a range of data sets using various methods

of error estimation. Wherever possible we have quoted the best given results

from repeated n-fold cross validation and reported their standard deviations.

As one would expect from the No Free Lunch theorem, this best result is

not always obtained with the same “state of the art” classifier, and we have

reproduced published results here, so statistical hypothesis testing was not

performed. In some cases, results are taken from the statlog project, which

used a single n-fold cross validation and does not report the variation between

runs. In one case the only results available were for a test/train methodology.

These last two groups of results should therefore be treated with increasing

caution.

As can be seen our approach gives a higher mean n-fold c.v. accuracy on 6

of the 9 data sets for which we have results. We are unable to apply rigorous

hypothesis testing, but on the basis of the published standard deviations, it

would appear that only for the case of the Sonar and possible the vehicle

datasets are the best published results likely to be significantly better.
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Table 9
Comparison of mean results from multiple runs of n-fold cross validation between
DF-TS3-1NN and the best results from literature found on [44]. Standard deviations
between runs of n-fold cross validation are given where available. If not sl indicates
the source is the statlog project, which only used 1 run, or test indicates results
were only available for a holdout method. Final Column indicated algorithm used
with standard acronyms

Data Set DF-TS3-1NN Literature

mean std. dev. mean std. dev Algorithm

Australian 89.11 3.34 86.9 statlog Cal5

Breast Cancer 97.54 1.71 97.5 1.8 Naive Bayes

Diabetes 76.45 3.43 77.7 statlog Log. Disr.

Heart 86.07 4.65 84.9 0.7 SVM

Ionosphere 95.01 3.75 94.9 2.6 kNN-Simplex

SatImage 92.33 0.98 91.0 test MLP

Segment 98.83 0.60 97.2 statlog kNN-Manhattan

Sonar 90.63 5.41 99.8 0.1 MLP-BP

Vehicle 76.24 3.60 85.0 statlog Quad. Discr.

4.6 Analysis of Learning

Figures 5- 7 show the classification accuracy (%) vs number of iterations for

Australian, Ionosphere and German data sets using one run of the solution

search space using TS. The figure clearly indicates that TS focuses on a good

solution space. The proposed TS algorithm progressively zooms towards a

better solution subspace as time elapses; a desirable characteristics of approx-

imation iterative heuristics.
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Fig. 7. Error Rate vs Iterations for German Data set.
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5 Case Study: Industrial Application (CD Print Data)

The most extensive application of our proposed technique is as part of the

“DynaVis” [45] automatically self-reconfigurable and adaptive fault detection

framework for manufacturing quality control shown in Figure 8. This frame-

work classifies each image as good or bad, and adapts the classifier on-line in

response to the operator’s feedback. The particular example we will demon-

strate here concerns inspecting the printing of images and text of CDs and

DVDs, the objective being to detect faults due to weak colours, incorrect

palettes etc. For this print application, a “master” image is available and the

approach taken is to subtract this from the image of each produced part so as

to generate “contrast” images which are then characterised according to the

structure and characteristics of the deviation pixels.

One aspect of the DynaVis system is the recognition that not only will fac-

tors such as fatigue cause inconsistencies in the labels applied by individual

operators, but there will also be systematic differences in the decisions made

by different operators arising from factors such as inexperience and different

roles in the organisation. In order to cope with this the system builds a model

of each operator and uses an weighted voting technique to combine these - a

Fig. 8. Classification Framework for classifying images into good or bad.
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true “mixture of experts”. Therefore it is necessary to create classifiers which

model the decisions made by each operator as closely as possible. It is also

necessary for the technique used to combine these classifiers to take account of

the fact that, since each operators may display different levels of inconsistency,

the classifier(s) modelling them will have different levels of predicted accuracy.

It is important to clarify that the feature-selection and training of the pro-

posed ensemble classifier is performed off-line, and is done independently for

each individual operator. During online processing, each image is classified by

the set of n 1NN classifiers and a decision made for that particular operator.

This whole process is done in parallel for each operator before the final results

are combined.

The data set consists of 1534 images, each labeled by 4 different operators. For

each image, 74 aggregated features are extracted, describing the distribution,

density, shape etc. of the pixel fragments in the deviation images. Table 5

shows the classification accuracy obtained when using the proposed algorithm

to train a classifier modelling the decisions of each different operator. The re-

sults clearly indicate a significant increase in classification accuracy compared

with a range of other well-known techniques, and also illustrate how the dif-

ferent levels of consistency lead to differences in accuracies between operators.

Figure 9 shows the standard deviation obtained over the 100 runs of random

10-fold cross validation for different operators. Again from the graph, it is

clear that the standard deviation is almost same for all algorithms in which

1NN is used as base classifier.

Comment from jim: do we have the 100 classifications accuracies for

each operator with each algorithm? If so I may as well run a proper

stat analysis on them. This part will be finished on Thursday.
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Table 10
Average Classification Accuracy (%) using different classifiers for real recorded CD
images. RF = Random Forest. Bag = Bagging. Ada = AdaBoost

Good/Bad C4.5 RF NBayes Bag Ada Bag Ada 1NN DF-TS3

C4.5 C4.5 1NN 1NN -1NN

Op1 1164/370 92.5 94.1 87.1 93.8 93.7 93.8 93.3 92.7 95.6

Op2 1262/272 95.5 96.6 92.4 96.5 96.8 96.4 95.8 95.8 98.1

Op3 1230/304 94.0 95.2 89.0 95.1 95.2 95.3 94.6 93.4 96.0

Op4 1223/311 95.0 95.8 90.4 95.9 95.7 96.2 95.8 94.8 97.7
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Fig. 9. Standard deviation for various algorithms on CD data set labelled by 4
different operators.

6 Conclusion

A new ensemble technique is proposed in this paper to improve the perfor-

mance of nearest neighbour (1NN) classifier. The proposed approach combines

multiple 1NN classifiers, where each classifier uses a different distance func-

tion and potentially a different set of features (feature vector). These feature

vectors are determined using a combination of Tabu Search (at the level of the

ensemble) and simple local neighbourhood search (at the level of the individual

classifiers).

We show that rather than optimising the feature set independently for each
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distance metric , it is preferable to co-adapt them, so that each feature set

is optimised in the context of the ensemble as whole. This approach also

implicitly deals with the problem tackled by many authors, namely of how

to find an appropriate measure the diversity of an ensemble so that it can be

optimised. Our solution is to simply do this explicitly by letting Tabu Search

operate using the ensemble error rate as its cost function.

The proposed ensemble DF-TS-1NN classifier is evaluated using various bench-

mark data sets from UCI Machine Learning Repository and a real-world ap-

plication. Results indicate a significant increase in the performance when com-

pared with different well-known classifiers.

Our hypothesis is that the benefits that accrue from this approach are not

limited to the use of kNN classifiers. It is relatively straightforward to see

how the approach could be adapted to other distance-measure base classifiers

such as SOM, LVQ [47]. Other authors have shown improvements from using

ensembles with randomly chosen feature subsets (the RSS method [31]), and

ee have published results elsewhere [46] showing that feature selection can

bring improvements for single classifiers of various different types that are not

based on distance metrics: even those such as C4.5 which implicitly perform

their own feature selection. This is because many of these methods apply

incremental greedy search to select features on which to “split”, so the use of

feature selection can aid the avoidance of local optima. It is our conjecture

that these results could be further improved by using an ensemble of such

classifiers as long as the feature selection was simultaneously.

This work is intended as a step towards the automatic creation of classifiers

tuned to specific data sets. Future research will be concerned with automating
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the choice of distance metric and k for each of our k−NN classifiers. We will

also consider ways of automatically selecting subsets of the training exam-

ples to use for classification, as a way of tackling the well-known scalability

problems of 1NN as the number of training examples increases.
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